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Abstract

One of the significant research problems in multivariate analysis is the selection of a subset of input variables that can predict the
desired output with an acceptable level of accuracy. This goal is attained through the elimination of the variables that produce noise
or, are strictly correlated with other already selected variables. Feature subset selection (selection of the input variables) is important
in correlation analysis and in the field of classification and modeling. This paper presents a hybrid method based on ant colony optimi-
zation and artificial neural networks (ANNs) to address feature selection. The proposed hybrid model is demonstrated using data sets
from the domain of medical diagnosis, yielding promising results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Pattern classification

Pattern classification is the task of classifying any given
input feature vector into pre-defined set of classes of pat-
terns (Kulkarni & Vidyasagar, 1997) where as pattern rec-
ognition is the task of making important decisions based
on complex patterns of information (Ripley, 1996). A
detailed discussion on definition and various tools for pat-
tern classification can be found in (Kulkarni, Lugosi, &
Santosh, 1998). These methods include Artificial Neural
Networks (ANNs), nearest neighbor, kernel and histogram
methods, and support vector machines. Researchers in this
area focus on characterizing problems to determine if a
particular problem can be learned or not, the amount of
data required for learning, and then developing the neces-
sary algorithms for learning. Among the existing methods,
ANNs have attracted many researchers and has emerged
as the most popular tool for pattern recognition and
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classification. One domain where such applications have
found significant utility is the analysis of medical data sets.

Certain problems in the medical diagnosis domain can
be considered as a problem of pattern recognition and clas-
sification. The use of ANNs is not new in medical diagno-
sis. For example, in Lanzarini and Giusti (2000), ANNs
were used to recognize patterns in medical images. In
Zhou, Jiang, Yang, and Chen (2002), an automatic patho-
logical diagnosis procedure named Neural Ensemble based
Detection (NED) is proposed, which utilizes an ANN
ensemble to identify lung cancer cell images. Unlike other
researchers employing back propagation neural networks,
in Desai, Lin, and Desai (2001) a neural network based
on Kohonen’s Linear Vector Quantization is used for the
diagnosis of prostate cancer. In this paper, data sets from
medical diagnosis are used to demonstrate the feature
reduction method using ant optimization.

1.2. Importance of feature selection in

classification methods

Many practical pattern classification tasks (Blum &
Langley, 1997) (e.g., medical diagnosis) require learning
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of an appropriate classification function that assigns a
given input pattern (typically represented by using a vector
of feature values) to one of a set of classes. The choice of
features used for classification could have an impact on
the accuracy of the classification function, the time re-
quired for classification, training data set requirements,
and implementation costs associated with the classification.

The accuracy of the classification function that can be
learned using an inductive learning algorithm such as
ANNs depends on the set of input features. The attributes
or features used to describe the pattern implicitly define a
correlation. If the correlation is not accurate enough it
would fail to capture the information that is necessary
for classification and hence regardless of the learning algo-
rithm used the accuracy of the classification function would
be limited. In their paper (John, Kohavi, & Pfleger, 1994)
explained the importance of identifying relevant and irrel-
evant features. It should also be noted that the time and
the size of training data set(s) needed for learning a suffi-
ciently accurate classification function increases for more
complex patterns with many features (Punch et al., 1993).

The cost for measuring a feature is a critical issue to be
considered while selecting a subset. In case of medical diag-
nosis the features may be observable symptoms or diagnos-
tic tests. Each clinical test is associated with its own
diagnostic value, cost and risk. The challenge is in selecting
the subset of features with minimum risk, least cost yet
which is significantly important in the determining its
class/pattern. In Gorunescu, Gorunescu, Darzi, and Gor-
unescu (2005) a probabilistic neural network with heuris-
tics is used for feature selection in cancer diagnosis.

As can be seen from the above discussion, the issue of
feature subset selection in automated design of pattern
classifiers is an important research issue. The feature subset
selection problem refers to the task of identifying and
selecting a useful subset of features to be used to represent
patterns from a larger set of often mutually redundant,
possibly irrelevant, features with different associated
measurement costs and/or risks. Examples of feature sub-
set selection problem include large-scale data mining,
power system control, and medical diagnosis (Yang &
Honavar, 1998).

1.3. Background

The existing literature in this domain is rich with differ-
ent solution techniques. Initial methods included exhaus-
tive search in which all combinations of subsets were
evaluated. The method guarantees an optimal solution,
but finding the optimal subset of features is NP hard.
For large number of features, evaluating all states is com-
putationally non-feasible (Boz, 2002) necessitating the need
for heuristic search methods. As in Doak (1992), these
methods can be classified as exponential, sequential or ran-
domized methods.

The ‘‘exponential method’’ includes methods such as
‘‘branch and bound’’ (Narendra & Fukunaga, 1977) which
starts from a full set and removes features using a first
depth strategy. The method guarantees an optimal solution
under the monotonic assumption that the children of the
nodes whose objective function values are lesser than the
current best will not contain a better solution and so these
features will not be further explored. The other method in
this category includes beam search (Doak, 1992). In this
method, the features are arranged in a queue with the best
states placed at the head of the queue. At each iteration,
beam search evaluates all possible states that result from
adding a feature subset.

Sequential search algorithms (SSA), also known as step-
wise methods (Pudil, Novovicova, & Kittler, 1994), have a
relatively lower complexity and use the ‘‘hill climbing’’
strategy to find an optimal solution. Depending upon the
different starting points SSA is classified in to sequential
forward selection (Devijver & Kittler, 1982) starting with
an empty set, Sequential Backward Selection starting
from the complete feature set. Meta-heuristic methods
are generally considered as random search methods. Some
popular meta-heuristic algorithms include genetic algo-
rithm (Leardi, Boggia, & Terrile, 1992; Yang & Honavar,
1998) and simulated annealing (Debuse & Smith, 1997).

This paper presents as ant colony optimization (ACO)
approach for feature selection problems using data sets
from the field of medial diagnosis. This paper presents a
novel approach for heuristic value calculation, which will
reduce the set of available features. The rest of this paper
is organized as follows. In the next section, an introduction
on ACO applications in feature selection problems is dis-
cussed. The different methods for feature selection prob-
lems (based on the existence of classification function) are
presented in Section 3. In Sections 4 and 5, the proposed
hybrid methodology is discussed, followed by a discussion
on the experimental setup, datasets used and the results.

2. Ant colony optimization

Ant algorithm was first proposed by Dorigo and Gam-
bardella (1997) as a multi-agent approach for difficult com-
binatorial optimization problems such as traveling sales
man problem (TSP) and the quadratic assignment problem
(QAP). From then, researchers have applied ACO to many
discrete optimization problems (Bonabeau, Dorigo, &
Theraulaz, 1999; Corne, Dorigo, & Glover, 1999).

ACO is a meta-heuristic approach which has been
applied to various NP hard problems such as static/
dynamic combinatorial optimization. ACO applications
in static combinatorial optimization problems include job
shop scheduling (Blum & Sampels, 2002; Colorine, Dorigo,
& Maniezzo, 1994), flow shop (Stützle, 1998), open shop
(Blum, 2003), group shop (Sampels, Blum, Mastrolilli, &
Rossi-Doria, 2002), vehicle routing (Bullnheimer, Hartl,
& Strauss, 1998), sequential ordering (Gambardilla & Dor-
igo, 1997), graph coloring (Costa & Hentz, 1997) and
shortest common super sequences (Micheal & Middendorf,
1999). ACO application to dynamic combinatorial optimi-
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zation problems includes connection oriented network
routing (Schoonderwoerd, Holland, Bruten, & Rothkrantz,
1996) and connection less network routing (Sim & Sun,
2001).

In Ani (in press, 2005) an ACO approach was presented
for feature selection problems. In this paper, the author
calculates a term called ‘‘updated selection measure
(USM)’’ which is used for selecting features, a function
of the pheromone trail and the so called ‘‘local impor-
tance’’ which has replaced the heuristic function. A major
application of the algorithm developed in this paper is in
the field of texture classification and classification of speech
segments. Similarly, another application of ACO can be
found in Jensen and Shen (2003) where an entropy-based
modification of the original rough set-based approach for
feature selection problems was presented. Other applica-
tions include Schreyer and Raidl (2002) where an ACO
approach is used for labeling point features, a pre-process-
ing step which reduces the search space.

This paper presents a relatively simpler model of ACO.
The major difference from previous works is in the calcu-
lation of the heuristic values. Heuristic value calculations
are application specific and help the algorithm reach the
optimal solution quickly by reducing the search domain.
In medical diagnosis applications heuristic value can be
a function of diagnostic value, cost or risk. Generally,
the value of these parameters, except cost, is fuzzy and
the function cannot be generalized for different applica-
tions. In this paper, the heuristic value is treated as a sim-
ple function of cost. Clearly, the features associated with
lesser costs will be preferred by the algorithm. The algo-
rithm uses ANNs as a classification function to evaluate
the ‘‘goodness’’ of the subset developed at each stage,
instead of the nearest neighborhood algorithm used
otherwise.

3. Different approaches for feature subset selection

problems

A classification function is essentially the tool used for
classifying patterns or the tool to evaluate the efficiency
of each subset to predict the class output or pattern.
Depending on whether a classification function is used or
not, feature subset selection algorithms can be divided into
two (John et al., 1994) – filter approach and the wrapper
approach.

3.1. Filter approach

In the filter approach, no classification function is used –
feature subsets are evaluated by other means. In ‘‘focus
algorithm’’ (Almuallim & Dietterich, 1991), a type of filter
approach, an exhaustive search is utilized to examine all
the subsets of features. The method then identifies the sub-
set with minimum number of features which classifies the
training set instances with acceptable level of accuracy.
Relief method (Kira & Rendell, 1992) is random search
method based on filter approach model. Here, a weight is
assigned to each feature based on the relevance to the tar-
get concept, and instances are selected randomly to find
the relevance of features. Another filter approach model
(Cardie, 1993) uses a nearest neighborhood algorithm.

3.2. Wrapper approach

In a wrapper approach, a classification function is used
to evaluate the ‘‘goodness’’ of the feature subsets devel-
oped. The feature subset selection algorithm is wrapped
around the classification function, thus the name. In
Caruana and Freitag (1994) tree caching is used for
‘‘greedy’’ attribute selection. Caching can be used with
deterministic decision trees and do not usually use all of
the available features. If decision trees use n of the N total
features, all feature subsets which have all of these n fea-
tures will create the same tree with the same accuracy.

3.3. Comparison of the Wrapper versus Filter approach

Most meta-heuristic feature subset selection algorithms
use a wrapper approach model because of some inherent
advantages (Boz, 2002). In the filter approach the feature
selection is performed as a pre-processing step. The disad-
vantage is that it ignores the effect of the selected feature
subset on the performance of the induction algorithm. In
John et al. (1994) it is claimed that to determine a useful
subset of features, the subset selection algorithm must take
into account the biases of the induction algorithm in
order to select a subset. The current paper builds a wrap-
per approach model using ANN as the classification
function.
3.4. Artificial neural networks

In a number of examples of practical interest, where
mathematical models are unavailable but real-life data
relating inputs to outputs exist, ANNs can be used to con-
struct an empirical model. These models then may be used
to predict the outputs for a set of new inputs not employed
in the construction of the model. But one of the major
drawbacks of such methods is that the structure of the
model must be specified a priori- it requires a set of data
for training and developing the model, which may not be
necessarily available.
4. Methodology

4.1. A hybrid approach with artificial neural networks and

ant colony optimization

It should be recalled that this method is based on obser-
vations by earlier researchers that ants in real-life, while
walking from their food source to nest are able to optimize
their path, without making use of any apparent visual
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clues. This is possible because of an indirect communica-
tion mode called ‘‘stigmergy’’ using pheromone – an odor-
ous chemical. The quantity of the pheromone depends on
the distances, quantity and quality of the food source. Each
ant follows a direction rich in pheromone smell, thus
making it a loop of positive feedback. The pheromone
decays over time and evaporates, resulting in less phero-
mone on the less popular paths. Due to this ‘‘evaporation’’,
ants explore other paths as well and eventually end up with
the most optimal path. Here, ANNs are used as the classi-
fication function, where as the ACO serves as the evalua-
tion algorithm (Fig. 1).

The original data set S containing N number of features
is reduced to different subsets s1, s2, s3 , . . . each having
n1,n2,n3 , . . . number of features respectively using ant algo-
rithm. These subsets will be then fed to a pre-designed
ANN trained by Levenberg–Marquard Back Propagation,
and having a fixed number of neurons in the hidden layer.
Generally, the number of neurons in the hidden layer
depends on the dimensions of the input feature vector.
However, it should be noted that in the proposed method-
ology, the dimension of the input feature vector changes as
the algorithm proceeds. Moreover, the number of neurons
in the hidden layer depends on the search domain. This
methodology defines uses the maximum and the minimum
value of n (the number of features in the chosen subset) to
set limits for the number of neurons (further discussed in
Section 4.2). In this architecture, training was achieved
using the Levenberg–Marquard algorithm (due to its inher-
ent advantages associated with speed of training and accu-
racy of learning).

Each of the data sets in this method is divided to train-
ing and testing data points. Once training is accomplished
the network will be tested for some unseen data points, and
the number of class mismatch is treated as the error corre-
Data Set
S Features    

N data Points

Ant Colony Optimization
(Feature Subset Selection)

Neural Network Training for 
25 epochs & Testing

Reduce

Fig. 1. Hybridizing ant a
sponding to each subset. Thus, every subset of feature will
be associated with some prediction error, which will help to
determine the best feature subset. Thus, ANN gives direc-
tion to ant algorithm to find the optimal solution set, and
the final subset developed by ant algorithm (as the most
optimal subset) is again evaluated by the ANN for a larger
number of epochs.

4.2. Hybrid artificial neural network – ant algorithm

In this section, an overview of the proposed methodol-
ogy is presented (Fig. 2). Informally, the ant system works
as follows. First, a set of ants is initialized. The number of
ants initialized depends upon the number of features the
given problem. This will be further explained in a set of
examples in the next section. Each ant initialized in the first
step will select a subset of n features from the original set of
N features. The value of n increases at a constant rate. This
rate is a user-defined function. In this paper, considering
the relatively smaller state space, an increment rate of 1
is used. It will be interesting to further explore the method
with different values of this rate. The initial and final values
of n are problem-specific and hence a user defined function.
For instance a problem having 30 features shall have a
starting and finishing value of n as 5 and 28. If the user
knows the minimum requirement of features for the classi-
fication is 5, and reducing to a subset of 28 features will
have no significant reduction. In short, by setting the upper
and lower limit on the value of n, the user is specifying the
search domain.

Step 1: Initially, when the pheromone level or the desir-
ability measure for all the features are the same,
the ants develop solution consisting of n number
of features each, using an initialization rule (for
If 
(Termination 

Criteria 
Reached)

Final ANN Training for 700 
epochs & Testing

d final Subset

lgorithm with ANN.



Input from problem S 
features N data points

Initialize the Pheromone Train, 
heuristic value and set all the 
parameters of Ant algorithm

Determine the  domain 
i.e. Start and Finish 
number of feature

For (features = start to finish)

For (Generations = 1 to max)

r Ants Construct r different Solutions
• Using State Distribution Rule or
• Using Probability Distribution Rule

If (features 
== Start)

r Ants Construct r different Solutions
Randomly

Calculating the Error in ANN 
prediction for the r subsets of features

Global updating for the Ant that 
produced the best subset of feature

Local updating for all the other Ants

Recording the Local best subset of 
feature

Recording the Global best subset of 
feature

Predicting the output for the Global 
best subset of features using ANN

End

Fig. 2. Flow chart for the proposed hybrid algorithm.
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example, randomly). Later, ants select features
based on state distribution rule or probability distri-

bution rule.
Step 2: Each of the r ants construct r different solutions,

each containing a subset of n different features.
ANN (after sufficient training) evaluates each
subset by determining the error in predict-
ion for unseen data points using that subset of n
features.

Step 3: Once all ants have completed constructing their
subsets, a global updating rule is applied to the
solution set which produces the least classification
error. Each time the ant that has produced the
solution with least error, it is ‘‘rewarded’’ by
increasing the desirability of all the features which
are part of its (ant’s) solution.

Step 4: Similarly, a local ‘‘pheromone’’-updating rule is
applied to the rest of the ants. That is, those fea-
tures which were selected the ants (except the win-
ning ant) is subject to this rule, in which their
desirability is decreased by a minimal amount.

The above steps are repeated for all the values of n
between its starting and finishing value. During each itera-
tion, the best subset and its corresponding error is
recorded.
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4.3. Stepwise algorithm: implementing ant algorithm for

feature selection problem

Here, the functioning of the AA for the proposed hybrid
approach is discussed. Let S = {a,b,c,d . . . z} be the set of
given N features, and s = {p,q, r . . . t} where (s c S). Fur-
thermore, let d(f) represent the cost parameter associated
with the feature f in its measurement. For instance, in med-
ical diagnosis it cane be considered as the cost for taking
each test or the cost associated for measuring or assigning
values to the visible symptoms. Further, let s(f) be the
desirability measure (pheromone level) of feature f to be
in the selected subset of features s. Initially, the desirability
of each feature will be the same, but as the algorithm pro-
ceeds, with global and local updating steps, those features
which are more important to determine the class/output
will see their ‘‘desirability’’ increase compared to that of
the other features.

The state transition rules enable enables ants to select
features using the pheromone trail and the heuristic value
(the inverse of cost parameter). Each ant chooses a partic-
ular feature by maximizing a product of these two param-
eters. This is further explained in Section 4.3.1. Once a
particular set of features are selected, the next step is global
updating to increment the features which were selected by
the winner ant (Section 4.3.2). The last step is the local
updating with the objective of decreasing the pheromone
trail of the other features which were selected by ants but
did not produce a good solution (Section 4.3.3).

4.3.1. State transition rule

The objective function of this optimization algorithm is
to minimize the classification error in predicting the output.
In this hybrid approach, the role of each ant is to build a
solution subset. The ‘‘ants’’ build solutions applying a
probabilistic decision policy to move through adjacent
states. In this case each subset of feature represents a state.
The state transition rules are discussed here.

In the proposed method, an ant chooses a feature as
follows:

s¼
argmaxfsðuÞ�gðuÞbg if ðq< q0Þ ðexploitationÞ

sðsÞ�gðsÞbP
u2jk ðrÞsðuÞ

�½gðuÞb�
otherwise ðif s2 jkðrÞÞ ðbiased explorationÞ

8><
>:

ð1Þ
For a particular ant, r, g represents the inverse of the cost
parameter and jk is the set of features, which are not a part
of the solution set, developed by ant r. b is a parameter,
which determines the relative importance of pheromone
versus heuristic. The value of b is application and user spe-
cific (represents how much importance has to be given to
cost while selecting the subset of features). Setting the value
of b at zero will give equal priority to all features irrespec-
tive of their costs, where as b = 1, will give equal impor-
tance to cost minimization while selecting features; q is a
random number uniformly distributed in between [0. . .1].
Thus, Eq. (1) favors the choice of features which are asso-
ciated with low costs and high amount of pheromone level.
The pheromone deposited acts as the memory, while heu-
ristic information is simply the inverse of cost parameter.
The ants search for a good solution and cooperate through
pheromone mediated indirect and global communication.
Informally, each ant adds new features to a partial solution
by exploiting both information gained from past experi-
ence and a heuristic. Thus, in exploitation the feature
which has highest pheromone trail and low cost is selected,
while in exploration any feature is randomly selected by
probability.

The equation discussed earlier consists of two compo-
nents – exploitation and biased exploration corresponding
to the state transition rule (stochastic greedy rule) and the
random proportional rule respectively. The parameter q0,
exploitation probability factor, determines the relative
importance of exploitation versus exploration. In exploita-
tion, ants select those features which have a maximum of
the above product, where as in biased exploration the prob-
ability of each feature to be selected by ants corresponds to
the value of the above-mentioned product (the feature with
the highest product has the highest probability of selec-
tion). This helps the ants to keep exploring new states
which are close to the optimal solution. Since the probabil-
ity is a function of the previous information and heuristics,
it is referred to as biased exploration.

In this methodology, if the cost parameter associated
with the features is unknown, it is assumed to be unity
(q0 = 1) to allow all features to be selected with equal prob-
ability. Alternatively, to scale the cost parameter, the cost
of the most expensive feature can be divided by the individ-
ual cost of the features. In certain medical diagnosis appli-
cations, practitioners know that certain feature(s) is
absolutely important to be included in any model. In such
scenarios, the cost of that feature could be taken as a neg-
ligible amount. This would make its inverse a very large
number, which in turn, increases the value of the product
of pheromone trail and heuristics, forcing the ants to select
that particular feature.

4.3.2. Global updating rule

As discussed earlier, the ants would have, by this stage,
accomplished the task of constructing a solution subset,
and each subset would be associated with a classification
error – the number of instances where ANN produced
wrong results, for unseen data points using the given subset
of features. Logically, the next step is to appreciate the ant
which has produced the subset which has produced the
least classification error.

The purpose of the global updating rule is to encourage
the ants to produce subset with least classification error.
Global updating rule is only applied to that subset of fea-
ture, which has produced the least error in the current iter-
ation. By this rule, the pheromone level of all the individual
features, which were a part of the best feature subset will be



Table 1
Details of datasets used

Data sets used Number of
attributes

Attribute
type

Number
of classes

Size of
data
set

Thyroid disease
(Australia)

28 Numeric,
nominal

2 206

Thyroid disease
(discordant)

28 Numeric,
nominal

2 206

Thyroid disease
(hypothyroid)

21 Numeric 3 400

Dermatology 34 Numeric 6 366
Breast cancer

(Wisconsin diagnostic)
32 Numeric,

nominal
2 569

Breast cancer
(Wisconsin prognostic)

34 Numeric,
nominal

2 198
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incremented. Thus, the ant that develops the best solution
is allowed to deposit pheromone on the set of features that
it has selected as solution. This choice together with the use
of random proportional rule is intended to make the search
more directed. Ants search in the neighborhood of the best
state found up to the current iteration of the algorithm.
Global updating is performed only after all the ants have
developed their respective solutions. The pheromone level
is incremented by applying the global updating rule:

sðsþ 1Þ ¼ ð1� jÞ � sðsÞ þ j � r ð2Þ
r is the inverse of Dx, where Dx is the least classification
error of the globally best solution and j is the pheromone
decay parameter. Global updating is intended in providing
greater amount of pheromone to the solution set that pro-
duces less classification error. Thus, those features which
are repeatedly a part of the best solution subset will be
incremented frequently, which would make them more
attractive for the future generation ants to select them.
That is, these features have a more probability of being se-
lected in future by the ants while constructing a solution
subset.

4.3.3. Local updating rule

The local updating rule not only makes the irrelevant
features less desirable, but also helps ants select those fea-
tures which have never been explored previously. This
updating rule will either decrease the pheromone trail or
maintain the same level depending on whether a particular
feature has been selected or not. By employing this updat-
ing rule, the pheromone level of the features that have been
a part of the best feature subset in the previous iterations,
will decrease by a very minimal amount, where as the pher-
omone level of the features that have never been a part of
the best feature subset will remain the same. Thus, the
pheromone level of the features will never be less than
the pheromone level to which they are initialized. The
change in the pheromone level is obtained as

sðsþ 1Þ ¼ ð1� aÞ � sðsÞ þ a � s0 ð3Þ

where 0 < a < 1 is a parameter called local pheromone up-
date strength parameter and s0 is the initial pheromone
level at the beginning of the problem.

Thus, by using the local and global updating rules, the
pheromone level of some features (which were a part of
the best feature subset in the previous iterations) will
diminish by a minimal amount; for features which are a
part of the best feature subset in the current iteration, the
value will increase and for the rest of the features the value
will not change. This prevents the ants from converging to
a common path. This characteristic, which was observed
experimentally in real-life ants (Dorigo, Caro, & Gambard-
ella, 1999) is a desirable property. This is because, if the
ants explore different paths, then there is a higher probabil-
ity that one of them will find an improving solution as
opposed to the possibility of convergence to the same tour.
5. Experimental setup

5.1. Data sets used

In order to evaluate the methodology discussed in the
previous sections, real-world data sets from the UC-Irvine
repository (Merz & Murphy, 1996), shown in Table 1, were
tested. This library has data sets and domain theories that
can be used to evaluate learning algorithms.

5.2. Setting ACO parameters

Tuning the parameters for any optimization algorithm is
at least as important as designing the algorithm itself. The
controllable parameters which affect the performance of
ACO include the number of ants, generations, q0 (the Exploi-
tation probability factor), Pheromone decay parameter (j)
and local pheromone update strength parameter (a). In
order to tune the parameters, different values of the para-
meters were tested on the thyroid disease (Australia) dataset.

5.2.1. Number of ants
The selection of the ‘‘right’’ number of ants is a very crit-

ical issue affecting the performance of the algorithm. The
number of ants must be sufficient to explore all potential
states, while expending the least possible time. A range of
3–12 ants were considered for exploration in this study.
It should be noted that the ‘‘optimum’’ number of ants is
specific to the data set(s) considered. The discussion here
is limited to the data sets considered here, and the reader
is urged to focus on the approach used for identifying the
‘‘optimal’’ number of ants for the data sets considered in
this experiment. In this implementation, the performance
of the algorithm was tested using 3, 5, 8, 10, 12 ants. For
the given data sets, it was observed that the algorithm gave
best results for five ants. Increasing the number of ants not
only resulted in higher time requirements to reach a solu-
tion but also increased the testing error of ANN using
the subset of features developed as solution. This effect is
shown for the above-cited data set in Fig. 3.
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56 R.K. Sivagaminathan, S. Ramakrishnan / Expert Systems with Applications 33 (2007) 49–60
5.2.2. Exploitation probability factor

In Dorigo and Gambardella (1997), it was argued that
the entire search space (the domain of traveling salesman
problem was employed by the authors) can be divided into
three categories – best edges, testable edges and unused
edges. Similarly, the entire set of features can be divided
into three sets: (i) best features (BF) – features which have
repeatedly been in the best subset; (ii) testable features (TF)
– features which have been in the best subset in previous
iterations, and (iii) unused features (UF) – features that
have never been in the best subset. Recalling Section
4.3.1, in stochastic greedy rule, ants exploit features which
fall in the category of BF, where as in random proportional
rule ants explore the subsets falling in the edges of BF and
TF. The value of exploitation probability factor, q0, deter-
mines how much ants should exploit BF and explore TF.
By setting q0 at 0.8, ACO favors features falling on the
edges of TF and BF.

Ideally in ACO, the features in BF which are not consis-
tently performing well will be downgraded to TF, and the
features belonging to TF shall be downgraded to UF,
unless they happen to belong to the new best subset. If
the value of q0 is set to lesser than 0.8, ants may favor fea-
tures falling in the category of TF and UF, exploring new
states but misled to poor results. Similarly, if q0 is set to 1,
ants may not explore features falling in the edges of BF and
TF, selecting only features falling in BF – resulting in all
the ants follow the same path. The graph, Fig. 4, shows
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Fig. 4. Effect of exploitation probability factor on performance for
thyroid disease (Australia) data set.
that the given data sets, the algorithm performance is best
when q0 is 0.8.

5.2.3. Pheromone decay parameter and local pheromone

update strength parameter

Pheromone decay parameter (j) and local pheromone
update strength parameter (a) help ants maintain a well
coordinated pheromone mediated cooperation. The values
of j and a should be close to 0.9 or 0.8 so that in each iter-
ation just the right amount of pheromone is deposited so as
to influence the decision of future generation ants in the
right direction. Depositing or degrading more amount of
pheromone in each step may lead to pheromone accumula-
tion or depletion on certain features, clouding the under-
standing of which features are more important. By
decreasing the value of j, the amount of pheromone depos-
ited in each iteration increases, making them more desir-
able for the future generation ants. This may not let the
ants select those features which have the capability of pro-
ducing a good subset but which have not been selected
before. Similarly, if j is set at 1, it will lead to no phero-
mone deposition on the features which are producing good
subsets, making the ants non-cooperative and thus leading
to poor performance. (Fig. 5 shows the performance of
ACO for different values of pheromone decay parameter.)

5.2.4. Number of generations

Similarly, number of generations is an important param-
eter. Increasing the number of generations increases
runtime of the algorithm tremendously while fewer genera-
tions make ants explore less possible states for each value
of n, leading to poor/pre-mature convergence. The graph
(Fig. 6) shows the algorithm performance and time con-
sumed varying number of generations. As we can see that
the algorithm performs its best when five generations of
ants are produced in each step.

5.3. Setting the ANN parameters

ANNs are used to evaluate the ‘‘goodness’’ of the sub-
sets (ability to correctly classify the class/pattern) devel-
oped by ants as solution in each iteration and to test the
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final subset produced. As stated previously, the networks
are trained using Levenberg–Marquard’s back propagation
algorithm. Two different ANN models were used for these
two purposes. The only difference between the two was the
training epochs – for evaluating the subsets the ANN
model developed is trained for a mere 25 epochs, due to
limited time. For instance, consider a problem consisting
of 20 features to be reduced. An initial step involves select-
ing a subset of four features; even though the solution
developed at this stage may not be a global optimum, the
Table 2
Details of the artificial neural network models used

Sr. no. Data sets Training
set size

Testing
set size

ANN model for

Hidden
layer
neurons

Hid
tran
func

1 Thyroid disease
(Australia)

150 56 7 Tan

2 Thyroid disease
(discordant)

150 56 7 Tan

3 Thyroid disease
(hypothyroid)

300 100 8 Tan

4 Dermatology 266 100 10 Tan
5 Breast cancer

(Wisconsin diagnostic)
469 100 10 Tan

6 Breast cancer
(Wisconsin prognostic)

148 50 12 Tan

Table 3
Results of the ANN prediction using the reduced subset and the set of compl

Sr. no. Data sets No. of
attributes

Reduced
subset

% Reduction ANN

Train

1 Thyroid disease
(Australia)

28 12 57.14 0.000

2 Thyroid disease
(discordant)

28 4 85.71 0.000

3 Thyroid disease
(Hypothyroid)

21 14 58.82 0.000

4 Dermatology 34 7 66.66 0.000
5 Breast cancer

(Wisconsin diagnostic)
32 12 62.5 0.000

6 Breast cancer
(Wisconsin prognostic)

30 14 58.82 0.000
step is needed for the algorithm to check which of the r ants
have produced the best subset of four features. For this
purpose, an initial number of 25 epochs is sufficient to
obtain a ‘‘good generalization’’. It should be further noted
that the final training for the global ‘‘best subset’’ is per-
formed for 700 epochs.

Selecting the number of neurons in the hidden layer for
the ANN designed to evaluate the subsets depends on the
search horizon, i.e., the maximum and minimum value of
n. This in-fact limits the application of this algorithm from
being used for very high dimensional (in thousands) feature
selection problems. In such scenarios, a possible approach
is to divide the entire state space into pre-defined ranges,
and then apply the algorithm to each segment. It should
be noted that in that approach, the number of neurons in
the hidden layer will be different for each step. In each of
the applications approximately 80% of the entire data set
was used for training and the remaining 20% was used
for testing. Table 2 provides the details of the ANN
models.

6. Results and conclusions

The results obtained are presented in Table 3. As stated
earlier, feature subset selection may in some cases improve
evaluating subsets ANN model for final subset evaluation

den layer
sfer
tion

Output layer
transfer
function

Hidden
layer
neurons

Hidden layer
transfer
function

Output layer
transfer
function

sig Logsig 9 Tansig Logsig

sig Logsig 9 Tansig Logsog

sig Purelin 8 Tansig Purelin

sig Purelin 12 Tansig Purelin
sig Purelin 12 Tansig Purelin

sig Purelin 14 Tansig Purelin

ete features

prediction using all features ANN prediction for reduced subset

ing error Testing accuracy (%) Training error Testing accuracy (%)

34 91.08 0.00024 98.22

35 92.86 0.00085 96.42

41 86.00 0.00041 94.50

051 68.00 0.000021 95.00
025 69.00 0.000045 95.57

055 64.29 0.000025 77.50
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the performance of the pattern classifier since feature
selection is not only concerned with reducing the number
of features but also eliminating the variables that produce
noise or, are correlated with other already selected
variables. To demonstrate the method, first, the entire sets
of features were used in predicting the output. The results
obtained are discussed in 6th and 7th column of Table 3.
Then the reduced subsets were used to predict the output
using the same neural network model for the same num-
ber of epochs, results shown in 8th and 9th columns of
Table 3.

From Table 3, it can be seen that the performance of the
classifier improves in all the test cases considered in the
implementation. For the data set 6, where the testing accu-
racy is ‘‘lower’’ than that observed in other data sets, we
hypothesize that it is not suitable for feature selection
application. The algorithm discussed in this paper attempts
to determine inter-variable relationship amongst a reduced
subset which can predict the output accurately. This rela-
tion may or may not exist in datasets. For certain datasets
using all features may be necessary to predict the output. In
such scenarios, feature selection algorithms such as these
cannot add significant value. But since the accuracy using
reduced subset for the dataset 6 is still more than the accu-
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Fig. 7. Graph of the actual output against the ANN predicted output
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Fig. 8. Graph of the actual output against the ANN predicted outpu
racy using the set of complete features, we conclude the
algorithm has removed the noisy features to some extent.
Thus, from the above presented results it could be seen that
the method proposed in this paper shows promising results.
The graphs (Figs. 7 and 8) show the prediction of ANN in
graphical form for the thyroid disease (hypothyroid) data
set and the thyroid disease (Australia) data set. The graph
compares the actual output using the entire set of features
and the output obtained from the ANN using the reduced
subset of features.

This paper shows that ant algorithm offers an attractive
approach to solve the feature subset selection problem
(under a different cost and performance constraints) in
inductive learning of neural network pattern classifier.
The algorithm considers both the individual performance
and performance in a subset to predict the output, while
selecting each feature. The potential future work in this
area includes developing a heuristic model specifically
for medical diagnosis applications as a function of diag-
nostic value, cost and risk associated with each test. This
will help selecting those features which are associated with
high diagnostic value, low risk and low cost, thereby
reducing the overall cost. In this paper, the performance
of the method for very large state spaces which may
1 56 61 66 71 76 81 86 91 96 101

using the reduced subset for thyroid disease dataset (hypothyroid).

9 31 33 35 37 39 41 43 45 47 49 51 53 55 57

t using the reduced subset for thyroid disease dataset (Australia).
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require segmenting was not explored and is worth study-
ing further. In addition, comparison of the method dis-
cussed in this paper with other learning methods, impact
of pheromone decay parameter and local pheromone
update strength parameter on efficiency of the hybrid
method, and quantifying the impact of exploitation prob-
ability factor are potential directions for further studies.
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