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Protein function prediction is an important problem in functional genomics. Typically, protein sequences
are represented by feature vectors. A major problem of protein datasets that increase the complexity of
classification models is their large number of features. Feature selection (FS) techniques are used to deal
with this high dimensional space of features. In this paper, we propose a novel feature selection algorithm
that combines genetic algorithms (GA) and ant colony optimization (ACO) for faster and better search
capability. The hybrid algorithm makes use of advantages of both ACO and GA methods. Proposed algo-
rithm is easily implemented and because of use of a simple classifier in that, its computational complex-
ity is very low. The performance of proposed algorithm is compared to the performance of two prominent
population-based algorithms, ACO and genetic algorithms. Experimentation is carried out using two chal-
lenging biological datasets, involving the hierarchical functional classification of GPCRs and enzymes. The
criteria used for comparison are maximizing predictive accuracy, and finding the smallest subset of fea-
tures. The results of experiments indicate the superiority of proposed algorithm.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Protein function prediction is an important problem in func-
tional genomics. Proteins are large molecules that perform nearly
all of the functions of a cell in a living organism (Alberts et al.,
2002). The primary sequence of a protein consists of a long se-
quence of amino acids. Proteins are the most essential and versatile
macromolecules of life, and the knowledge of their functions is a
crucial link in the development of new drugs, better crops, and
even the development of synthetic biochemical such as biofuels.

Over the past few decades, major advances in the field of molec-
ular biology, coupled with advances in genomic technologies, have
led to an explosive growth in the biological information generated
by the scientific community. Although the number of proteins with
known sequence has grown exponentially in the last few years,
due to rapid advances in genome sequencing technology, the num-
ber of proteins with known structure and function has grown at a
substantially lower rate (Freitas & de Carvalho, 2007).

Searching for similar sequences in protein databases is a com-
mon approach used in the prediction of a protein function. The
objective of this search is to find a similar protein whose function
is known and assigning its function to the new protein. Despite the
simplicity and usefulness this method in a large number of situa-
ll rights reserved.

: +98 3117932670.
tions, it has also some limitations (Freitas & de Carvalho, 2007).
For instance, two proteins might have very similar sequences and
perform different functions, or have very different sequences and
perform a similar function. Additionally, the proteins being com-
pared may be similar in regions of the sequence that are not deter-
minants of their function.

Another approach that may be used alternatively or in comple-
ment to the similarity-based approach is to build a model for pre-
dictive classification. The goal of such a model is to classify data
instances into one of a predefined set of classes or categories. In
this approach a feature vector represents each protein, a learning
algorithm captures the most important relationships between the
features, and the classes present in the dataset. A major problem
in protein datasets is the high dimensionality of the feature space.
Most of these dimensions are not relative to protein function; even
some noise data hurt the performance of the classifier. Hence, we
need to select some representative features from the original fea-
ture space to reduce the dimensionality of feature space and im-
prove the efficiency and performance of classifier.

Feature selection (FS) is of considerable importance in bioinfor-
matics (Basiri, Ghasem-Aghaee, & Aghdam, 2008; Saeys, Inza, &
Larranaga, 2007), signal processing (Nemati, Boostani, & Jazi,
2008), text categorization (Aghdam, Ghasem-Aghaee, & Basiri,
2008), data mining and pattern recognition (Jensen, 2005). Among
too many methods that are proposed for FS, population-based opti-
mization algorithms such as genetic algorithm (GA), ant colony
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optimization (ACO) and particle swarm optimization (PSO) have
attracted a lot of attention (Basiri et al., 2008; Liu, Qin, Xu, & He,
2004; Punch, Goodman, Pei, Hovland, & Enbody, 1993). These
methods are stochastic optimization techniques attempt to
achieve better solutions by application of knowledge from previ-
ous iterations.

Genetic algorithms are optimization techniques based on the
mechanism of natural selection. They used operations found in
natural genetics to guide itself through the paths in the search
space (Siedlecki & Sklansky, 1989). Because of their advantages, re-
cently, GAs have been widely used as a tool for feature selection in
data mining (Srinivas & Patnik, 1994).

ACO is a branch of newly developed form of artificial intelli-
gence called Swarm Intelligence (SI). ACO algorithm is inspired
by social behavior of ant colonies. Although they have no sight,
ants are capable of finding the shortest route between a food
source and their nest by chemical materials called pheromone that
they leave when moving (Liu, Abbass, & McKay, 2004).

ACO algorithm was firstly used for solving Traveling Salesman
Problem (TSP) (Dorigo, Maniezzo, & Colorni, 1996) and then has
been successfully applied to a large number of difficult problems
like the Quadratic Assignment Problem (QAP) (Maniezzo & Colorni,
1999), routing in telecommunication networks, graph coloring
problems, scheduling, etc. This method is particularly attractive
for feature selection, as there seems to be no heuristic that can
guide search to the optimal minimal subset every time (Aghdam
et al., 2008).

In our previous work (Basiri et al., 2008), we have proposed an
ACO algorithm for feature selection in prediction postsynaptic
activity of proteins. In this paper, we intend to hybridize ACO
and genetic algorithms to obtain their excellent features by syn-
thesizing them. More specifically, ACO offers a critical advantage
of local searching, not found in GA. On the other hand, GA consid-
ers a global perspective by operating on the complete population
from the very beginning. Therefore, ACO and GA can nullify each
others drawbacks when hybridized.

The rest of this paper is organized as follows. Section 2 presents
a brief overview of protein function prediction. Feature selection
methods are shortly discussed in Section 3. Ant colony optimiza-
tion is described in Section 4. Genetic algorithms are addressed
in Section 5. Section 6 explains the proposed hybrid feature selec-
tion algorithm. Section 7 reports computational experiments. It
also includes a brief discussion of the results obtained and finally
the conclusion and future works are offered in the last section.
Fig. 1. Model-based approach for protein function prediction.
2. Protein function prediction

Proteins are the most essential and versatile macromolecules of
life and serve as building blocks and functional components of a
cell, and account for the second largest fraction of the cellular
weight after water. They are polypeptides, formed within cells as
a linear chain of amino acids (Setubal & Meidanis, 1999). Twenty
different amino acids are available, which are denoted by 20 differ-
ent letters of the alphabet and a linear sequence of these amino
acids is known as the primary structure.

Some patterns may be common to multiple proteins. These
common patterns and domains include helixes, sheets, various
sites, which allow functions of a protein to be turned on and off,
etc. From a data mining point of view these regions are very inter-
esting since they work together to produce the function of proteins
and so must produce patterns that can be analyzed. Some dat-
abases of these common patterns have been created, including
the Prosite database (Hulo, 2006), which is used in this work. This
database contains unique fingerprint style entries, which are de-
signed to be used to identify the function of unknown proteins.
The concept of protein function is highly context sensitive and
not very well defined. Rost, Liu, Nair, Wrzeszczynski, and Ofran
(2003) in their survey defined protein function as follows: ‘‘func-
tion is everything that happens to or through a protein”. From a
data mining point of view, protein function prediction can be re-
garded as a classification problem, namely to correctly classify a
newly discovered protein into its functional class. Typically, pro-
tein datasets are organized as a hierarchy of classes. The classifica-
tion of data in such a hierarchy poses some unique challenges to
data miners such as the need for classification at different levels,
which may require the use of different characteristics of the data.

In this paper two families of proteins are used to investigate
performance of proposed approach involve G-protein-coupled
receptor (GPCR) and enzyme protein families. G-protein-coupled
receptors (GPCR) are proteins involved in signaling. They span cell
walls so that they influence the chemistry inside the cell by sensing
the chemistry outside the cell. More specifically, when a ligand (a
substance that binds to a protein) is received by a GPCR, it causes
the attached G-proteins to activate and detach. This mechanical
biological switch causes the released G-Protein to affect other reac-
tions within the cell. This kind of protein is particularly important
for medical applications because it is believed that 40–50% of cur-
rent medical drugs target GPCR activity (Freitas & de Carvalho,
2007).

Enzymes are a sub set of proteins; they are essential proteins
responsible for the catalysis of metabolic reactions. They are used
to speed up and make possible many of the chemical reactions that
take part within the cell, without being altered themselves. En-
zymes are assigned EC codes (enzyme commission numbers),
which are four digit numbers that represent the type of chemical
reaction the enzyme in question catalyzes (Shah & Hunter, 1998).
Each digit corresponds to a level in the hierarchy. For instance,
EC 1.2.3.4 is an enzyme with class value 1 in the first level, class
value 2 in the second level, etc.

Techniques that predict protein function from sequence can be
categorized into three classes, namely, sequence homology-based
approaches, subsequence-based approaches and feature-based ap-
proaches (Pandey, Kumar, & Steinbach, 2006). The subsequence
and feature-based approaches can be grouped into the category
of model-based approaches since they are very similar at the fun-
damental level. All these approaches involve construction of a
model for mapping a feature vector to a function and they follow
the route shown in Fig. 1.

This paper mainly focuses on the feature selection step in con-
struction of a model for protein function classification (shown in
Fig. 1) and we will discuss in detail about that step in the next
Section.

3. Feature selection approaches

During the last decade, application of feature selection (FS)
techniques in bioinformatics has become a real prerequisite for
model building. In particular, the high dimensional nature of many
modeling tasks in bioinformatics, going from sequence analysis
over microarray analysis to spectral analysis and literature mining
has given rise to a wealth of feature selection techniques being pre-
sented in the field (Blum & Dorigo, 2004).
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Feature selection is a problem of global combinatorial optimiza-
tion in machine learning, which reduces the number of features,
removes irrelevant, noisy and redundant data, and results in
acceptable classification accuracy. The whole search space for opti-
mization contains all possible subsets of features, meaning that its
size is:
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where D is the dimensionality (the number of features) and s is the
size of the current feature subset (Mladenić et al., 2006). Usually FS
algorithms involve heuristic or random search strategies in an at-
tempt to avoid this prohibitive complexity. However, the degree
of optimality of the final feature subset is often reduced (Jensen,
2005).

The objectives of feature selection are manifold, the most
important ones being: improving models performance, providing
faster and more cost-effective models, and to gain a deeper insight
into the underlying processes that generated the data.

In the context of classification, FS techniques differ from each
other in the way they interact with classifiers. Feature selection
techniques can be organized into three categories, depending on
their evaluation procedure: filter methods, wrapper methods and
embedded methods (Duda & Hart, 1973). Filter techniques assess
the relevance of features by looking only at the intrinsic properties
of the data. These approaches mostly include selecting features
based on inter-class separability criterion (Duda & Hart, 1973). If
the evaluation procedure is tied to the task (e.g. classification) of
the learning algorithm, the FS algorithm is a sort of wrapper ap-
proach. This method searches through the feature subset space
using the estimated accuracy from an induction algorithm as a
measure of subset suitability. If the feature selection and learning
algorithm are interleaved then the FS algorithm is a kind of embed-
ded approach (Mladenić et al., 2006). A common disadvantage of
filter methods is that they ignore the interaction with the classifier.
The wrapper method is computationally more involved, but takes
the dependency of the learning algorithm on the feature subset
into account (Jensen, 2005).

In the wrapper approach the evaluation function calculates the
suitability of a feature subset produced by the generation proce-
dure and it also compares that with the previous best candidate,
replacing it if found to be better. A stopping criterion is tested in
each of iterations to determine whether or not the FS process
should continue.

Famous population-based FS approaches are based on the ge-
netic algorithm (GA) (Siedlecki & Sklansky, 1989), simulated
annealing (SA), particle swarm optimization (PSO) (Wang, Yang,
Teng, Xia, & Jensen, 2007) and ant colony optimization (ACO) (Agh-
dam et al., 2008; Basiri et al., 2008; Nemati et al., 2008). For a re-
view of application of feature selection techniques in
bioinformatics see (Siedlecki & Sklansky, 1989).
Fig. 2. ACO problem representation for FS.
4. Ant colony optimization

Ant colony optimization (ACO) algorithms were introduced by
Marco Dorigo (Dorigo et al., 1992) in the early 1990s. While mov-
ing, ants leave a chemical pheromone trail on the ground. Ants are
guided by pheromone smell. Ants tend to choose the paths marked
by the strongest pheromone concentration. The indirect communi-
cation between the ants via pheromone trails enables them to find
shortest paths between their nest and food sources (Dorigo, Bona-
neau, & Theraulaz, 2000).

The basic idea of ACO is to model the problem to solve as the
search for a minimum cost path in a graph, and to use artificial ants
to search for good paths. The behavior of artificial ants is inspired
from real ants; they lay pheromone on edges and/or vertices of the
graph and they choose their path with respect to probabilities that
depend on pheromone trails that have been previously laid by the
colony; these pheromone trails progressively decrease by evapora-
tion (Dorigo et al., 1996).

Artificial ants also have some extra features that do not find
their counterpart in real ants. In particular, they are usually associ-
ated with data structures that contain the memory of their previ-
ous actions, and they may apply some daemon procedures, such
as local search, to improve the quality of computed paths. In many
cases, pheromone is updated only after having constructed a com-
plete path and the amount of pheromone deposited is usually a
function of the quality of the complete path. Finally, the probability
for an artificial ant to choose a component often depends not only
on pheromone, but also on problem-specific local heuristics (Dor-
igo et al., 1996).

4.1. Ant colony optimization for feature selection

As mentioned earlier given a feature set of size D, the FS prob-
lem is to find a minimal feature subset of size s(s < D) while retain-
ing a suitably high accuracy in representing the original features.
Therefore, there is no concept of path. A partial solution does not
define any ordering among the components of the solution, and
the next component to be selected is not necessarily influenced
by the last component added to the partial solution (Blum & Dor-
igo, 2004; Leguizamon & Michalewicz, 1999). Furthermore, solu-
tions to an FS problem are not necessarily of the same size. To
apply an ACO algorithm to solve a feature selection problem, these
aspects need to be addressed. The first problem is addressed by
redefining the way that the representation graph is used.

4.1.1. Graph representation
The feature selection problem may be reformulated into an

ACO-suitable problem. The main idea of ACO is to model a problem
as the search for a minimum cost path in a graph. Here nodes rep-
resent features, with the edges between them denoting the choice
of the next feature. The search for the optimal feature subset is
then an ant traversal through the graph where a minimum number
of nodes are visited that satisfies the traversal stopping criterion.
Fig. 2 illustrates this setup. Nodes are fully connected to allow
any feature to be selected next. The ant is currently at node f1

and has a choice of which feature to add next to its path (dotted
lines). It chooses feature f2 next based on the transition rule, then
f3 and then f4. Upon arrival at f4, the current subset {f1, f2, f3, f4} is
determined to satisfy the traversal-stopping criterion (e.g. suitably
high classification accuracy has been achieved with this subset).
The ant terminates its traversal and outputs this feature subset
as a candidate for data reduction (Basiri et al., 2008).

Based on this reformulation of the graph representation, the
transition rules and pheromone update rules of standard ACO algo-
rithms can be applied. In this case, pheromone and heuristic value
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are not associated with links. Instead, each feature has its own
pheromone value and heuristic value.

4.1.2. Heuristic desirability
The basic ingredient of any ACO algorithm is a constructive heu-

ristic for probabilistically constructing solutions. A constructive
heuristic assembles solutions as sequences of elements from the fi-
nite set of solution components. A solution construction starts with
an empty partial solution. Then, at each construction step, the cur-
rent partial solution is extended by adding a feasible solution com-
ponent from the set of solution components (Dorigo & Blum, 2005).
A suitable heuristic desirability of traversing between features
could be any subset evaluation function for example, an entropy-
based measure or rough set dependency measure (Jensen, 2005).
In proposed algorithm, classifier performance is mentioned as heu-
ristic information for feature selection. The heuristic desirability of
traversal and node pheromone levels are combined to form the so-
Fig. 3. Proposed ACO-GA feat
called probabilistic transition rule, denoting the probability that ant
k will include feature i in its solution at time step t:

Pk
i ðtÞ ¼

½siðtÞ�a :½gi �
bP

u2Jk
½suðtÞ�a :½gu �

b if i 2 Jk;

0 otherwise;

8<
: ð2Þ

where Jk is the set of feasible features that can be added to the par-
tial solution; si and gi are, respectively, the pheromone value and
heuristic desirability associated with feature i. a and b are two
parameters that determine the relative importance of the phero-
mone value and heuristic information.

The transition probability used by ACO is a balance between
pheromone intensity (i.e. history of previous successful moves),
si, and heuristic information (expressing desirability of the move),
gi. This effectively balances the exploitation–exploration trade-off.
The best balance between exploitation and exploration is achieved
through proper selection of the parameters a and b. If a = 0, no
ure selection algorithm.
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pheromone information is used, i.e. previous search experience is
neglected. The search then degrades to a stochastic greedy search.
If b = 0, the attractiveness (or potential benefit) of moves is
neglected.

4.1.3. Pheromone update rule
After all ants have completed their solutions, pheromone evap-

oration on all nodes is triggered, and then according to Eq. (3) each
ant k deposits a quantity of pheromone, Dsk

i ðtÞ, on each node that it
has used

Dsk
i ðtÞ ¼

/ � cðSkðtÞÞ þ u�ðn�jSkðtÞjÞ
n if i 2 SkðtÞ;

0 otherwise;

(
ð3Þ

where Sk(t) is the feature subset found by ant k at iteration t, and
jSk(t)j is its length. The pheromone is updated according to both
the measure of the classifier performance, c(Sk(t)), and feature sub-
set length. / 2 [0,1] and u = 1 � / are two parameters that control
the relative weight of classifier performance and feature subset
length. This formula means that the classifier performance and fea-
ture subset length have different significance for feature selection
task. In our experiment we assume that classifier performance is
more important than subset length, so they were set as / = 0.8,
u = 0.2.

In practice, the addition of new pheromone by ants and phero-
mone evaporation are implemented by the following rule applied
to all the nodes:

siðt þ 1Þ ¼ ð1� qÞsiðtÞ þ
Xm

k¼1

Dsk
i ðtÞ þ Dsg

i ðtÞ; ð4Þ

where m is the number of ants at each iteration and q 2 (0,1) is the
pheromone trail decay coefficient. The main role of pheromone
evaporation is to avoid stagnation, that is, the situation in which
all ants constructing the same solution. g indicates the best ant at
each iteration. All ants can update the pheromone according to
Eq. (4) and the best ant deposits additional pheromone on nodes
of the best solution. This leads to the exploration of ants around
the optimal solution in next iterations.
5. Genetic algorithm (GA)

Genetic algorithms belong to a class of population-based sto-
chastic search algorithms that are inspired from principles of nat-
ural evolution known as evolutionary algorithms (EA) (Choenauer
& Michalewicz, 1997). GA is based on the principle of ‘‘survival of
fittest”, as in the natural phenomena of genetic inheritance and
Darwinian strife for survival. These algorithms are general-purpose
optimization algorithms with a probabilistic component that pro-
vide a means to search poorly understood, irregular spaces.

Primarily, GA was designed to optimally solve sequential deci-
sion processes more than to perform function optimization but
over the years, it has been used widely in both learning and opti-
mization problems (Sheta & Turabieh, 2006).

Instead of working with a single point, GAs work with a popu-
lation of points. Each point is a vector in hyperspace representing
one potential (or candidate) solution to the optimization problem.
A population is, thus, just an ensemble or set of hyperspace vectors.
Each vector is called a chromosome in the population. The number
of elements in each chromosome depends on the number of
parameters in the optimization problem and the way to represent
the problem.

The operators of the GA are selection, crossover and mutation.
Selection is a process in which p individuals are selected with a
probability proportional to their fitness to be parents. Crossover
is a process in which two different parents are iteratively selected
from the set of p parents to swap information between them to
generate two new individuals (offspring). This is done by choosing
randomly a point of break for the parents and swapping parts be-
tween them. Then mutation is applied to every offspring. Mutation
is the alteration of the bits of an individual with a small predefined
probability, sometimes known as mutation coefficient (mc). These
new altered individuals compose the new population P.

5.1. Genetic algorithm for feature selection

Several approaches exist to use GAs for feature subset selection.
The two main methods that have been widely used in the past are
as follow. First is due to (Siedlecki & Sklansky, 1989), of finding an
optimal binary vector in which each bit corresponds to a feature
(Binary Vector Optimization (BVO) method). A ‘1’ or ‘0’ suggests
that the feature is selected or dropped, respectively. The aim is to
find the binary vector with the smallest number of 1’s such that
the classifier performance is maximized. This criterion is often
modified to reduce the dimensionality of the feature vector at the
same time (Yang & Honavar, 1998). The second and more refined
technique uses an m-ary vector to assign weights to features in-
stead of abruptly dropping or including them as in the binary case
(Punch et al., 1993). This gives a better search resolution in the mul-
tidimensional space (Raymer, Punch, Goodman, Kuhn, & Jain, 2000).

6. Proposed ACO–GA algorithm

As mentioned earlier, in this paper we intend to hybridize ACO
and GA in such a manner that they complement each other for fea-
ture selection in protein function prediction. The main steps of pro-
posed feature selection algorithm are shown in Fig. 3.

ACO and GA are used to explore the space of all subsets of given
feature set. The performance of selected feature subsets is mea-
sured by invoking an evaluation function with the corresponding
reduced feature space and measuring the specified classification
result. The best feature subset found is then output as the recom-
mended set of features to be used in the actual design of the clas-
sification system.

The process begins by generating a number of ants and a popu-
lation in GA. ACO and GA generate feature subset in parallel and
the resulting subsets are gathered and then evaluated at the end
of iterations. The best subset is selected according to evaluation
measures. If an optimal subset has been found or the algorithm
has executed a certain number of runs, then the process halts
and outputs the best feature subset encountered. If none of these
conditions hold, then all ants can update the pheromone according
to Eq. (4), the best ant deposits additional pheromone on nodes of
the best solution. The best solution may be generated by either
ACO or GA. Therefore, ACO can utilize the GA’s cross-over and
mutation operations. This leads to the exploration of ants around
the optimal solution in next iterations. After updating pheromone,
the process iterates once more.

7. Experimental results

A series of experiments was conducted to show the utility of
proposed feature selection algorithm. All experiments have been
run on a machine with 3.0 GHz CPU and 512 MB of RAM. We
implement proposed ACO–GA, ACO-based and GA-based feature
selection algorithms in Matlab R2006a. The operating system
was Windows XP Professional. For experimental studies, we have
considered two datasets; GPCR-PROSITE and ENZYME-PROSITE.
The following sections describe these two datasets and implemen-
tation results.
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7.1. Datasets

The datasets used in this paper employ signatures (describing
sequence similarity) generated directly from protein sequences
to attempt to predict a given proteins function. We use two data-
sets in this paper involve GPCR-PROSITE dataset previously mined
in (Correa, Freitas, & Johnson, 2007; Holden & Freitas, 2006) and
ENZYME-PROSITE dataset.

The GPCR-PROSITE dataset contains 190 proteins. The proteins
are represented by a set of 127 Prosite patterns (Hulo, 2006). Pro-
site is a database of protein families and domains. It is based on the
observation that, while there are a huge number of different pro-
teins, most of them can be grouped, based on similarities in their
sequences, into a limited number of families (a protein consists
of a sequence of amino acids). Prosite patterns are small regions
within a protein that present a high sequence similarity when
compared to other proteins. The proteins in this data set are
grouped into families and subfamilies in a hierarchical fashion.
There are three levels of hierarchy. The first level has eight classes
(families), the second and third levels have 32 classes (subfamilies)
each one (some proteins are classified only up to the second hier-
archical level and have no class at the third level). The objective of
our algorithms is to classify each protein into its most suitable
family in each level (Correa et al., 2007).

The classes to be predicted in the second dataset are four digit
EC numbers (enzyme commission number), and the predictor fea-
tures are Prosite patterns. This dataset was extracted from the Uni-
Prot and Prosite databases and it contains 22,500 records. In both
datasets the absence of a given Prosite pattern is indicated by a va-
lue of ‘0’ for the feature corresponding to that Prosite pattern and
its presence is indicated by a value of ‘1’. As a pre-processing step,
classes that contain less than 10 records were merged with their
most similar sibling. The similarity between two classes was mea-
sured simply as the average number of matching attribute values
between all records in either class (Holden & Freitas, 2006). The to-
tal number of classes after this process was 750, with six classes at
the first level, 44 at the second, 106 at the third and 594 at the
fourth.

7.2. Experimental methodology

There are several strategies available for predicting hierarchical
classes; the first method is to flatten the dataset to one single level,
then use one of the standard classification algorithms to predict
the class. The second approach is to divide a hierarchical problem
into a set of flat classification problems. The third method is to use
the divide-and-conquer principle (Sun & Lim, 2001) finally, the
forth approach is to employ the big-bang approach in which only
a single classifier is used in the classification process.

In this work, we follow the third approach. In this approach,
Top-Down approach, one or more classifiers are trained for each le-
vel of the hierarchy. This produces a tree of classifiers. The root
classifier is trained with all training instances. Then, at the next
class level, a classifier is training with just the subset of instances
belonging to the classes predicted by the classifier (Freitas & de
Carvalho, 2007). In the test phase, beginning at the root node, an
instance is classified in a Top-Down manner. When assigned to
Table 1
ACO and GA parameter settings.

Population Iteration Crossover probability Mu

GA 50 100 0.7 0.0
ACO 50 100 – –
one class, the instance is then submitted to a new classifier in order
to predict to which subclasses of this class it belongs. This proce-
dure is repeated until a leaf-node class is reached or until no addi-
tional prediction can be made from an internal node, such that the
reliability is not affected. For a comprehensive review of hierarchi-
cal classification approaches see (Freitas & de Carvalho, 2007).

The computational experiments involved a 10-fold stratified
cross-validation method (Witten & Frank, 2005). First, the 190 re-
cords in the GPCR-PROSITE data set and 22500 records in the sec-
ond dataset were divided into 10 equally sized folds. Each entire
10-fold cross validation test was repeated 30 times.

In each of the 10 iterations of the cross-validation procedure,
the predictive accuracy of the classification is compared between
four different algorithms, as follows. (1) By baseline algorithm,
using all original features. (2) By GA-based algorithm, where GA
is used for feature selection. (3) By ACO algorithm, where only
the features selected by ACO are used for classification. (4) By
ACO–GA algorithm where proposed hybrid algorithm is applied
for feature selection. All these approaches use the divide and con-
quer principle, Top-Down approach, as discussed earlier.

Various values were tested for the parameters of ACO and GA.
The experiments show that the highest performance is achieved
by setting the control parameters to values shown in Table 1.

Parameter values were empirically determined in our prelimin-
ary experiments for leading to better convergence; but we make no
claim that these are optimal values. Parameter optimization is a to-
pic for future research. To show the effectiveness of proposed algo-
rithm, we use a simple classifier (nearest neighbor classifier) in
that. The use of this simple classifier in our algorithm can affect
the classification performance and taking the advantage of using
classifiers that are more complex in that is another research direc-
tion. On our experiments, we use a measurement for the accuracy
rate of a classification model which has also been used before in
(Basiri et al., 2008; Correa et al., 2007). This measurement is given
by the Eq. (5).

Predictive accuracy rate ¼ TPR� TNR; ð5Þ

where

TPR ¼ TP
TP þ FN

; TNR ¼ TN
TN þ FP

; ð6Þ

TP, TN, FP and FN are the numbers of true positives, true negatives,
false positives and false negatives, respectively (Basiri et al., 2008).

7.3. Results

The classification quality and feature subset length are two cri-
teria that are considered to assess the performance of algorithms.
Comparing the first criterion, predictive accuracy, we noted that
ACO, GA, and proposed ACO–GA algorithms did better (in all class
levels) than the baseline algorithm using all features. Furthermore,
ACO did slightly better than GA and proposed ACO–GA outper-
forms both ACO and GA algorithms in term of predictive accuracy.
Tables 2 and 3 compare the predictive accuracy results of four
algorithms.

Nevertheless, the difference in the accuracy between these
algorithms is, in some cases, not statistically significant. Table 4
tation probability Initial pheromone a b q

05 – – – –
1 1 0.1 0.2



Table 2
Results for predictive accuracy in the GPCR-PROSITE dataset.

Level number Baseline GA ACO ACO–GA

1 70.36 ± 2.96 79.28 ± 2.68 80.12 ± 2.98 82.26 ± 2.12
2 32.27 ± 6.56 41.27 ± 5.65 46.78 ± 5.46 50.12 ± 4.86
3 20.53 ± 2.34 24.85 ± 3.24 28.26 ± 2.88 30.12 ± 3.14

Table 3
Results for predictive accuracy in the ENZYME-PROSITE dataset.

Level number Baseline GA ACO ACO–GA

1 82.25 ± 4.26 88.28 ± 2.68 96.85 ± 2.66 98.26 ± 2.12
2 70.68 ± 7.36 80.26 ± 7.62 85.88 ± 8.68 87.62 ± 6.86
3 48.62 ± 6.86 61.85 ± 4.24 65.04 ± 4.34 67.12 ± 4.14

Table 4
Paired two-tailed t-test for the predictive accuracy with significance level 0.05.

Level number GPCR ENZYME

1 t(9) = 1.568, p = 0.15 t(9) = 2.068, p = 0.065
2 t(9) = 6.366, p = 4.4E�5 t(9) = 2.179, p = 0.051
3 t(9) = 7.664, p = 4.8E�6 t(9) = 2.168, p = 0.061
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shows the results of a paired two-tailed t-test for the accuracy of
the proposed ACO–GA algorithm versus the accuracy of the ACO
(at a significance level of 0.05).

According to Table 4, difference in predictive accuracy between
the algorithms in GPCR-PROSITE at only the first level is not statis-
tically significant while, this difference in ENZYME-PROSITE data-
set is not statistically significant at all class levels.

Second, we compare the other criterion, number of selected fea-
tures. As could be seen in Tables 5 and 6, ACO–GA outperforms the
ACO and GA in selecting smaller subset of features in all class levels
in both datasets. Therefore, the second comparison criterion is the
discriminating factor between the performances of these algo-
rithms. Table 7 shows that, this difference in number of selected
features is statistically significant in all levels.
Table 5
Results for number of selected features in the GPCR-PROSITE dataset.

Level number GA ACO ACO–GA

1 6.8 ± 1.68 5.8 ± 1.43 4.6 ± 1.12
2 13.7 ± 1.65 10.9 ± 1.87 7.1 ± 1.66
3 16.5 ± 2.24 14.4 ± 2.40 12.2 ± 2.14

Table 6
Results for number of selected features in the ENZYME-PROSITE dataset.

Level number GA ACO ACO–GA

1 12.2 ± 2.08 8 ± 1.73 6.6 ± 1.12
2 44.3 ± 3.15 30.8 ± 3.94 28.1 ± 3.16
3 101.2 ± 5.46 90.8 ± 5.44 85.4 ± 5.04

Table 7
Paired two-tailed t-test for the number of selected features with significance level
0.05.

Level number GPCR ENZYME

1 t(9) = 5.266, p = 3.2E�4 t(9) = 5.448, p = 3.6E�4
2 t(9) = 7.141, p = 4.8E�5 t(9) = 10.118, p = 3.2E�6
3 t(9) = 9.244, p = 2.2E�6 t(9) = 12.822, p = 1.2E�7
The high performance obtained by ACO, GA and ACO–GA algo-
rithms in the higher levels of datasets, showed in Tables 2 and 3,
occurred because of two reasons. First, the number of classes per
level increases at deeper levels, with a corresponding decrease in
the number of examples per class, making an accurate prediction
at deeper levels more unlikely. Second, it is an inevitable result
of using a divide and conquer type algorithm, as once an incorrect
prediction has been made at a higher level it cannot be rectified,
this leads to the accuracy being at best the same as the level above.

Figs. 4 and 5 show the predictive accuracy for each of the fea-
ture selection algorithms as we change the number of selected fea-
tures for the last level of datasets. The results show that as the
percentage of selected features exceeds 10%, the ACO–GA algo-
rithm outperforms genetic algorithm and ACO.

7.4. Discussion

Experimental results show that the use of unnecessary features
hurt classification accuracy and FS is used to reduce redundancy in
the information provided by the selected features. Using only a
small subset of selected features, the ACO–GA, the GA and the
Fig. 4. Comparison of ACO–GA, ACO and GA algorithms in GPCR-PROSITE dataset.

Fig. 5. Comparison of ACO–GA, ACO and GA algorithms in ENZYME-PROSITE
dataset.
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ACO algorithms obtained better classification accuracy than the
baseline algorithm using all features. Previous work had already
shown that application of FS in biological datasets can improve
the performance of classification process (Basiri et al., 2008).

The strength of GAs is in the parallel nature of their search. GAs
implement a powerful form of hill climbing that preserves multiple
solutions, eradicates unpromising solutions, and provides reason-
able solutions. ACO shares many similarities with evolutionary
computation (EC) techniques in general and GAs in particular.
These techniques begin with a group of a randomly generated pop-
ulation and utilize a fitness value to evaluate the population. They
all update the population and search for the optimum with random
techniques.

Both ACO and GA are stochastic population-based search ap-
proaches that depend on information sharing among their popula-
tion members to enhance their search processes using a
combination of deterministic and probabilistic rules. They are effi-
cient, adaptive and robust search processes, producing near opti-
mal solutions, and have a large degree of implicit parallelism.
The main difference between the ACO compared to GA, is that
ACO does not have genetic operators such as crossover and muta-
tion. Ants update themselves with the pheromone update rule;
they also have a memory that is important to the algorithm.

Compared to GAs, the ACO has a much more intelligent back-
ground and can be implemented more easily. The computation
time used in ACO is less than in GAs. The parameters used in
ACO are also fewer. However, if the proper parameter values are
set, the results can easily be optimized. The decision on the param-
eters of the ant colony affects the exploration–exploitation tradeoff
and is highly dependent on the form of the objective function. Suc-
cessful feature selection was obtained even using conservative val-
ues for the ACO basic parameters.

In this paper, we hybridized the two approaches (ACO and GA)
in such a manner that they complement each other for classifica-
tion of protein functions. More specifically, ACO offers a critical
advantage of local searching, not found in GA, i.e. searching for lo-
cal optimality which can optimize the global or the final solution.
On the other hand, GA takes a global perspective into account by
operating on the complete population from the very beginning.
Thus, by hybridizing these approaches, they can nullify each others
drawbacks. Also, quick convergence provided by the ACO compo-
nent can be advantageous for time constrained problems.
8. Conclusion and future research

In this paper, we present a hybrid ACO–GA feature selection
algorithm and adapt it for hierarchical classification of biological
data in a Top-Down manner. This algorithm, ACO–GA, was com-
pared with an ordinary ACO-based algorithm and a classical genet-
ic algorithm for hierarchical classification of proteins. Proposed
algorithm has the ability to converge quickly; it has a strong search
capability in the problem space and can efficiently find minimal
feature subset. Experimental results demonstrate competitive
performance.

In order to evaluate the performance of these approaches,
experiments were performed using two bioinformatics datasets,
which are related with G-Protein-Coupled Receptor (GPCR) and En-
zyme protein families and the predictor features were Prosite pat-
terns. According to the experimental results, the use of
unnecessary features decreases classification accuracy and FS is
used to reduce redundancy in the information provided by the
selected features. Furthermore, results of experiments indicate that
proposed feature selection algorithm outperforms both ACO
and GA algorithms in GPCR-PROSITE and ENZYME-PROSITE
datasets.
More experimentation and further investigation into this tech-
nique may be required. The pheromone trail decay coefficient (q)
and pheromone amount ðDsk

i ðtÞÞ in the ACO component have an
important impact on the performance of ACO–GA. The selection
of the parameters may be problem-dependent. The deposited
pheromone, Dsk

i ðtÞ, calculated using Eq. (3), expresses the quality
of the corresponding solution. q simulates the pheromone evapo-
ration. Evaporation becomes more important for more complex
problems. If q = 0, i.e. no evaporation, the algorithm does not con-
verge. If pheromone evaporates too much (a large q is used), the
algorithm often converged to sub-optimal solutions for complex
problem. In many practical problems, it’s difficult to select the best
q without trial-and-error. a and b are also key factors in ACO for
feature selection.

For future research, we will test proposed algorithms on other
kinds of biological data. Other hierarchical classification algorithms
will also be investigated. To show the effectiveness of proposed
algorithm, we use a simple classifier (nearest neighbor classifier)
in that which can affect the classification performance. For future
work, the authors intend to investigate the performance of pro-
posed feature selection algorithm by taking advantage of using
more complex classifiers in that. Finally, the authors plan to com-
bine hierarchical classification with multi-label classification.
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