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1. Foreword
We present a detailed discussion of a method for scheduling traffic lights.

This choice should be understood as only one example of a number of problems
that can be solved using the same techniques as those employed here.
To give a general description, these are problems in which a facility has to

be shared by several users. Some pairs of users are allowed to use the facility
simultaneously while others are not. Moreover, there are other restrictions,
typically time related. The problem consists of assigning a time slot to each
user, taking the restrictions into account, in such a way that a quantity, also
involving time, is optimized.
Developing an early treatment due to Stoffers [1968], Opsut and Roberts

[1979, 1981, 1983a, 1983b]obtained themain results of the theory thatwepresent
here. While basing this expository paper on their research, we try tomake their
results more accessible to the general student by making it self-contained and
by stating formally some facts that they do not mention explicitly. We include
a substantial number of exercises and provide answers. Further, we emphasize
the applications and the extent to which the model captures some aspects of
the real-life situation while intentionally ignoring others.
The tools required are elementary graph theory and linear programming.

The first eight sections, which could be taught in two 75-minute lectures of a
general education mathematics course, discuss the basic ideas and present the
methods to solve simpler problems. Once the model is set up, software can be
used to solve the associated linear program.
Sections 9. Consecutive Orderings and 10. Full Intersection Assignments

spell out definitions and results needed to present the algorithm described in
section 11. An Algorithm. This algorithm explains how to obtain schedules,
gives conditions under which schedules are best possible, and specifies those
instances where we only know how to obtain a partial solution.
Proofs of all results mentioned in this work will be published separately.

The authors would be most obliged to interested readers who send comments
and suggestions.

2. Introduction
An intersection of traffic lanes is an example of a facility shared by several

users. To control the traffic, we want to schedule a traffic-light system that
assigns to each user a period during which that user has the right of way, i.e.,
may use the facility.
Consider the intersection of Figure 1. Some pairs of traffic streams, like y

and z, cannot go through the intersection at the same time; we say that they are
incompatible. Moreover, let us assume that traffic engineers have determined
that y and w are also incompatible, due to the fact that the east-west lane is too
narrow to handle the east-west and left-turning traffic simultaneously.

1
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Figure 1. A simple intersection.

To model the compatibility and incompatibility relations, we use a graph
whosevertices represent the streamsandwhose edges represent compatibilities
between them. For the given intersection, graph G of Figure 2 represents the
streams and the presence or absence of conflicts between them.

..........................................................................
........................

........................
........................

........................
........................................................................................................................................................................................................................................................................................................................................................................................•

y
•
x

•
w

•
z

Figure 2. Graph to represent the intersection of Figure 1.

Each stream v is controlled by a traffic light with a green-light period that
we denote by Sv .
The assignment of green-light periods should be such that incompatible

streams get disjoint periods, that is,

u �= v, {u, v} �∈ E =⇒ Su ∩ Sv = ∅,
where E denotes the set of edges of G.
Of course, in a real situation, a stream like x, compatible with all others,

would not need any signal. But, to illustrate the main ideas, we do not omit x
from our arguments.
Traffic lights are scheduled cyclically: Apattern of light assignments repeats

indefinitely. A phase is a time period delimited by light changes but during
which there are no light changes on any stream. This concept is clarified by
Figure 3, which depicts one possible assignment of red/green lights for the
intersection of Figure 1. In Figure 3 and in the sequel, we indicate green light
using a partially shaded band and red light using a blank band.
The assignment has five phases: the first, lasting 2 units of time, and then

four more, lasting 3, 18, 2, and 15 units. It is a rather inefficient assignment,
one reason being that y should not have to wait 2 units to go through. A better
assignment (with four phases) would be that in Figure 4.

2
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Figure 3. A possible assignment of red/green lights for the intersection of Figure 1.
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Figure 4. A better assignment of red/green lights for the intersection of Figure 1.

The four-phase cycle depicted in Figure 4 repeats indefinitely. We say that
the cycle length equals 2 + 3 + 18 + 17 = 40 units of time.

3. Modeling the Problem
We now point out conditions that arise naturally and yield a mathematical

model whose solution determines a suitable schedule.
A yellow light is used to announce signal changes. Stoffers [1968, 201]

points out that the length of these transitory states is in many countries fixed
by regulations. This lengthmaydepend on the size or geometry of the crossing.
How should we incorporate yellow lights into our model? A yellow light

at the end of a green period is an indication that the traffic should clear the
intersection. Vehicles on a yellow light that are in or near the intersection are
allowed to circulate, while streams incompatible with them still have a red
light. However, we can consider that streams have only red or green lights: We
translate a solution into the real world by changing to yellow an appropriate
interval at the end of each greenperiod. As a consequence, a scheduling like the
one depicted in Figure 4 for the intersection of Figure 1would look different on
the road after yellow periods are added. For example, if we used solid shading
for the yellow periods, we might have the result in Figure 5.

From now on, our models disregard yellow lights, so our diagrams will
look like those in Figures 3 and 4.
The time that it takes a stopped vehicle to enter the intersection—which

depends, among other things, on the position of the vehicle in the waiting line
and the number of vehicles arriving at the intersection per unit of time—is im-

3
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Figure 5. The scheduling of red/green lights from Figure 4 with yellow periods added (solid
shading).

portant for determining aminimum length of green for each stream. Moreover,
since yellow periods (which are considered part of green periods) are “safety
gaps” and thushave aminimumlength, thegreenperiods alsohave aminimum
length. Traffic engineers determine these bounds by taking measurements at
intersections. Van Vuren and Van Vliet [1992, 751], for example, give 2.5 s as
a rough estimate for a starting delay, i.e., the time that it takes for a vehicle to
start after the car in front has started. Another way of describing this delay is
bymeasuring the speed of the motion wave. The authors give a value of 5 m/s
for the speed of the wave moving back from the stop line.
So our model will require a given minimum amount of green time per

stream per cycle. However, if we allowmore than one green interval per cycle,
we could obtain an assignment with at least the minimum amount of green
but with some green intervals not long enough to contain yellow safety times.
Another complication of multiple greens is noted by Stoffers [1968, 205]. At
the beginning of each green period, “lost times” occur, until the traffic picks
up speed. The total amount of green per stream then would be affected by
an unknown number of these lead times. Hence, we prescribe just one green
interval per cycle per stream.
Next, some reflections on cycle length. Long cycles, allowing for longer

intervals of green, can accommodate more vehicles; but cycles longer than
necessary to handle the traffic on handmay produce unacceptable delays. Van
Vuren and Van Vliet suggest that it is best to use the shortest practical cycle
length necessary to accommodate the traffic volume [1992].
Summarizing, we have

• a graph that indicates which pairs of streams are compatible and which are
not; and

• for each stream v,

– a positive number rv , the minimum length of an interval of green for
that stream; and

– another positive numberN , themaximum length of the cycle (of course,
N should be at least as large as the largest rv .)

As seen in Figures 3 and 4, there can be many light assignments that satisfy
the compatibility requirements and the restrictions imposed by rv andN . Some
assignments, however, are better than others: We ask that the total amount of

4
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green (i.e., the sum of green times for all streams, for any one cycle) be as large
as possible. We now return to our example to seek such improvement.

4. Improving the Assignment
Consider the graph of Figure 2 on p. 2 and assume that the minimum

amounts of green are ry = 15, rz = 20, rw = 5, and rx = 20 units of time,
while the maximum cycle length is given by N = 40 units. In the assignment
in Figure 4, the total amount of green is 17 + 21 + 5 + 40 = 83.
Sincewe are interested inmaximizing the total amount of green, that appor-

tionment is clearly not optimal, because z andw could receivemore green. The
increase of green times is reasonable: Since x,w, and z aremutually compatible
streams, they can share more green time without compromising cycle length,
thus providing a longer total amount of green (Figure 6). The total amount of
green is now 103 units.
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Figure 6. Sharing green time between traffic streams.

5. Maximal Cliques
The set of mutually compatible streams corresponds to a set of mutually

adjacent vertices in our graph. We define a concept that is crucial in what
follows:

Definition. Amaximal cliqueof a graphG is a setK ofmutually adjacent vertices
of G not contained in any larger set with this property. In other words:

• any two vertices ofK are adjacent, and

• a vertex not inK (if there are any) cannot be adjacent to every vertex inK.

For example, the graph in Figure 2 has two maximal cliques: K1 = {x, z, w}
andK2 = {x, y}.
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Exercise

1. Prove that every clique in a graph is contained in some maximal clique.

The sharing of green time by members of a maximal clique may increase
the total amount of green. To discuss this in more detail, we assign to each
maximal clique Ki a length of green time di, called the duration of the clique.
It represents the length of the period during which all members of Ki receive
green light simultaneously. Each vertex receives di units of green time for each
maximal cliqueKi towhich it belongs. Hence, vertices inKi belonging to other
maximal cliques in general receive more green than elements that belong toKi

only.
The assignments in both Figures 7a and 7b, for example, show how x bene-

fits from being a member of twomaximal cliques. The vertices z, w, and y each
belong to only one of the cliques and each receives less green than x does.
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Figure 7a. Vertex x belongs to both the maximal cliques K1 = {x, z, w} (22 units of green) and
K2 = {x, y} (18 units of green), hence receives 40 units of green.
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Figure 7b. The same maximal cliques as in Figure 7a, but with K1 getting 25 units of green and
K2 getting 15 units of green; vertex x still get 40 units.

In these figures, we indicate graphically the members and durations of the
maximal cliques. In Figure 7a, for example, cliqueK1 = {x, z, w} gets d1 = 22
units and clique K2 = {x, y} gets d2 = 18 units. The cliques are the same in
Figure 7b, where d1 = 25 units and d2 = 15 units. The total amounts of green
are respectively 18+22+22+40 = 102 units and 15+25+25+40 = 105 units.

Ourmodelwill have as unknowns the durations. Wewill specify an explicit
method to obtain an assignment of green-light intervals that respects incom-
patibilities and satisfies the constraints of minimum green time per stream and

6
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maximum cycle length. However, since some intersections don’t have an as-
signment satisfying all the restrictions, we give conditions that guarantee the
existence of such an assignment.
Let Ji be the interval during which all members of the maximal clique Ki

receive green simultaneously. For convenience, we choose the phases as left-
closed, right-open intervals. Referring again to the graph of Figure 2, we set
J1 = [0, d1). Then J2 has to be such that J1 ∩ J2 = ∅. Since we have an upper
bound on cycle length but want to maximize the total amount of green, we
must take J2 = [d1, d1 + d2). So, for the two-phase assignments in Figures 7ab,
we have J1 = [0, 22), J2 = [22, 40) and J1 = [0, 25), J2 = [25, 40) respectively.
Recalling that x can receive green simultaneously with w, z, and y, we next
define the interval of green that each vertex gets as follows:

Sy = J2, Sz = J1, Sw = J1, Sx = J1 ∪ J2.

We express the restrictions of minimum green length and maximum cycle
length in terms of the previously introduced unknowns di. Since the lengths
of Sy , Sz , Sw, and Sx are d2, d1, d1, and d1 + d2, recalling the values of ry , rz ,
rw, rx, we conclude that the restrictions on minimum green length are

d2 ≥ 15
d1 ≥ 20
d1 ≥ 5

d1 + d2 ≥ 20.

The cycle length is the length of Sy ∪ Sz ∪ Sw ∪ Sx, so considering the value of
N , the restriction on cycle length reads

d1 + d2 ≤ 40,

and obviously
di ≥ 0.

The optimality condition is: maximize the total amount of green, which is
d2 + d1 + d1 + (d1 + d2), that is,

maximize 3d1 + 2d2.

6. Linear Programming
Our model is an optimization problem: We want to find the maximum (or

the minimum) of a certain function, the variables of which must meet certain
restrictions. In our example, the function to maximize is 3d1 + 2d2, and the
restrictions on the variables are the seven inequalities above. Ourmodel in fact
is a linear program (LP), because the restrictions (or constraints) and the function

7
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to maximize or minimize are linear. The restrictions can be of different types—
some can use≤ and others≥ or even=—but strict inequalities (< or>) are not
allowed. It is usually the case (but notmandatory) that all variables be required
to be nonnegative.
For students who know how to find the optimal solution of such a problem

graphically, Figure 8 will show that the optimal solution is d1 = 25, d2 = 15.
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Figure 8. Graphical representation of a sample linear program and its solution.

If you are not familiar with the methods used to solve linear programs, you
can rely on widely available software packages. We will use Student Lindo /
PC Release 6.00 for our examples. You should enter the following input.

max 3d1 + 2d2 st
d2 > 15
d1 > 20
d1 > 5
d1 + d2 > 20
d1 + d2 < 40

Note that:

• Spaces are largely irrelevant, in particular between constants and variable
names.

• For typing convenience, you enter < or >, but the meaning is ≤ or ≥.
• Variables are assumed nonnegative by default.
• Clicking the Solve button gives the solution.
That optimal solution gives the intervals J1 = [0, 25) and J2 = [25, 40), and

therefore Sy = [25, 40), Sz = Sw = [0, 25), and Sx = [0, 40). The total amount of
green is 105 units, and the cycle length is 40 units. This optimal solution yields
the schedule depicted in Figure 7b.
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Exercises

2. Reverse the order of the cliquesK1 andK2 and solve the previous problem
again. Compare the solutions obtained.

3. Name local factors (i.e., factors pertaining to a particular intersection) that
may contribute to determine the minimum amount of green each stream
should receive.

4. Name quantities pertaining to a traffic intersection, different from the total
amount of green, that it would be meaningful to maximize or minimize.

7. Phasings and Intersection Assignments
We sought assignments S such that Sv ∩ Sw = ∅ whenever v and w are

distinct nonadjacent vertices, but we got more than that. In fact, our optimal
solution satisfies the converse; that is, if two vertices are adjacent, then the
corresponding intervals intersect. To put it in formal terms, we distinguish the
following conditions:

v �= w, {v, w} /∈ E =⇒ Sv ∩ Sw = ∅, (1)

and

{v, w} ∈ E =⇒ Sv ∩ Sw �= ∅. (2)

Interval assignments that satisfy (1) are called phasings, and those that satisfy
both (1) and (2) are called intersection assignments.
Now is a good time to recapitulate what we have done so far and to take a

look at the road ahead. We have amodel of a traffic intersection, which consists
of a graph and some numerical data. The problem that we set out to solve is
how to obtain either a phasing or an intersection assignment that satisfies the
conditions of themodel and is also optimal in providingmaximum green time.
We used a linear programwith the data and the structure of the graph to obtain
a phasing or intersection assignment. However, it is not at all clear that we
could not obtain an even better scheduling by using other techniques, perhaps
unrelated to linear programming, and independent of the maximal cliques.
Another question arises naturally in this context. Since the condition for

phasing is less restrictive than the one for intersection assignment, it is conceiv-
able that we can do better with phasings than with intersection assignments.
In other words, maybe we could find a phasing with a larger total green time
than the intersection assignment just obtained. We address these fundamental
issues later.
In the meantime, we consider a second, more complicated intersection.

9
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8. A More Involved Example
In Figure 9, stream p represents pedestrians, which, from the point of view

of our mathematical model, can be treated like any vehicle stream.
Figure 10 depicts compatibilities and incompatibilities of the streams.
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Figure 9. Intersection with a pedestrian stream p.
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Figure 10. Graph corresponding to the intersection of Figure 9.

The graph in the earlier Figure 2 on p. 2 had two maximal cliques, {x, z, w}
and {x, y}. We assigned an interval of green to {x, z, w} to begin the cycle,
and then another abutting interval, disjoint from the first one, to {x, y}. We
also asked you in Exercise 2 to reschedule the intersection, reversing the order
in which the cliques are numbered. You must have noticed then that this too
resulted in an admissible assignment, with each stream receiving one green
interval per cycle.
The new example differs from the earlier one in a fundamental way: The

ordering of the cliques matters.
Assume that we assign green intervals to the maximal cliques in the order

{x, z}, {p, y}, {x, y}, and {x, w}. The assignment in Figure 11depicts a schedule
obtained that way.
Clearly, the assignment in Figure 11 is not an acceptable solution for our

problem. But, a change in the order inwhich the intervals of green are assigned
to the maximal cliques gives the acceptable assignment shown in Figure 12.

The schedule is obtained by assigning consecutive green intervals to cliques
{x, z}, {x, w}, {x, y}, and {p, y}, in that order. Following the notation intro-
duced in section 5. Maximal Cliques, this assignment can be obtained from
the graph in Figure 10 by listing its maximal cliques as

K1 = {x, z}, K2 = {x, w}, K3 = {x, y}, K4 = {p, y},

10
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Figure 11. Schedule obtained by assigning green intervals to the maximal cliques in the order
{x, z}, {p, y}, {x, y}, and {x, w}.
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Figure 12. Schedule obtained by assigning green intervals to the maximal cliques in the order
{x, z}, {x, w}, {x, y}, and {p, y}.

by defining

J1 = [0, d1), J2 = [d1, d1 + d2), J3 = [d1 + d2, d1 + d2 + d3),

J4 = [d1 + d2 + d3, d1 + d2 + d3 + d4),

and, finally, by assigning

Sz = J1, Sp = J4, Sy = J3 ∪ J4, Sx = J1 ∪ J2 ∪ J3, Sw = J2.

So, as in our first example,
Sv =

⋃
i:v∈Ki

Ji.

That is, we assign to each vertex v the union of those Ji corresponding to the
maximal cliques to which v belongs.

We now work out this example. Suppose that rz = 25, rp = 10, ry = 15,
rx = 45, and rw = 15, while N = 70 units of time. We keep the ordering of
the maximal cliques introduced above, and find that the linear program (LP)
to consider is

maximize 2d1 + 2d2 + 2d3 + 2d4 subject to
d1 ≥ 25
d4 ≥ 10

11
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d3 + d4 ≥ 15
d1 + d2 + d3 ≥ 45

d2 ≥ 15
d1 + d2 + d3 + d4 ≤ 70

d1, d2, d3, d4 ≥ 0.

Lindo returns the optimal solution d1 = 40, d2 = 15, d3 = 0, d4 = 15, for which
the total amount of green is 140 units. The corresponding phasing is given in
Figure 13. Note that this three-phase phasing is not an intersection assignment.
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Figure 13. The optimal solution, with 140 units of green time.

Exercise

5. For the example and the rvs andN given above, find an intersection assign-
ment with the same optimal total amount of green of the previous phasing.

9. Consecutive Orderings
For our method to work, we have to make sure that each vertex is assigned

at most one interval of green time per cycle. As Figure 11 shows, that will in
general not occur unless green light is assigned consecutively to the cliques
to which vertex v belongs. In fact, in the schedule of Figure 11, x receives a
first interval of green as a member of {x, z}, no green next because it is not a
member of {p, y}, and then green again as a member of {x, y} and {x, w}.

Definition. An orderingK1, K2, . . . , Kn of the maximal cliques of a graph
is consecutive if whenever a vertex belongs to cliques Ki and Kj with i < j,
it necessarily belongs to all intermediate cliques, that is, to cliques Kh with
i < h < j.

Given that the graph of Figure 2 on p. 2 has only two maximal cliques,
labeling any of themK1 and the other oneK2 results in a consecutive ordering

12
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of them. The graph of Figure 10, on the other hand, admits orderings of its
maximal cliques that are not consecutive, as well as consecutive orderings
different from the one that we have used.

Exercise

6. Find all consecutive orderings of the maximal cliques of the graph of Fig-
ure 10.

There are graphs whose maximal cliques do not admit any consecutive
ordering; Figure 14 shows one.

..................................................................................................................................
................
................
................
................
................
................
......................................................................................................................................................................................................................................•

z
•
w

•
y

•
x

Figure 14. A graph with maximal cliques that do not admit any consecutive ordering.

Themaximal cliques are {x, y}, {y, w}, {w, z}, and {z, x}. Since the first two
contain y and the others don’t, the first two must be consecutive in the order-
ing. If, say, {x, y} immediately precedes {y, w}, then {z, x}must precede them
immediately and {w, z} follow them immediately. But this is not a consecutive
ordering of the four cliques. A similar argument applies if {y, w} immediately
precedes {x, y}.

It can be shown that the graph of Figure 14 does not admit an intersection
assignment, either. In fact, Fulkerson and Gross [1965] have given a complete
characterization of graphs whose maximal cliques admit a consecutive order-
ing. To state their result, we introduce some terminology.

Definition. An interval graph is a graphwhose vertices can be put in correspon-
dence with intervals of the real line in such a way that two vertices are adjacent
if and only if the associated intervals intersect.

In other words, an interval graph is one that admits an intersection assign-
ment. The Fulkerson andGross result claims that a graph is an interval graph if
and only if its cliques can be ordered consecutively. Applying this result to the
graph of Figure 14, which as we know does not admit a consecutive ordering
of its maximal cliques, we can say that it is not an interval graph. Simply put, it
is impossible to find four intervals of the real line such that each one intersects
exactly two of the others.

13
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Exercises

7. Consider graph G in Figure 15. Find a consecutive ordering of its maximal
cliques different from the one used in Section 8. For the same rs and N
given there, find a schedule for the traffic graph and compare it with the
one in the text.
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Figure 15. Graph for Exercise 7.

8. Schedule the intersection in Figure 16 subject to the compatibilities depicted
by the graph in Figure 17. Assume that rw = rz = 18, rv = 10, rx = 15,
ry = rt = 20, andN = 60 units of time. What kind of schedule do you get?
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Figure 16. Intersection for Exercise 8.

10. Full Intersection Assignments
How can we be sure that the method that we have used gives best-possible

phasings or intersection assignments? To clarify these matters, we give careful
definitions of the concepts involved and state a number of fundamental results.
We note first that by interval we mean an ordinary interval of the real line,

with the proviso that we consider only bounded intervals (open, closed, or

14
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Figure 17. Compatibilities graph for the intersection of Figure 16 and Exercise 8.

half-open). An interval has a left endpoint a and a right endpoint b, with a ≤ b.
An interval may be empty. Following the usual terminology, we call b − a the
length of the interval.

Definition. A traffic graph is a graph G together with real numbers rv > 0
associated with vertices v and a real number N > 0. In the sequel, we say for
brevity thatG, r, N is a traffic graph. A phasing of a traffic graph is a phasing S
such that

a) |Sv| ≥ rv for each vertex v, and
b) |⋃v Sv| ≤ N .

An intersection assignment of a traffic graph is defined in a similar manner.
The quantity |⋃v Sv| in b) is what we previously called the “cycle length.”
Following Roberts [1979], we call this quantity the measure of the phasing.
Analogously,

∑
v |Sv| was previously called the “total amount of green,” but

is referred to here as the measure score of the phasing. We apply the terms
“measure” and “measure score” also to intersection assignments.
The phasing number (intersection number) of a traffic graph is the supremum

of the measure scores taken over all phasings (intersection assignments) of the
traffic graph. These numbers are not defined if the traffic graph does not admit
a phasing or intersection assignment (see Exercise 10.) On the other hand, if a
traffic graph admits a phasing (intersection assignment), then this supremum
is finite (see Exercise 9.)

Exercises

9. Prove that if a traffic graph has phasings, then the supremum in the defini-
tion of phasing number is finite, as is the intersection number.

10. A traffic graph G, r, N may have no phasing, for example if N is too small
with respect to the rvs. Indeed, we clearly need N to be at least as large
as the largest rv . However, even if this condition is met, the existence of a
phasing depends on the underlying graph itself. Show this by considering
the values rx = 1, ry = rz = 2, rt = 1, N = 4, for both graphs in Figure 18.
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Figure 18. Graphs for Exercise 10.

11. Let G be a connected interval graph, S an intersection assignment. Show
that

⋃
v Sv is an interval. Show by example that the converse of this state-

ment is not true.

We have seen how the traffic-light scheduling problem gives rise to an LP,
and showed with an example how a solution of the LP determines a phasing
of the associated traffic graph. The question addressed at the beginning of this
section can now be rephrased as:

Is the measure score of the phasing that we obtained equal to the phasing number
of the graph?

We discuss this issue in the sequel.
When dealing with intersection assignments, the ones with the properties

that we need are those in which the intervals of the assignment (i.e., the green-
light intervals of the traffic-light scheduling) are as large as possible. More
precisely, we consider assignments S such that the enlargement of an Sv results
in incompatible streams being given green light simultaneously. We give a
formal definition:

Definition. An intersection assignment S is called full when, for every vertex
w and interval I ⊆ ⋃Sv such that Sw ⊂ I , there exists a vertex z for which
Sw ∩ Sz = ∅ but I ∩ Sz �= ∅.

Exercise 12 asks you to prove that, given an intersection assignment S that
is not full, there exist full intersection assignments with the same measure as
S and at least as large a measure score. The example below discusses an idea
that you might find useful in solving this exercise. Consider the graph and
intersection assignment in Figures 19 and 20.
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Figure 19. A graph.

This assignment is not full. We could extend Sz without reaching beyond⋃
Sv , for example to [0, 120), not creating forbidden green overlap. After that,

16
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Figure 20. A non-full intersection assignment for the graph of Figure 19.

it would be possible to extend both Sw and St to [10, 120). This would be a full
intersection assignment. The measure stays the same, while the measure score
has increased.
To justify the implicit assumption that this process can alwaysbe carriedout,

we have to convince ourselves that we will not have to continue indefinitely
with larger and larger Is. This convincing is left for Exercise 12.

Exercises

12. Suppose that graph G has an intersection assignment S. Prove that there
exists a full intersection assignment T such that |Tv| ≥ |Sv| for all vertices v
and
⋃

Tv =
⋃

Sv .

13. LetG be an interval graph, S a phasing, and α ∈ ⋃Sv . Prove that the set of
vertices v such that α ∈ Sv is a clique.

14. Find a traffic graphwith an intersection assignment and an instant α so that
the set of all streams green at α is not a maximal clique.

Lemma. Let G be an interval graph, S a full intersection assignment. If
α ∈ ⋃Sv, then the set of vertices v such that α ∈ Sv is a maximal clique.
(Exercise 14 asked you to find an example of an intersection assignment for
which this conclusion does not hold.)

Proof: Assume first that G is connected. Let K be the set of vertices v such
that α ∈ Sv . We know by Exercise 13 that K is a clique. Suppose that it is not
maximal; then there exists a vertexw /∈ K which is adjacent to all vertices inK.
This means that α /∈ Sw, and for all v such that α ∈ Sv , we have Sv ∩ Sw �= ∅.
Since α /∈ Sw, α is either smaller than all elements in Sw or larger than all

elements in Sw. We assume the former, since the proof is similar in the latter
case.
We can also assume that of all vertices w satisfying the above properties,

we choose one such that Sw has the smallest left endpoint. Further, we choose
w, if possible, so that Sw is left-closed. In other words, we can assume that
no other Sz satisfying the same properties as Sw has elements smaller than all
of Sw. (Figure 21 will help you follow this proof.)
Consider an interval I defined as follows. Its left endpoint is α and its right

endpoint is the same as that of Sw. Moreover, I is left-closed and is right-open
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Figure 21. Illustrative interval graph for the proof of the Lemma.

or right-closed depending on whether Sw is right-open or right-closed. Then
Sw ⊂ I . We claim that I ⊆ ⋃Sv . In fact, any point in I is between α and a point
in Sw. But α ∈ ⋃Sv and Sw ⊆ ⋃Sv , so any point in I is between points in⋃

Sv . Since this set is an interval by Exercise 11, any point in I is also in
⋃

Sv .
Since S is a full intersection assignment, there exists a vertex z such that

Sz ∩ Sw = ∅ but Sz ∩ I �= ∅. This implies in particular that w and z are not
adjacent, and by the hypothesis on w, z �∈ K. Moreover, by choosing any
β ∈ Sz ∩ I , we have β ∈ Sz , α ≤ β, and β strictly less than all the elements in
Sw.
We claim that z is adjacent to every vertex in K. In fact, let u ∈ K, so

that α ∈ Su. By the assumption on w, we know that u and w are adjacent, so
there exists γ ∈ Su ∩ Sw. Now we have α ≤ β < γ. Since α, γ ∈ Su we have
β ∈ Su ∩ Sz , so u and z are adjacent.

To summarize, we have found a vertex z /∈ K (so α /∈ Sz) adjacent to
every vertex in K. Since α /∈ Sz , α is either less than every element in Sz or
greater than every element in Sz . Now β ∈ Sz , so necessarily α is less than
every element in Sz . This shows that z satisfies the same conditions as w, and
moreover Sz contains β, which is smaller than all the elements in Sw. This
contradicts the choice of w, so we conclude thatK is maximal.

The general case, whenG is not necessarily connected, can be easily reduced
to the case just proved. We leave the details as Exercise 16.

Exercises

15. Extend the partial proof in the Lemma to the case where α is arbitrary.
You have to show that, if G is a connected graph having a full intersection
assignment S, α ∈ ⋃Sv ,K is the set of vertices v such that α ∈ Sv , and w is
a vertex adjacent to all vertices inK, then w ∈ K.

16. Complete the proof of the Lemma. You have to show that the result holds
also when G is not necessarily connected.

It is convenient to introduce some terminology. Suppose that G, r, N is a
traffic graph with maximal cliques K1, . . . , Ks, and denote by pi the number

18
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of vertices ofKi. We say that

maximize
∑

pidi subject to∑
i:v∈Ki

di ≥ rv for all vertices v

∑
di ≤ N

di ≥ 0 for all i

is the LP associated with G, r, N , and refer to it as L when the meaning is clear
from the context. For each ordering of the maximal cliques of the traffic graph,
there exists an LP. We argued, however, that the existence of a solution is inde-
pendent of these orderings, sowe do not concern ourselveswith distinguishing
the various LPs. On the other hand, in order to build a phasing, we need to
assume that the maximal cliques are consecutively ordered.

11. An Algorithm
We summarize here the ideas discussed so far that can be used to find

phasings, intersection assignments, and associated parameters of a given traffic
graph. In some cases, this algorithm will not give a definite answer; we point
this out where appropriate. We also provide notes that clarify some aspects of
the procedure and state theorems that justify the claims made. Proofs of these
theorems will be published elsewhere.

11.1 The Algorithm
Consider the traffic graph G, r, N .

1. Obtain the maximal cliques of G and determine whether they admit a con-
secutive ordering. (For the small examples that we discuss here, this de-
termination can be done by considering a few simple possibilities.1) If the
maximal cliques admit a consecutive ordering (i.e., G is an interval graph),
go to 2), otherwise (G is not an interval graph) go to 5).

2. Set up L in the following manner.

(a) The variables are, say, d1, . . . , ds (one per maximal clique.)

(b) For each vertex v the sum of ds corresponding to all cliques that contain
v must be ≥ rv .

(c) The sum of all ds must be ≤ N .

1Raised numerals in this section indicate notes on the algorithm, which are collected in a sub-
section after it.
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(d) All ds are nonnegative.

(e) The objective function (to be maximized) is the sum of all terms pidi,
where pi is the number of vertices of the i-th maximal clique.

Go to 3).

3. If L is not feasible, the traffic graph does not admit a phasing or an intersec-
tion assignment.2,3 Exit. Otherwise, compute an optimal solution d1, . . . , ds

and the value of L. Define as many intervals as maximal cliques as follows.
Set J1 = [0, d1), J2 = [d1, d1 + d2), J3 = [d1 + d2, d1 + d2 + d3) . . . ; then, for
each vertex v, set Sv equal to the union of the intervals corresponding to the
maximal cliques to which v belongs (i.e., Sv =

⋃
i : v∈Ki

Ji.) This defines an
optimal phasing of the traffic graph, and its phasing number is the value of
L. Go to 4).

4. If di > 0 for all i, the procedure described in 3) gives an optimal intersection
assignment.4 The intersection number, phasing number, and the value of L
are all the same. Exit. If some di = 0, solve the following LP (which in this
case has an optimal solution.)

minimize
∑

di subject to∑
i:v∈Ki

di ≥ rv for all vertices v

di ≥ 0 for all i.

In the sequel, we refer to this LP as L′. Its optimal solution, if it exists, is
denoted by N0.

We necessarily have N0 ≤ N . If N0 < N , then the traffic graph admits an
intersection assignment, and its phasing and intersection numbers are equal
to the value of L.5,6 Exit. If N0 = N , the algorithm is inconclusive.7 Exit.

5. Determine subgraphsH ofGwith the same vertex set asG in the following
way. Start with the empty graph (with no edges) and keep adding edges of
G as long as the resulting subgraph is an interval graph (note that the empty
graph is an interval graph.) Stop when this is no longer possible. Consider
every subgraph that can be obtained this way8, and assign to the vertices
the same values rv and N as the original graph has. Go to 6).

6. For each subgraph found applying the procedure just described, determine
N0 as defined in 4) above.

(a) If for anyof these ithappens that itsN0 =N , thealgorithmis inconclusive.7

Exit.

(b) If all subgraphs have their N0 > N , then G, r, N does not admit a
phasing.3,9,10 Exit.
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(c) Otherwise, for those subgraphs that have N0 < N , compute their in-
tersection number following 3) and 4). Then the maximum of these
numbers is the phasing number of the traffic graph.9,10 A phasing of
the subgraph realizing this maximum can be obtained as in 3). This is a
phasing of the original traffic graph realizing its phasing number. Exit.

11.2 Notes on the Algorithm
1 Larger examples require more-sophisticated techniques. See details in

section 12. Comments . . . .

2 Definition. An interval traffic graph is a traffic graphG, r, N whereG is an
interval graph.

3Theorem1 (PhasingExistence). An interval traffic graph admits a phasing
iff L is feasible (the feasibility of L does not depend on the ordering of the
maximal cliques.) In this case, L has an optimal solution, and the phasing
number is equal to the value of L.

4 Proposition (Phasing as an Intersection Assignment). Suppose that L
has a feasible solution giving rise to a phasing as described in 3). Then this
phasing is an intersection assignment iff all the variables are positive. In this
case moreover, the phasing and intersection numbers of the interval traffic graph
are equal to the value of L.

5 Theorem 2 (Phasing Number). Suppose that L′ is feasible and has value
N0 (see Exercise 20.) If N0 < N , the phasing and intersection numbers of the
interval traffic graph are equal to the value of L.

6 In this case, we don’t know if an intersection assignment realizing the
intersection number exists, nor how to find it if it does.

7 This is of no consequence for practical applications, for in this case we
can just increase N by an arbitrarily small amount to obtain a traffic graph (or
traffic subgraphs) for which an intersection assignment can be determined.

8 In building one of these subgraphs, there may be several possible choices
of the next edge to add. All these choices have to be considered, thus obtaining
in general several different subgraphs.

9 Definition. Given a graph G, a maximal interval spanning subgraph is a
spanning subgraph ofG that is an interval graph and is not included in another
such subgraph.

10 Theorem 3 (Phasing in Terms of Spanning Subgraphs). Let G, r, N be a
traffic graph, and let M be the set of maximal interval spanning subgraphs of
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G. Assume that for every element H in M such that the LP associated with
H, r, N is feasible, this LP also has a feasible solution d1, . . . , ds with

∑
di < N .

Then G, r, N admits a phasing iff M has elements H such that H, r, N has an
intersection assignment. In this case, the phasing number of G, r, N is the
maximum intersection number of such H, r, N .

Exercises

Note. The following exercises may require application of the notes above.

17. Suppose that L has an optimal solution d1, . . . , ds. Show that
∑

di = N .

18. Show that a graph such that its maximal cliques can be consecutively or-
dered is an interval graph.

19. Prove that if L is feasible, then it has an optimal solution.

20. a) If L′ is feasible, then it has an optimal solution.
b) If L is feasible, then L′ is feasible and N0 ≤ N . In this case, given a
number l, there is a feasible solution d1, . . . , ds of L such that

∑
di = l

iff N0 ≤ l ≤ N .

21. The Proposition (Phasing as an Intersection Assignment) and Theorem 2
(PhasingNumber) give conditions ensuring that the intersection number is
equal to the value of L. Prove that those conditions are independent. More
specifically, consider the following:

i) L has an optimal solution d1, . . . , ds with di > 0 for all i.
ii) L has a feasible solution d1, . . . , ds such that

∑
di < N .

You are asked to find a traffic graph that satisfies i) but not ii) and a traffic
graph that satisfies ii) but not i). Hint: See the graphs in Figure 22.
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Figure 22. Graphs for Exercise 21.

22. Let G, r, N be an interval traffic graph admitting a phasing. Show that its
phasing number is a maximum, i.e., there exists a phasing ofG, r, N whose
measure score is the phasing number.

22



The Scheduling of Traffic Lights 69

23. (This exercise requires a substantial effort, hence may be appropriate for a
class project.) Find the phasing number of the traffic graph associated with
the intersection in Figure 23. Apart from the obvious incompatibilities, we
specify that stream a is incompatible with d and f ; b is incompatible with c
and e; c is incompatible with e; and d is incompatible with f . Theminimum
green times are: 45 s for a and b, 21 s for c, 30 s for d and f , and 36 s for e.
Assume that N = 135.
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Figure 23. Intersection for Exercise 23.

24. Find a phasing for the traffic intersection of Exercise 23 that realizes its
phasing number.

25. Consider the intersection of Figure 24.
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Figure 24. Intersection for Exercise 25.

a) Assume that x and y are compatible, as well as p and x. Let rp = 65 ,
rx = 45, ry = 50, N = 110 units of time. Can you find a schedule?

b) Solve L′ to find N0.
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c) Find an optimal schedule usingN = 115 units of time. Determine if you
obtained a phasing or an intersection assignment.

d) Let N = 120. Find two different optimal schedules with the same to-
tal amount of green and determine if they are phasings or intersection
assignments.

e) Is it possible to improve upon the total green for cases c) and d)?

26. Consider the intersection in Figure 25.
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Figure 25. Intersection for Exercise 26.

a) Assume that the only incompatible streams are x andw, x and t, y and t,
and y and w. Draw the associated graph, give reasonable minimum
amounts of green for the streams as well as for the cycle length, and find
a schedule. What kind of schedule do you obtain?

b) Now consider that x and z are incompatible and redo the problem.
c) Could your solutions to a) and b) be improved under the stated condi-
tions?

12. Comments and Suggestions for
Further Reading

The phasing of traffic lights is a complex problem, involving empirical de-
terminations as well as theoretical considerations. The model that we present
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here abstracts, from all the relevant aspects, a few that lend themselves to treat-
ment using standard mathematical tools. Other issues are treated at length in
the literature. Hurd et al. [1955] discuss various parameters that we take for
granted. The determination of appropriate values for these parameters is in
part theoretical and in part observational. For example, Hurd et al. give ways
to determine the length of yellow light that take into consideration the stopping
time (the time to stop amoving vehicle) and the clearance time (which depends,
among other things, on the width of the intersection and stopping time.) They
also give a formula for the total delay (the time for a vehicle to start after the
light turns green, summed over all vehicles.) This formula, a function of the
length of red light and the number of vehicles stopped, involves parameters
that are observed empirically. They argue that the delay is minimumwhen the
red intervals are as short as possible.
It is also possible to introduce probabilities into the model. The arrival

of cars can be modeled by a Poisson process, so we can determine the cycles
when the number of cars is much larger than average, producing accumulation
of vehicles. In this way, one can strike a balance between a cycle short enough
to avoid excessive delays and one long enough to keep the number of cycles
with accumulation at a tolerable level.
As a result of our lengthy discussion, we can in principle find optimal

phasings and intersection assignments of some kinds of graphs. Nevertheless,
some aspects that we left aside for simplicity merit further consideration.
For the very small examples that we considered, it was easy to find the

maximal cliques of the graphs involved, decidewhether a consecutive ordering
is possible, and thereby determine whether a given graph is an interval graph.
This trial-and-error method is unacceptably unwieldy and time-consuming for
larger graphs.
There are systematic approaches to organize and simplify this task consider-

ably. We refer you to Golumbic [1980] for a detailed discussion of these topics,
whichwe now summarize briefly. Every simple cycle of an interval graph has a
chord [Golumbic 1980, Theorem 8.4.] (To clarify the statement, we remind you
that a cycle in a graph is given by a sequence of vertices v0, . . . , vk with k ≥ 2,
such that vi is adjacent to vi+1 for 0 ≤ i ≤ k, where we agree for convenience
that vk+1 = v0. Simplemeans that the vertices are distinct, while a (triangular)
chord of the cycle is an edge of the form {vi, vi+2}, for some i, 0 ≤ i ≤ k, where
again for simplicity we agree that, additionally, vk+2 = v1.)
Recognizing this property for a given graph takes time linear in the number

of vertices plus edges of the graph [Corollary 4.6.] Further, if a graph has the
property that every simple cycle has a chord, its maximal cliques can be listed
in linear time [Theorem 4.17.] Finally, checking whether the maximal cliques
can be ordered consecutively can also be done in linear time, a result due to
Booth and Leuker [Theorem 8.5.]
The results presented here are only a selection of much more detailed in-

vestigations due to Roberts [1979] and Opsut and Roberts [1981, 1983a, 1983b].
They consider assignments not only of intervals but also of various types of
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sets, aswell asmultiple applications of thesemodels. These papers contain also
discussions of the use of linear programs to solve the computational problems
that arise.
The characterization of interval graphs due to Fulkerson and Gross is not

easy toapply. Foradifferent approach, expressed in termsof cycles, seeGilmore
and Hoffman [1964].

Index

associated LP, 19
consecutive ordering, 12
cycle length, 3
duration of a clique, 6
full intersection assignment, 16
incompatible streams, 1
intersection assignment, 9
intersection assignment of a traffic graph, 15
intersection number of a traffic graph, 15
interval graph, 13
interval traffic graph, 21
L (associated LP), 19
linear program (LP), 7–8
maximal clique, 5
maximal interval spanning subgraph, 21
measure of a phasing, intersection assignment, 15
measure score of a phasing, intersection assignment, 15
phase, 2
phasing, 9
phasing of a traffic graph, 15
phasing number of a traffic graph, 15
traffic graph, 15
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13. Solutions to the Exercises

1. Of all the cliques containing the given one, consider onewith themaximum
number of vertices.

2. Reversing the order of the cliques results in reversing the variables d1, d2

in the linear program. An optimal solution is therefore d1 = 15, d2 = 25.
We obtain then Sy = [0, 15), Sx = [0, 40), Sz = Sw = [15, 40). The solution
is essentially the same, the only difference being that the origin for the
measurement of time has been shifted by 15 s.

3. Possible factors: Traffic density, street width, number of streets converging
at the intersection.

4. Possible answers: Maximize the minimum amount of green, minimize the
maximum amount of red, minimize the total number of light changes per
cycle.

5. You can find alternative optimal solutions, for example, by moving and
stretching the green and red periods in Figure 13. This way, we obtained
d1 = 35, d2 = 15, d3 = 5, d4 = 15, which induces Sz = [0, 35), Sp = [55, 70),
Sy = [50, 70), Sx = [0, 55), and Sw = [35, 50). This assignment, being an
intersection assignment, is also a phasing (different from the one given in
the text.)

6. As before, we denote the cliques byK1 = {x, z},K2 = {x, w},K3 = {x, y},
and K4 = {p, y}. Since x belongs to K1, K2, and K3, these cliques must
be consecutive in the ordering. Further, y belongs to K3 and K4, so these
two cliques must be next to each other. We conclude that the consecutive
orderings of the maximal cliques are (K1, K2, K3, K4), (K2, K1, K3, K4),
(K4, K3, K1, K2), and (K4, K3, K2, K1).

7. The maximal cliques are K1 = {x, z}, K2 = {x, w}, K3 = {x, y}, K4 =
{p, y}. The consecutive orderings are (K1, K2, K3, K4), (K2, K1, K3, K4),
(K4, K3, K1, K2), and (K4, K3, K2, K1).
Changing the orderingdoes not change the solution fundamentally, only

the order of the variables. For example, for the ordering (K2, K1, K3, K4)
we obtain the optimal solution (15, 40, 0, 15). The corresponding schedule
is Sz = [15, 55), Sp = Sy = [55, 70), Sx = [0, 55), Sw = [0, 15).

8. For the ordering K1 = {w, z}, K2 = {z, v}, K3 = {v, x, y}, K4 = {y, t, v},
the corresponding LP is

maximize 2d1 + 2d2 + 3d3 + 3d4 subject to
d1 ≥ 18

d1 + d2 ≥ 18
d2 + d3 + d4 ≥ 10
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d3 ≥ 15
d3 + d4 ≥ 20

d4 ≥ 20
d1 + d2 + d3 + d4 ≤ 60

d1, d2, d3, d4 ≥ 0.

Lindo gives d1 = 18, d2 = 0, d3 = 22, d4 = 20 units of time. The corre-
sponding schedule is a phasing.
Note. Don’t worry if you get a different optimal solution. In fact, all

optimal solutions are given by (18, 0, d3, 42 − d3), where 15 ≤ d3 ≤ 22.
Indeed, it is easy to verify that these are feasible solutions all with the
same value of the objective function, 162. Conversely, if (d1, d2, d3, d4) is an
optimal solution, then (e1, e2, e3, e4) = (18, 0, d3 + d1 − 18 + d2, d4) is also a
feasible solution for which the value of the objective function is

2e1 + 2e2 + 3e3 + 3e4 = 2d1 + 2d2 + 3d3 + 3d4 + d1 − 18 + d2.

Since d1 − 18 + d2 ≥ 0, we have

2d1 + 2d2 + 3d3 + 3d4 + d1 − 18 + d2 ≥ 2d1 + 2d2 + 3d3 + 3d4,

but (d1, d2, d3, d4) is optimal, so d1−18+d2 = 0. Given that d1 ≥ 18, d2 ≥ 0,
we conclude thatd1 = 18, d2 = 0, andd3+d4 = 42. Finally, d4 = 42−d3 ≥ 20
implies d3 ≤ 22.

9. It suffices to show that
∑ |Sv| is bounded above over all phasings (or inter-

section assignments) of the traffic graph. But this is obvious, becauseNn is
a bound, where n is the number of vertices in G.

10. For the leftmost graph, the phasing Sx = [0, 1), Sy = [0, 2), Sz = [2, 4), and
St = [3, 4) satisfies all constraints. For the other graph, given that x, y, and
z are incompatible, we need at least rx + ry + rz = 5 units of time to satisfy
the constraints.

11. We show that U =
⋃

v Sv is an interval by showing that this set contains
every element between two of its points. Suppose that p < r < q with
p ∈ Sv , q ∈ Sw. Since G is connected, there is a path z1, . . . , zn in G with
z1 = v and zn = w. Since each interval Szi

intersects the next one, Szi+1 ,
it is obvious by induction that U ′ =

⋃
Szi

is an interval. But p, q ∈ U ′, so
r ∈ U ′, hence r ∈ U .

A counterexample is provided by the graph consisting of two vertices
x, y and no edges, with the intersection assignment Sx = [0, 1), Sy = [1, 2).

12. If the given intersection assignment S is not full, then there are vertices w
such that there exist intervals I satisfying Sw ⊂ I ⊆ ⋃Sv and for every
vertex v different from w and not adjacent to it, Sv ∩ I = ∅. For brevity,
vertices such as w are called in this proof defective for S. It is sufficient to
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show that the number of defective vertices can be reduced by at least 1. To
prove this, fix a vertex w defective for S and note first that Sw �= ∅. For
otherwise, since I is nonempty and I ⊆ ⋃Sv , I would intersect some Sv ,
while v would be different from w and not adjacent to it.
Consider now the union J of all such intervals I . Since J is a union of

intervals with nonempty intersection, it is also an interval. Define Tv = Sv

for v �= w and Tw = J . We claim that T is an intersection assignment for
G. Note that J ⊃ Sw. Assume that v is adjacent to w. Then the inequality
Sv ∩ Sw �= ∅ implies that Sv ∩ J �= ∅, i.e., Tv ∩ Tw �= ∅. Suppose now that
v �= w and Sv ∩ J �= ∅. By the definition of J , there exists an interval I as
above such that Sv ∩ I �= ∅. Now, by the assumption on I , v is adjacent to
w.
Note also that for all vwe have Tv ⊇ Sv , so |Tv| ≥ |Sv|, and

⋃
Tv =

⋃
Sv .

To prove that the number of defective vertices has decreased by at least 1,
we establish two facts:

• w is not defective for T .
• If a vertex is defective for T , then it is also defective for S.

Regarding the first claim, recall that
⋃

Tv =
⋃

Sv , and suppose that
there exists an interval L such that J ⊂ L ⊆ ⋃Sv and L ∩ Tv = ∅ for every
vertex v �= w not adjacent to w. Then L ⊃ Sw and, since Tv ⊇ Sv , we have
L ∩ Sv = ∅ for every v �= w not adjacent to w. This shows that L is one of
the intervals whose union is J , which contradicts J ⊂ L.
As for the second claim, let u be defective for T , so that in particular

u �= w. There exists an interval L such that Tu ⊂ L ⊆ ⋃Sv and L ∩ Tv = ∅
for every vertex v �= u not adjacent to u. Since Sv ⊆ Tv , we also have that
L∩ Sv = ∅ for every vertex v �= u not adjacent to u. But Su = Tu, so we can
conclude that u is defective for S.

13. Let K be the set of vertices v such that α ∈ Sv . If v and w are distinct
elements ofK, then α ∈ Sv ∩Sw. By definition of phasing, v,w are adjacent.

14. Consider the intervalgraphand intersectionassignmentofFigures19and20.
You can take α = 100. This intersection assignment is not full.

15. We may additionally assume that α is larger than all elements in Sw (the
other casewas treated in the text). For each vertex v, let Tv = {β : −β ∈ Sv}.
It is routine to prove that T is a full intersection assignment and−α ∈ ⋃Tv .
Further, the set of vertices v such that−α ∈ Tv is alsoK, and−α is less than
all elements in Tw. The result follows then from the case proved in the text.

16. Let G be an interval graph, S a full intersection assignment, and α ∈ ⋃Sv .
We wish to prove that the set K of vertices such that α ∈ Sv is a maximal
clique. We know that it is a clique, so we only need to prove that it is
maximal.
Since K is connected, it is included in a connected component H of G.

NowH is a connected graph, and (Sv)v∈H is an intersection assignment for
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it. It is also full, for if I is an interval such thatSw ⊂ I ⊆ ⋃v∈H Sv ⊆ ⋃v∈G Sv ,
then we know that there exists a vertex z in G such that Sz ∩ Sw = ∅ but
Sz ∩ I �= ∅. Since I ⊆ ⋃v∈H Sv , Sz ∩ Su �= ∅ for some u ∈ H , hence z is
adjacent to u. ButH is a connected component, so z ∈ H . SinceK is the set
of vertices v ofH such that α ∈ Sv , by Exercise 15,K is a maximal clique of
H . It is also a maximal clique of G, because H is a connected component.

17. Suppose by contradiction that
∑

di < N . Then we could replace each di

with d′
i = di+ε for some ε > 0 and still have a feasible solution ofL. Indeed,

we could take ε = (N −∑ di)/s, for then∑
i:v∈Ki

d′
i ≥

∑
i:v∈Ki

di ≥ rv

for all vertices v, and∑
d′

i =
∑

(di + ε) =
∑

di + sε = N,

but ∑
pid

′
i =
∑

pidi + ε
∑

pi >
∑

pidi,

which contradicts the fact that d1, . . . , ds is optimal.

18. We follow the construction described in the algorithm. Let G be a graph
admitting a consecutive orderingof itsmaximal cliquesK1, . . . , Ks. Choose
s arbitrary positive numbers d1, . . . , ds and consider the s intervals

Ji =

[
i−1∑
h=1

dh,

i∑
h=1

dh

)
, 1 ≤ i ≤ s.

For each vertex v, let Sv =
⋃

i : v∈Ki
Ji. We prove that S = (Sv)v is an

intersection assignment for G.
Consider an arbitrary vertex v. Since by hypothesis the maximal cliques

are consecutively ordered, v belongs to Kh, Kh+1, . . . , Kl but to no other
maximal cliques; so we have Sv = Jh ∪ Jh+1 ∪ . . .∪ Jl, which is an interval.

We prove next that if v, w are distinct vertices such that Sv ∩ Sw �= ∅,
then v, w are adjacent. Let α ∈ Sv ∩ Sw. Then α ∈ Jh with v ∈ Kh, and
α ∈ Jr with w ∈ Kr, so h = r and v, w are adjacent.

To finish, we prove that if v, w are adjacent, then Sv ∩ Sw �= ∅. In fact,
{v, w} is a clique, sobyExercise1, v andw belong to somemaximal cliqueKi.
Then ∅ �= Ji ⊆ Sv ∩ Sw, so Sv ∩ Sw �= ∅.

19. Suppose that the LP is feasible. To prove that it has an optimal solution,
we need to show only that the objective function is bounded above over all
feasible solutions. But this is obvious, for N maxi pi is an upper bound.
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20. a) Note that for every feasible solution d1, . . . , ds of L′, we have
∑

di ≥ 0.
b) IfL has feasible solutions, then it also has an optimal solution d1, . . . , ds,
which will also be a feasible solution of L′. By Exercise 17,

∑
di = N ≥

N0. A similar argument proves that if l =
∑

di for a feasible solution of
L, then N0 ≤ l ≤ N . Finally, let N0 ≤ l ≤ N . We consider an optimal
solution d1, . . . , ds of L′. Then d′

1, d2, . . . , ds, with d′1 = d1 + l − N0, is a
feasible solution of Lwith d′

1 +
∑

2 di = l.

21. For the left graph, we take N = 3. Then L is

maximize 2d1 + 2d2 + 2d3 subject to
d1 ≥ 1

d1 + d2 ≥ 2
d2 + d3 ≥ 2

d3 ≥ 1
d1 + d2 + d3 ≤ 3

d1, d2, d3 ≥ 0.

An optimal solution of this LP is d1 = d2 = d3 = 1, so i) holds. The value of
the LP is 6. On the other hand, by Exercise 20, condition ii) is equivalent to
the value of the following LP being less than 3:

minimize d1 + d2 + d3 subject to
d1 ≥ 1

d1 + d2 ≥ 2
d2 + d3 ≥ 2

d3 ≥ 1
d1, d2, d3 ≥ 0.

But adding the first four inequalities, we obtain 2(d1 + d2 + d3) ≥ 6, so for
any feasible (in particular, any optimal) solution, we have d1 + d2 + d3 ≥ 3.
Alternatively, you can run Lindo to verify that the value of this LP is 3.
For the right graph, we also take N = 3, and choose ordering K1 =

{x, y},K2 = {y, z},K3 = {z, t, u} of the maximal cliques. Then L is

maximize 2d1 + 2d2 + 3d3 subject to
d1 ≥ 1

d1 + d2 ≥ 1
d2 + d3 ≥ 1

d3 ≥ 1
d3 ≥ 1

d1 + d2 + d3 ≤ 3
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d1, d2, d3 ≥ 0.

This LP has value 8. To determine N0, we solve

minimize d1 + d2 + d3 subject to
d1 ≥ 1

d1 + d2 ≥ 1
d2 + d3 ≥ 1

d3 ≥ 1
d3 ≥ 1

d1, d2, d3 ≥ 0.

Since this LP has value 2, condition ii) is satisfied. On the other hand,
if d1, d2, d3 is an optimal solution of L, from the last inequality we have
d3 ≤ 3 − (d1 + d2), and consequently

8 = 2d1 + 2d2 + 3d3 ≤ 2(d1 + d2) + 3(3 − (d1 + d2)) = 9 − (d1 + d2).

Therefore, d1 + d2 = 1, which together with d1 ≥ 1 implies d2 = 0, hence i)
does not hold.

22. By Theorem 1 (Phasing Existence), L is feasible, therefore (Exercise 19)
it has an optimum, which generates an optimal phasing as in 3) of the
algorithm.

23. The graph of the intersection is given in S1.
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Figure S1. Solution for Exercise 23.

An argument similar to the oneweused for the graph in Figure 14 shows
that this is not an interval graph.
Following the algorithm to the letter for noninterval graphs can be

lengthy and tedious, so we take some shortcuts to simplify the task. We
useTheorem 3 (Phasing in Terms of Spanning Subgraphs) to calculate the
phasing number.
To obtain a maximal spanning subgraph that is an interval graph, we

have to remove edges so that the two squares are eliminated. Further, it is
easily seen that the hexagon obtained by removing edge de is not an interval
graph either. We conclude that we need to remove two edges, so that no
square remains. We obtain in this way 15 traffic subgraphs, 9 of which we
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depict in Figure S2. The remaining ones, II b, III b, V b, VII b, VIII b, and
IX b, are symmetric to the corresponding ones in the figure with respect to
a vertical line through the middle of the graph (obviously, the labels and
durations remain fixed.)
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Figure S2. Traffic graphs for Exercise 23.

To use Theorem 3 (Phasing in Terms of Spanning Subgraphs) to find
the phasing number of the given graph, we have to show that these 15
subgraphs are interval graphs. Note that as graphs (i.e., disregarding the
ris and N ), there are just three of them, those in Figure S3. The labeling
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indicates consecutive orderings of the maximal cliques, which shows that
these are indeed interval graphs.
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Figure S3. Interval graphs corresponding to the traffic graphs of Figure S2.

Our next task is to determine which of the 15 LPs associated with the
traffic subgraphs are feasible, and for those who are, give a feasible solution
such that the sum of the variables is strictly less than N , as required by
Theorem 3 (Phasing in Terms of Spanning Subgraphs).

It is convenient to label the edges uniformly in all subgraphs, as in
FigureS4. Note that the edgesare also themaximal cliquesof the subgraphs;
we use the same labels for the LP variables.
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Figure S4. Labeling of edges of Figure S1.

In principle, we would have to inspect 15 LPs. We could solve them
using Lindo, but we can proceed more efficiently by noting that these LPs
are closely related. Indeed, if we consider all the restrictions associated
with the original graph of Figure S1, we can obtain the LP associated with
one of the 15 subgraphs by adding the condition that two of the variables
be equal to zero (actually, we disregard the objective function, since at this
point we only need feasible solutions.) It follows from this that our taskwill
be simplified considerably if we can find solutions of the system associated
with the original graph where as many as the variables as possible are zero,
for then one such solution will generally satisfy several of the LPs.
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Consider the following system:

e3 + e6 ≥ 45
e1 + e3 ≥ 45
e2 + e5 ≥ 21

e1 + e2 + e4 ≥ 30
e4 + e6 + e7 ≥ 36

e5 + e7 ≥ 30
e1 + e2 + e3 + e4 + e5 + e6 + e7 ≤ 135

e1, e2, e3, e4, e5, e6, e7 ≥ 0.

This system is simple enough that we can find the required solutions by
hand (if you prefer a more systematic approach, you can solve the system
using a software package, taking as objective the minimization of the sum
of the variables, which will probably force several of them to be zero). We
see by inspection that e2 = 30, e3 = 45, e7 = 36, and the remaining variables
equal to zero, is a solution of this system, and therefore it is also a solution
of the systems associated with the subgraphs that contain the edges e2, e3,
and e7, namely IIa, Vb, VIIa, VIIIb, and IXa. Note also that this solution
satisfies e1 + . . . + e7 < N .

We pick now one of the subgraphs not covered by the preceding calcu-
lation, e.g. subgraph I. The system to consider now is

e3 + e6 ≥ 45
e3 ≥ 45
e5 ≥ 21
e4 ≥ 30

e4 + e6 + e7 ≥ 36
e5 + e7 ≥ 30

e3 + e4 + e5 + e6 + e7 ≤ 135
e3, e4, e5, e6, e7 ≥ 0.

We take e3 = 45, e4 = 36, e5 = 30, and the remaining variables equal to
zero. This shows that the LPs associatedwith the subgraphs I, IIIa, IIIb, and
VI are feasible and have a solution satisfying the condition of the theorem.
The LP associated with IV is not feasible, since some of the constraints

are e6 ≥ 45, e1 ≥ 45, e2 ≥ 21, e7 ≥ 30, and this is not compatible with
e1 + e2 + e4 + e6 + e7 ≤ 135.
Next we consider IIb. For this, we choose e1 = 45, e5 = 30, e6 =

45, and the remaining variables equal to zero. This shows that the LPs
corresponding to IIb, Va, VIIb, VIIIa, and IXb satisfy the conditions we
need.
By Theorem 2 (Phasing Number), each one of the 14 subgraphs with

feasible associated LP has intersection number equal to the value of the LP.
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On the other hand, by Exercise 17, if d1, . . . , ds is an optimal solution of one
of these LPs, we have

∑
di = N , and, given that all maximal cliques of the

subgraph consist of two vertices, the value of the LP is 2
∑

di = 2N = 270.
Invoking now Theorem 3 (Phasing in Terms of Spanning Subgraphs), we
conclude that this is also the phasing number of the original traffic graph.

24. It suffices to find a phasing of one of the maximal spanning subgraphs
that realizes its intersection number. We choose for example the subgraph
labeled I in Figure S2 and solve the associated LP, obtaining e3 = 75, e6 = 0,
e4 = 30, e7 = 9, e5 = 21 (this order indicates a consecutive ordering of the
maximal cliques.) We determine a phasing in the usual manner, obtaining
Sa = Sb = [0, 75), Sc = [114, 135), Sd = [75, 105), Se = [75, 114), Sf =
[105, 135).

25. a) There is no schedule satisfying the requirements, since rp + ry = 115 >
110.

b) The LP to solve is

minimize d1 + d2 subject to
d1 ≥ 65

d1 + d2 ≥ 45
d2 ≥ 50

d1, d2 ≥ 0.

The value is N0 = 115.
c) Solving

maximize 2d1 + 2d2 subject to
d1 ≥ 65

d1 + d2 ≥ 45
d2 ≥ 50

d1 + d2 ≤ 115
d1, d2 ≥ 0

results in d1 = 65, d2 = 50 units of time. The corresponding schedule is
given by Sp = [0, 65), Sx = [0, 115), Sy = [65, 115). It is an intersection
assignment, and therefore a phasing.

d) Possible schedules are given by d1 = 70, d2 = 50 and d1 = 65, d2 =
55, the total amount of green is 240. These schedules are intersection
assignments, and therefore phasings.

e) These schedules cannot be improved (see 4) of the algorithm).
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Figure S5. Graph for solution to Exercise 26a.

26. a) See Figure S5. We choose the ordering K1 = {x, y, z}, K2 = {z, t, w} of
the maximal cliques. Let’s agree that rx = 65, ry = 50, rz = 110, rt = 80,
rw = 70, and N = 150 units of time. The corresponding LP is

maximize 3d1 + 3d2 subject to
d1 ≥ 65
d1 ≥ 50

d1 + d2 ≥ 110
d2 ≥ 80
d2 ≥ 70

d1 + d2 ≤ 150
d1, d2 ≥ 0.

The value is 435 units of time, achieved for d1 = 65, d2 = 80. The
corresponding schedule is Sx = Sy = [0, 65), Sz = [0, 145), Sw = St =
[65, 145). It is an intersection assignment.

b) This time the graph is that of Figure S6. We choose the same values for
the rs but N = 180.
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Figure S6. Graph for solution to Exercise 26b.

We choose the consecutive ordering K1 = {x, y}, K2 = {y, z}, K3 =
{z, t, w} of the maximal cliques. The corresponding LP is

maximize 2d1 + 2d2 + 3d3 subject to
d1 ≥ 65

d1 + d2 ≥ 50
d2 + d3 ≥ 110

d3 ≥ 80
d3 ≥ 70

d1 + d2 + d3 ≤ 180
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d1, d2, d3 ≥ 0.

An optimal solution is d1 = 65, d2 = 0, d3 = 115. The associated
schedule is Sx = Sy = [0, 65), Sz = Sw = St = [65, 180). It is a phasing
but not an intersection assignment, because y and z are compatible but
Sy ∩ Sz = ∅.

c) These assignments cannot be improved, by the Proposition on Phasing
as an Intersection Assignment and by Theorem 1 (Phasing Existence).
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