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Ensembles of learning machines are promising for software effort estimation (SEE), but need to be tailored
for this task to have their potential exploited. A key issue when creating ensembles is to produce diverse
and accurate base models. Depending on how differently different performance measures behave for SEE,
they could be used as a natural way of creating SEE ensembles. We propose to view SEE model creation
as a multi-objective learning problem. A multi-objective evolutionary algorithm (MOEA) is used to better
understand the trade-off among different performance measures by creating SEE models through the simul-
taneous optimisation of these measures. We show that the performance measures behave very differently,
presenting sometimes even opposite trends. They are then used as a source of diversity for creating SEE
ensembles. A good trade-off among different measures can be obtained by using an ensemble of MOEA so-
lutions. This ensemble performs similarly or better than a model that does not consider these measures
explicitly. Besides, MOEA is also flexible, allowing emphasis of a particular measure if desired. In conclu-
sion, MOEA can be used to better understand the relationship among performance measures and has shown
to be very effective in creating SEE models.
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1. INTRODUCTION

Estimating the cost of a software project is a task of strategic importance in project
management. Both over and underestimations of cost can cause serious problems to
a company. For instance, overestimations may result in a company losing contracts
or wasting resources, whereas underestimations may result in poor quality, delayed or
unfinished softwares. The major contributing factor for software cost is effort [Agarwal
et al. 2001].
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Human made effort estimations tend to be strongly affected by effort-irrelevant and
misleading information [Jrgensen and Grimstad 2011]. Moreover, developers tend not
to improve their effort estimation uncertainty assessment even after feedback about
their estimates is provided [Gruschke and Jgrgensen 2008]. An alternative to human
made effort estimations is to use automated effort estimators. Models for estimating
software effort can be used as decision support tools, allowing investigation of the
impact of certain requirements and development team features on the cost/effort of a
project to be developed.

A major difficulty in performing software estimation is the lack of project data that
include size and detailed quantitative counts on the elements of UML models used,
e.g., the number of analysis classes, number of relationship types, number of associ-
ated attributes, use-case point, etc. As a result, even though UML models are com-
monly used, it is still very difficult to do software estimation based on UML mod-
els constructed in the early stage of software development. Hence, it is very difficult
to further test, evaluate and enhance very promising estimation approaches that are
based on the UML models constructed in the early state of requirements analysis [Tan
et al. 2009; Mohagheghi et al. 2005; Tan et al. 2006]. The analysis of the effectiveness
of estimation models based on limited project data thus becomes an important field
to be investigated. Different automated methods for software cost or Software Effort
Estimation (SEE) have been proposed [Jorgensen and Shepperd 2007].

In the present work, we look into a type of machine learning method which has re-
cently attracted attention from the SEE community [Braga et al. 2007; Kultur et al.
2009; Kocaguneli et al. 2009; Minku and Yao 2011], namely ensembles of learning ma-
chines. Ensembles are sets of learners trained to perform the same task and combined
with the aim of improving predictive performance [Chen and Yao 2009]. When com-
bining learning models in an attempt to get more accurate predictions, it is commonly
agreed that these base models should behave differently from each other. Otherwise,
the overall prediction will not be better than the individual predictions [Brown et al.
2005; L. I and Whitaker 2003]. This behaviour matches intuition: if models that make
the same mistakes are combined into an ensemble, the ensemble will make the same
mistakes as the individual models and its performance will be no better than the in-
dividual performances. On the contrary, ensembles composed of diverse models can
compensate the mistakes of certain models through the correct predictions performed
by other models. So, diversity refers to the predictions/errors made by the models. Two
models are said to be diverse if they make different errors on the same data points
[Chandra and Yao 2006]. Different ensemble learning approaches can be seen as dif-
ferent ways to generate diversity among the base models.

Even though ensembles have been shown to be promising for SEE, it is necessary to
tailor them for this estimation task. Simply using any general purpose ensemble ap-
proach from the literature does not necessarily improve SEE in comparison to single
learning machines [Minku and Yao 2011]. Minku and Yao [2012] showed that com-
bining the power of ensembles to local learning through the use of bagging ensembles
of regression trees outperforms several other learning machines for SEE in terms of
Mean Absolute Error (MAE). This combination is a way to tailor ensembles for SEE,
but Minku and Yao [2012] also show that more improvements may still be achieved
if additional tailoring is performed. Very recently, Kocaguneli et al. [2011] proposed
an ensemble method claimed to outperform single learners for SEE. However, their
method is not fully automated, as it needs manual/visual inspection of extensive ex-
periments to create the ensemble. Section 2 explains related work on machine learning
and in particular ensembles for SEE.

Much of the SEE work involves empirical evaluation of models and several different
measures of performance can be used for that. Examples of measures are two popular
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measures based on the magnitude of the relative error, namely Mean Magnitude of the
Relative Error (MMRE) and percentage of estimations within N% of the actual value
(PRED(N)), and a measure based on the logarithm of the residuals recommended by
Foss et al. [2003], namely Logarithmic Standard Deviation (LSD). Different measures
can behave differently and it is highly unlikely that there is a “single, simple-to-use,
universal goodness-of-fit kind of metric” [Foss et al. 2003], i.e., none of these measures
is totally free of problems.

The relationship among different measures is not yet well understood. For example,
it is not known to what extent a lower MMRE could be related to a higher LLSD and vice
versa, or how different are the MMREs associated to the same PRED value. Depending
on how differently these performance measures behave, it may be possible to use them
as a natural way to generate diversity in ensembles for SEE. With that in mind, this
paper aims at answering the following research questions:

— RQ1: What is the relationship among different performance measures for SEE?

—RQ2: Can we use different performance measures as a source of diversity to cre-
ate SEE ensembles? In particular, can that improve the performance in comparison
to models created without considering these measures explicitly? Existing models
do not necessarily consider the performance measures in which we are interested
explicitly. For example, Multi-layer Perceptrons (MLPs) are usually trained using
Backpropagation, which is based on the mean squared error. So, they can only im-
prove MMRE, PRED and LSD indirectly. We would like to know whether creating an
ensemble considering MMRE, PRED and LSD explicitly leads to more improvement
in the SEE context.

—RQ3: Is it possible to create models that emphasize particular performance mea-
sures should we wish to do so? For example, if there is a certain measure that we
believe to be more appropriate than the others, can we create a model that particu-
larly improves performance considering this measure? This is useful not only for the
case where the software manager has sufficient domain knowledge to chose a certain
measure, but also (and mainly) if there are future developments of the SEE research
showing that a certain measure is better than others for a certain purpose.

In order to answer these questions, we formulate the problem of creating SEE mod-
els as a multi-objective learning problem that considers different performance mea-
sures explicitly as objectives to be optimised. This formulation is key to answer the
research questions because it allows us to use a Multi-objective Evolutionary Algo-
rithm (MOEA) [Wang et al. 2010] to generate SEE models that are generally good
considering all the pre-defined performance measures. This feature allows us to use
plots of the performances of these models to understand the relationship among the
performance measures and how differently they behave. Once these models are ob-
tained, the models that perform best for each different performance measure can be
determined. These models behave differently from each other and can be used to form
a diverse ensemble that provides an ideal trade-off among these measures. Choosing
a performance measure is not an easy task. By using our ensemble, the software man-
ager does not need to chose a certain performance measure, as an ideal trade-off among
different measures is provided. As an additional benefit of this approach, each of the
models that compose the ensemble can also be used separately to emphasize a spe-
cific performance measure if desired. The performance measures used by the MOEA
in this work are MMRE, PRED(25) and LSD. Section 3 explains MOEAs and section 4
explains our proposed approach to use MOEAs for creating SEE models.

Our analysis shows that the different performance measures behave very differently
when analysed at their individual best level and sometimes present even opposite be-
haviour (RQ1). For example, when considering nondominated (section 3) solutions, as
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MMRE is improved, LSD tends to get worse. This is an indicator that these mea-
sures can be used to create diverse ensembles for SEE. We then show that MOEA is
successful in generating SEE ensemble models by optimising different performance
measures explicitly at the same time (RQ2). The ensembles are composed of nondomi-
nated solutions selected from the last generation of the MOEA, as explained in section
4. These ensembles present performance similar or better than a model that does not
optimize the three measures concurrently. Furthermore, the similar or better perfor-
mance is achieved considering all the measures used to create the ensemble, showing
that these ensembles not only provide a better trade-off among different measures, but
also improve the performance considering these measures. We also show that MOEA
is flexible, allowing us to chose solutions which emphasize certain measures, if desired
(RQ3).

The base learners generated by the MOEA in this work are Multi-layer Perceptrons
(MLPs) [Bishop 2005], which have been showing success in the SEE literature for not
being restricted to linear project data [Tronto et al. 2007]. Even though we generate
MLPs in this work, MOEAs could also be used to generate other types of base learn-
ers, such as RBFs, RTs and linear regression equations. An additional comparison of
MOEA to evolve MLPs was performed against nine other types of models. The com-
parison shows that the MOEA-evolved MLPs were ranked first more often in terms of
five different performance measures, but performed less well in terms of LSD. They
were also ranked first more often for the data sets likely to be more heterogeneous. It
is important to note, though, that this additional comparison is not only evaluating the
MOEA and the multi-objective formulation of the problem, but also the type of model
being evolved (MLP). Other types of models could also be evolved by the MOEA and
could possibly provide better results in terms of LSD. As the key point of this paper is
to analyse the multi-objective formulation of the creation of SEE models, and not the
comparison among different types of models, the experimentation with different types
of MOEA and different types of base models is left as future work.

This paper is organised as follows. Section 2 presents related work on machine learn-
ing and ensembles for SEE. Section 3 explains MOEAs and the type of MOEA used in
this work. Section 4 explains our approach for creating SEE models (including ensem-
bles) through MOEAs. In particular, section 4.1 explains the multi-objective formula-
tion of the problem of creating SEE models. Section 5 explains the experimental setup
for answering the research questions and evaluating our approach. Section 6 explains
the data sets used in the experiment. Section 7 provides an analysis of the relation-
ship among different performance measures (RQ1). Section 8 provides an evaluation
of the MOEA’s ability of creating ensembles by optimising several different measures
at the same time (RQ2). Section 9 shows that MOEAs are flexible, allowing us to cre-
ate models that emphasize particular performance measures, if desired (RQ3). Section
10 shows that there is still room for improvement in the choice of MOEA models to
be used for SEE. Section 11 complements the evaluation by checking how well the
Pareto ensemble of MLPs performs in comparison to other types of models. Section 12
presents the conclusions and future work.

2. MACHINE LEARNING FOR SEE

Several different methods for automating software cost/effort estimation have been
proposed [Jorgensen and Shepperd 2007]. For example, Shepperd and Schofield [1997]
present a landmark study using estimation by analogy, which is a type of case-based
reasoning. The features and effort of completed projects are stored and then the effort
estimation problem is regarded as the one of finding the most similar projects in terms
of Euclidean distance to the one for which an estimation is required. The approach
was evaluated on nine data sets and obtained in general better MMRE and PRED(25)
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than more traditional stepwise regression models. Chulani et al. [1999] presented an-
other study using a Bayesian approach to combine a priori information based on ex-
pert knowledge to a linear regression model based on log transformation of the data.
The proposed approach outperforms linear regression models based on log transformed
data in terms of PRED(20), PRED(25) and PRED(30) on one data set and its extended
version. No comparison with Shepperd and Schofield [1997]s work was given.

More recently, effort estimators based on machine learning approaches such as Mul-
tiLayer Perceptrons (MLPs), Radial Basis Function networks (RBFs) and Regression
Trees (RTs) [Srivasan and Fisher 1995; Wittig and Finnie 1997; Heiat 2002; Baskeles
et al. 2007; Tronto et al. 2007; Kultur et al. 2009; Braga et al. 2007] have received
increased attention [Jorgensen and Shepperd 2007]. MLPs are artificial neural net-
works widely used in the machine learning literature. They are composed of at least
three layers of neurons, where neurons of a certain layer are connected to all neurons
of the next layer. Neurons compute a function of the weighted sum of their inputs. An
example of function frequently used is sigmoid. MLPs can approximate any contin-
uous function and learning consists of adjustments to the connection weights. RBFs
are artificial neural networks whose neurons of the first layer compute a radial ba-
sis function, allowing them to perform local learning. Learning consists of calculating
the centres of the neurons of the first layer, the width of their radial basis function,
and adjusting the weights of the connections of the output neurons. RTs are easy-to-
understand structures that provide if-then rules to perform regression based on the
values of the input attributes. There are several different types of RTs and an example
of RT for effort estimation is given in figure 1 [Minku and Yao 2011]. Learning consists
of determining which attributes to split and based on what values.

Functional Size

< 253.5 >= 253.5

i 3 Effort =
[ Functional Size J ‘ 5376.56 ‘

< 151 >=151

Effort = Effort =
1086.94 2798.68

Fig. 1: An example plot of RT for SEE [Minku and Yao 2011].

The motivation behind the use of such approaches is that they make no or minimal
assumptions about the function being modelled and the data used for training. For in-
stance, Tronto et al. [2007] showed that MLPs improve SEE over conventional linear
models because they are not restricted to linear functions, being able to model observa-
tions that lie far from the best straight line. Earlier work also reported favourably over
MLPs [Wittig and Finnie 1994]. Dejaeger et al. [2012] argued that techniques such
as ordinary least squares regression based on log transformed data perform in gen-
eral better than some types of regression trees and neural networks analysed in their
study. Nine data sets and several performance measures were used in their study.

Another type of approaches that has been recently attracting the attention of the
SEE community are ensembles of learning machines [Braga et al. 2007; Kultur et al.
2009; Kocaguneli et al. 2009; Minku and Yao 2011]. Minku and Yao [2011] showed that
a bagging [Breiman 1996] ensemble of MLPs performs similarly to REPTrees [Hall
et al. 2009] for SEE in terms of MMRE and PRED(25) based on thirteen data sets.
They explained that additional tailoring is necessary so that ensembles can improve
SEEs on these performance measures. Minku and Yao [2012] showed that combining
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the power of ensembles to local learning through the use of bagging ensembles of REP-
Trees outperforms several other learning machines for SEE in terms of MAE. Combin-
ing ensembles and locality is a way to tailor ensembles for SEE, but Minku and Yao
[2012] also show that more improvements may still be achieved if additional tailoring
is performed. Kocaguneli et al. [2011] proposed an ensemble method that outperforms
single learners for SEE. Their method combines several types of so called solo-methods
(combinations of single learners and preprocessing techniques) to perform SEE. They
reported that the ensemble presents less instability than solo-methods when ranked
in terms of the total number of wins, losses and wins — losses considering several
different performance measures and twenty data sets. These observations confirmed
earlier results reported in the ensemble learning literature that ensembles generally
perform better than its component learners. They also reported that the ensembles
obtained less losses than other methods. As an additional contribution, their extensive
study showed that the non-linear approaches CART (a type of RT) and estimation by
analogy based on log transformed data can outperform other methods such as linear
regression based on log transformed data.

However, their approach [Kocaguneli et al. 2011] has high implementation complex-
ity and is not fully automated. It requires an extensive experimentation procedure
using several types of single learners and preprocessing techniques for creating the
ensemble. It consists of selecting the “best” solo-methods in terms of losses and sta-
bility to compose the ensemble, by manually/visually checking and comparing their
stability. The manual/visual checking process is needed because it is necessary not
only to determine what solo-methods have the lowest number of losses (that by itself
could be automated), but also to check whether these are the same as the ones compar-
atively more stable and what level of stability should be considered as comparatively
superior or not.

Differently from Kocaguneli et al. [2011]'s approach, our approach is fully auto-
mated. Once developed, a tool using our MOEA can be easily run to learn a model
that uses data from a specific company. It is worth noting that parameters choice of
our approach can be automated, as long as the developer of the tool embeds on it sev-
eral different parameter values to be tested on a certain percentage of the completed
projects of the company. More importantly, we can create ensembles in such a way to
encourage both accuracy and diversity, which is known to be beneficial for ensembles
[Brown et al. 2005; L. I and Whitaker 2003]. Kocaguneli et al. [2011]’s approach is
mainly focused on accuracy, providing no guarantee that the base learners perform
diversely. As explained by Chandra and Yao [2006], ensembles need their base models
to be both accurate and diverse in order to perform well. However, there is a trade-off
between accuracy and diversity of base models. So, if we focus only on improving their
accuracy, they are likely to lack diversity, reducing the accuracy of the ensemble as a
whole.

3. MOEAS

MOEAs are population-based optimisation algorithms that evolve sets of candidate so-
lutions by optimising two or more possibly conflicting objectives. Candidate solutions
are generated/evolved through evolutionary operators such as crossover and mutation
in rounds called generations. The evolutionary process is frequently guided by the con-
cept of dominance, which is defined as follows. Consider a multi-objective optimisation
problem consisting of N objectives f;(x) to be minimized, where z is a p dimensional
vector containing p design or decision variables [Srinivas and Deb 1994]. A solution
(1) dominates a solution z(? iff:
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This concept can easily be generalized to problems involving maximization.

The set of optimal solutions (nondominated by any other solution) is called Pareto
front. Even though the true Pareto front is very difficult to be found, a MOEA can find a
set of acceptable solutions nondominated by any other solution in the last generation.
We will refer to these solutions as Pareto solutions.

There exist several different MOEAs. As examples we can cite the conventional and
well known Nondominated Sorting Genetic Algorithm IT (NSGA-II) [Deb et al. 2002];
the improved Strength Pareto Evolutionary Algorithm (SPEA2) [Zitzler et al. 2002];
the two-archive algorithm [Praditwong and Yao 2006], which has been used in the soft-
ware engineering context for software module clustering by Praditwong et al. [2011];
and the Harmonic Distance MOEA (HaD-MOEA) [Wang et al. 2010].

Once a representation, evolutionary operators and objective functions are defined,
our proposed approach can be used in combination to any MOEA. We chose HaD-
MOEA as the algorithm to be used in our experiments due to its simplicity and advan-
tages over NSGA-II as explained in section 3.1. This paper does not intend to show that
a particular MOEA performs better or worse than another. For that reason, we leave
the evaluation of other MOEAs to evolve SEE models as future work. In the current
paper, we concentrate on the multi-objective formulation of the problem, how to use a
multi-objective approach to solve it, and to provide a better understanding of different
performance measures.

3.1. HaD-MOEA

HaD-MOEA [Wang et al. 2010] is a MOEA that improves upon NSGA-II. Even though
NSGA-II is a conventional and well known MOEA, it does not perform well when the
number of objectives increases [Khare et al. 2003]. Wang et al. [2010] explained that
two key problems in NSGA-II are its measure of crowding distance and the method for
selecting solutions based on it.

The crowding distance is used by NSGA-II to select solutions that cover the whole
objective space well. This is a critical step in NSGA-II [Deb et al. 2002], as it helps
maintaining the diversity of the population, which in turn helps the search process to
find solutions with better quality. However, NSGA-II uses the 1-norm distance between
the two nearest neighbours of a solution as the crowding distance measure. Wang
et al. [2010] showed that this measure does not reflect well the actual crowding degree
of a given solution. The problem with this measure is inherent from 1-norm’s own
definition. So, Wang et al. [2010] proposed to use the harmonic distance to overcome
this problem in their algorithm HaD-MOEA.

Also, NSGA-II selects solutions based on the crowding distance calculated consider-
ing only the solutions belonging to the same nondominated front. This obviously does
not reflect the real crowding distance considering all solutions selected so far, which is
the real crowding of the solutions. So, in HaD-MOEA, after sorting the solutions in the
intermediate population into a number of fronts, if some solutions are to be selected
from the same front, the crowding distance is calculated based on both the solutions
belonging to the same front and all the previously selected solutions.

HaD-MOEA'’s pseudo-code is shown in algorithm 1. Our implementation was based
on the Meta-heuristic Optimisation Framework for Java Opt4dJ [Lukasiewycz et al.
2011]. As in other evolutionary algorithms, parents are selected from the population
to produce offspring based on evolutionary operators (line 3). In HaD-MOEA, parents
selection is typically done using tournament selection [Miller and Goldberg 1995].
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ALGORITHM 1: HaD-MOEA

Input: population size o, number of generations G.
Output: P,.
Initialize initial population P, = {z1,z2, ..., za };
for g + 1t0 Gdo
Generate offspring population @, from P, with size «;
Combine parent and offspring population R, = P, U Qy;
Sort all solutions of R, to get all nondominated fronts F' = fast_nondominated_sort(Ry),
where F = (F1, Fb,...);
Set Py1 ={}andi=1;
while the population size |Pyi1] + |Fi| < N do
Add the ith nondominated front F; to Py41;
i =1+ 1;
end
Combine F; and P,: to a temporary vector T’
Calculated the harmonic crowding distance of individuals of F; in T’
Sort F; according to the crowding distance;
Set T'={};
Fill P41 with the first o — | Py+1| elements of Fj;
end

The population of parents and offspring is then combined (line 4) and the individuals
are separated into nondominated fronts (line 5). Each front is composed of individuals
that are not dominated by any individual of any subsequent front. They are used to
choose the individuals that compose the next population (lines 7-15).

As each population has a pre-defined size «, it is usually not possible to include all
the individuals from a certain front in the new population. In order to determine which
individuals should be included, HaD-MOEA calculates their harmonic distance consid-
ering both this front and the individuals already included in the new population (lines
11 and 12). The algorithm then selects the individuals with the largest distances (line
15), which represent less crowded regions of the solution space. In this way, diversity
is encouraged and preserved.

4. USING HAD-MOEA FOR CREATING SEE MODELS

As explained by Harman and Clark [2004] ,“[m]etrics, whether collected statically or
dynamically, and whether constructed from source code, systems or processes, are
largely regarded as a means of evaluating some property of interest”. For example,
functional size and software effort are metrics derived from the project data. Perfor-
mance measures such as MMRE, PRED and LSD are metrics that represent how well
a certain model fits the project data, and are calculated based on metrics such as soft-
ware effort.

Harman and Clark [2004] explain that metrics can be used as fitness functions in
search based software engineering, being able to guide the force behind the search
for optimal or near optimal solutions in such a way to automate software engineering
tasks. For example, metrics can be used in the design of process, architecture and
infrastructure, and test data. In the context of software cost/effort estimation, genetic
programming has been applied using mean squared error (MSE) as fitness function
[Dolado 2000; 2001; Shan et al. 2002].

In the present work, we innovatively formulate the problem of creating SEE models
as a multi-objective learning problem. This formulation was preliminary presented in
[Minku 2011]. We use different performance measures as objectives to be optimised
simultaneously for generating SEE models. Differently from other formulations, that
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allows us to get a better understanding of different performance measures, to create
well performing SEE ensembles and to emphasize different performance measures if
desired, as explained later in section 5.

The algorithm used in this work was HaD-MOEA (section 3.1). When using MOEAs
for a particular problem, the objectives, the representation of solutions and the evo-
lutionary operators need to be carefully designed. In this section, we explain our pro-
posed approach to create SEE models using MOEA. Section 4.1 explains how we for-
mulate the problem of creating SEE models as a multi-objective optimisation problem.
Section 4.2 comments on the type of SEE models generated. Section 4.3 explains the
representation of the models and the evolutionary operators used. Section 4.4 explains
which solutions produced by HaD-MOEA are used in the analyses.

4.1. Multi-objective Formulation of the Problem

Considering a set of T projects, the metrics used as objectives to be optimised when
creating models in this work are defined as follows:

— Mean Magnitude of the Relative Error:
1 T
MMRE = — MRE;,
T

where M RE; = |§; — v:|/v:; §i is the predicted effort; and y; is the actual effort.
— Percentage of estimations within 25% of the actual values:

T .

1 1, if MRE; < 2

PRED(25) = — ’ ¢ = 100
(25) T ; {0, otherwise

— Logarithmic Standard Deviation:

52\ 2
LSD — \/ZiT—l (61";7) ’

T —

2

where s is an estimator of the variance of the residual ¢; and ¢; = Iny; — In §;.

MMRE and LSD are objectives to be minimized, whereas PRED(25) is to be maxi-
mized. In order to avoid possible infinite LSD averages due to negative estimations,
any negative estimation was replaced by the value one when calculating Iny. MMRE
and PRED(25) are popular metrics in the SEE literature, as illustrated by table 2 of
Dejaeger et al. [2012]'s work, whereas LLSD was recommended by Foss et al. [2003] as
being more reliable especially for multiplicative models. These measures were chosen
because, even though all of them were initially designed to represent how well a model
performs, they can behave very differently from each other, as illustrated in section 7.
This is potentially very useful for maximizing diversity among ensemble members, as
explained in section 4.4.

During the MOEA evolving procedure, the objective values are calculated using a
set of projects with known effort which will be referred to as the training set. When
evaluating the results of the approaches, the performance measures are calculated
over the test set.

Several different performance measures for SEE can be found in the literature. Most
of them are calculated over the prediction error (y; — ¢;) [Menzies and Shepperd 2012].
The Mean Absolute Error (MAE) is the mean of the absolute prediction error, providing
an unbiased measure that does not favour under or overestimates. Sometimes median
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measures are used to avoid influence of extreme values. For these reasons, the evalua-
tion analysis of our approach also considers its MAE, Median Absolute Error (MdAE)
and Median MRE (MdMRE).

4.2. SEE Models Generated

The models generated by the MOEA in this work are Multi-Layer Perceptrons (MLPs)
[Bishop 2005], which are widely used artificial neural networks as explained in section
2. As explained in section 1, MLPs can improve SEE over conventional linear models
because they are not restricted to linear functions, being able to model observations
that lie far from the best straight line [Tronto et al. 2007]. Even though we evolve
MLPs in this work, MOEAs could also be used to generate other types of models for
SEE, such as RBF's, RTs and linear regression equations. As the key point of this paper
is to analyse the multi-objective formulation of the creation of SEE models, and not the
comparison among different types of models, the experimentation of MOEAs to create
other types of models is left as future work.

4.3. Representation and Evolutionary Operators

The MLP models were represented by a real value vector of size n; - (ny, + 1) + ny, -
(no,+ 1), where n;, n, and n, are the number of inputs, hidden nodes and output nodes,
respectively. This real value vector is manipulated by the HaD-MOEA to generate
SEE models. Each position of the vector represents a weight or the bias of a node. The
value one summed to n;, and n, in the formula above represents the bias. The number
of input nodes corresponds to the number of project independent variables and the
number of output nodes is always one for the SEE task. The number of hidden nodes
is a parameter of the approach.

The crossover and mutation operators were inspired by Chandra and Yao [2006]’s
work, which also involves evolution of MLPs. Let w?!, w”? and wP* be three parents.
One child w® is generated with probability P, according to the following equation:

w® = wP* + N(0,0%)(wP? — wh?),
where w is the real value vector representing the individuals and N (0, ¢?) is a random
number drawn from a Gaussian distribution with mean zero and variance o2.

An adaptive procedure inspired by simulated annealing is used to update the vari-
ance o2 of the Gaussian at every generation [Chandra and Yao 2006]. This procedure
allows the crossover to be initially explorative and then become more exploitative. The
variance is updated according to the following equation:

1
o =2— - - ,
1+ e(anneal_time—generation)

where anneal_time is a parameter meaning the number of generations for which the
search is to be explorative, after which o2 decreases exponentially until reaching and
keeping the value of one.

Mutation is performed elementwise with probability Pm according to the following
equation:

w; = w; + N(0,0.1),

where w; represents a position of the vector representing the MLP and N(0,0.1) is a
random number drawn from a Gaussian distribution with mean zero and variance 0.1.

The offspring individuals receive further local training using Backpropagation
[Bishop 2005], as in Chandra and Yao [2006]’s work.
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4.4. Using the Solutions Produced by HaD-MOEA

The solutions produced by HaD-MOEA are innovatively used for SEE in two ways in
this work. The first one is a Pareto ensemble composed of the best fit Pareto solutions.
These solutions are the ones with the best train performance considering each objective
separately. So, the ensemble will be composed of the Pareto solution with the best train
LSD, best train MMRE and best train PRED(25). The effort estimation given by the
ensemble is the arithmetic average of the estimations given by each of its learners. So,
each performance measure can be seen as having “one vote”, providing a fair and ideal
trade-off among the measures when no emphasis is given to a certain measure over
the others. This avoids the need for a software manager to decide on a certain measure
to be emphasized.

It is worth noting that this approach to create ensembles focuses not only on ac-
curacy, but also on diversity among base learners, which is known to be a key issue
when creating ensembles [Brown et al. 2005; L. I and Whitaker 2003]. Accuracy is en-
couraged by using a MOEA to optimise MMRE, PRED and LSD simultaneously. So,
the base learners are created in such a way to be generally accurate considering these
three measures at the same time. Diversity is encouraged by selecting only the best
fit Pareto solution according to each of these measures. As shown in section 7, these
measures behave very differently from each other. So, it is likely that the MMRE of the
best fit Pareto solution according to LSD will be different from the MMRE of the best
fit Pareto solution according to MMRE itself. The same is valid for the other perfor-
mance measures. Models with different performance considering a particular measure
are likely to produce different estimations, being diverse.

The second way to use the solutions produced by HaD-MOEA is to use each best fit
Pareto solution by itself. These solutions can be used when a particular measure is to
be emphasized.

It is worth noting that HaD-MOEA automatically creates these models. The Pareto
solutions and the best bit Pareto solutions can be automatically determined by the
algorithm. There is no need for involving manual/visual checking.

5. EXPERIMENTAL STUDIES

The experiments were designed with the aim of answering research questions RQ1-
RQ3. In order to answer RQ1, we show that plots of the Pareto solutions can be used
to provide a better understanding of the relationship among different performance
measures. They can show that, for example, when increasing the value of a certain
measure, the value of another measure may decrease and by how much. Our study
shows the very different and sometimes even opposite behaviour of different measures.
This is an indicator that these measures can be used to create diverse ensembles for
SEE (section 7).
In order to answer RQ2, the following comparison was made (section 8):

— Pareto ensemble vs Backpropagation MLP (single MLP created using Backpropaga-
tion). This comparison was made to show the applicability of MOEAs to generate SEE
ensemble models. It analyses the use of MOEA, which considers several performance
measures at the same time, against the non-use of a MOEA.

The results of this comparison show that MOEA is successful in generating SEE
ensemble models by optimising different performance measures explicitly at the same
time. These ensembles present performance similar or better than a model that does
not optimize the three measures concurrently. Furthermore, the similar or better per-
formance is achieved considering all the measures used to create the ensemble, show-
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ing that these ensembles not only provide a better trade-off among different measures,
but also improve the performance considering these measures.
In order to answer RQ3, the following comparison was made (section 9):

— Best fit Pareto MLP vs Pareto ensemble. This comparison allows us to check whether
it is possible to increase the performance considering a particular measure if we
would like to emphasize it. This is particularly useful when there is a certain mea-
sure that we believe to be more appropriate than the others.

The results of this comparison reveal that MOEAs are flexible in terms of providing
SEE models based on a multi-objective formulation of the problem. They can provide
both solutions considered as having a good trade-off when no measure is to be empha-
sized and solutions that emphasize certain measures over the others if desired. If there
is no measure to be emphasized, a Pareto ensemble can be used to provide a relatively
good performance in terms of different measures. If the software manager would like
to emphasize a certain measure, it is possible to use the best fit Pareto solution in
terms of this measure.

Additionally, the following comparisons were made to test the optimality of the
choice of best fit MLPs as models to be used (section 10):

— Best Pareto MLP in terms of test performance vs Backpropagation MLP, and Pareto
ensemble composed of the best Pareto MLPs in terms of each test performance vs
Backpropagation MLP. This comparison was made to check whether better results
could be achieved if a better choice of solution from the Pareto front was made. Please
note that choosing the best models based on their test performance was done for
analysis purpose only and could not be done in practice.

The results of this comparison show that there is still room for improvement in terms
of Pareto solution choice.

The comparisons to answer the research questions as outlined above show that it is
possible and worth considering SEE models generation as a multi-objective learning
problem and that a MOEA can be used both to provide a better understanding of dif-
ferent performance measures, to create well performing SEE ensembles and to create
SEE models that emphasize particular performance measures.

In order to show how the solutions generated by the MOEA to evolve MLPs compare
to other approaches in the literature, an additional round of comparisons was made
against the following methods (section 11):

— Single learners: MultiLayer Perceptrons (MLPs) [Bishop 2005]; Radial Basis Func-
tion networks (RBFs) [Bishop 2005]; Regression Trees (RTs) [Zhao and Zhang 2008];
and Estimation by Analogy (EBA) [Shepperd and Schofield 1997] based on log trans-
formed data.

— Ensemble learners: Bagging [Breiman 1996] with MLPs, with RBFs and with RTs;
Random [Hall et al. 2009] with MLPs; and Negative Correlation Learning (NCL) [Liu
and Yao 1999b; 1999a] with MLPs.

These comparisons do not evaluate the multi-objective formulation of the problem by
itself, but a mix of the MOEA to the type of models being evolved (MLP). According
to very recent studies [Kocaguneli et al. 2011; Minku and Yao 2011; 2012], REPTrees,
bagging ensembles of MLPs, bagging ensembles of REPTrees and EBA based on log
transformed data can be considered to be among the best current methods for SEE.
The implementation used for all the opponent learning machines but NCL was based
on Weka [Hall et al. 2009]. The regression trees were based on the REPTree model. We
recommend the software Weka should the reader wish to get more details about the
implementation and parameters. The software used for NCL is available upon request.
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The results of these comparisons show that the MOEA-evolved MLPs were ranked
first more often in terms of MMRE, PRED(25), MAMRE, MAE and MdAE, but per-
formed less well in terms of LSD. They were also ranked first more often for the ISBSG
(cross-company) data sets, which are likely to be more heterogeneous. It is important to
emphasize, though, that this additional comparison is not only evaluating the MOEA
and the multi-objective formulation of the problem, but also the type of model being
evolved (MLP). Other types of models could also be evolved by the MOEA and could
possibly provide better results in terms of LSD.

The experiments were based on the PROMISE data sets explained in section 6.1,
the ISBSG subsets explained in section 6.2 and a data set containing the union of all
the ISBSG subsets (orgAll). The union was used in order to create a data set likely to
be more heterogeneous than the previous ones.

Thirty rounds of executions were performed for each data set from section 6. In each
round, for each data set, 10 projects were randomly picked for testing and the remain-
ing were used for the MOEA optimisation process/training of approaches. Holdout of
size 10 was suggested by Menzies et al. [2006] and allows the largest possible num-
ber of projects to be used for training without hindering the testing. For the data set
sdr (described in section 6.1), half of the projects were used for testing and half for
training, due to the small size of the data set. The measures of performance used to
evaluate the approaches are MMRE, PRED(25) and LSD, which are the same perfor-
mance measures used to create the models (section 4.1), but calculated on the test set.
It is worth noting that MMRE and PRED using the parameter 25 were chosen for be-
ing popular measures, even though raw values from different papers are not directly
comparable because they use different training and test sets, besides possibly using
different evaluation methods. In addition, we also report MAMRE, MAE and MdAE.
The absolute value of the Glass’s A effect size [Rosenthal 1994] was used to evaluate
the practical significance of the changes in performance when choosing between the
Pareto ensemble and an opponent approach:

_|M, — M
SD,

where M, and M, are the performances obtained by the Pareto ensemble and an op-
ponent approach, and SD,, is the standard deviation obtained by the Pareto ensemble.
As the effect size is scale-free, it was interpreted based on Cohen [1992]s suggested
categories: small (=~ 0.2), medium (~ 0.5) and large (= 0.8). Medium and large effect
sizes are of more “practical” significance.

The parameters choice of the opponent approaches was based on five preliminary
executions using several different parameters (table I). The set of parameters leading
to the best MMRE for each data set was used for the final thirty executions used in
the analysis. MMRE was chosen for being a popular measure in the literature. The
experiments with the opponent approaches were also used by Minku and Yao [2011].

The MLP’s learning rate, momentum and number of hidden nodes used by HaD-
MOEA were chosen so as to correspond to the parameters used by the opponent Back-
propagation MLPs and are presented in table II. These parameters were tunned to
provide very good results for the opponent Backpropagation MLPs, but were not specif-
ically tunned for our proposed approach. The number of generations, also shown in
table II, is the number of epochs used by the opponent Backpropagation MLPs divided
by the number of epochs for the offspring Backpropagation. This value was chosen so
that each MLP at the end of the evolutionary process is potentially trained with the
same total number of epochs as the opponent Backpropagation MLPs. The remain-

A
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Table I: Parameter values for preliminary executions.

Approach Parameters

MLP Learning rate = {0.1,0.2,0.3,0.4,0.5}

Momentum = {0.1,0.2,0.3,0.4,0.5}

# epochs = {100, 500, 1000}

# hidden nodes = {3, 5,9}

RBF # clusters = {2, 3,4,5,6}

Minimum std. deviation for the clusters
={0.01,0.1,0.2,0.3,0.4}

REPTree Minimum total weight for instances in a leaf
={1,2,3,4,5}

Minimum proportion of the data variance at
a node for splitting to be performed
= {0.0001, 0.001, 0.01, 0.1}

Ensembles | # base learners = {10, 25,50}

All the possible parameters of the adopted
base learners, as shown above

NCL Penalty strength = {0.3,0.4,0.5}

Table II: Parameter values used in the HaD-MOEA.

Data Set Learning rate | Momentum | # generations | # hidden nodes
Cocomo81 0.3 0.5 200 9
Sdr 0.5 0.2 20 9
Nasa 0.1 0.1 100 9
Desharnais 0.1 0.1 100 9
Nasa93 0.4 0.5 20 5
Orgl 0.1 0.2 200 9
Org2 0.1 0.1 100 5
Org3 0.1 0.3 100 5
Org4d 0.2 0.3 200 9
Orgh 0.2 0.3 200 9
Org6 0.1 0.1 20 3
Org7 0.5 0.3 20 5
OrgAll 0.1 0.5 20 9

ing evolutionary parameters were fixed for all data sets and were not intended to be
optimal. In summary, these are:

— Tournament size: 2. Tournament is a popular parent selection method. A tournament
size of 2 is commonly used in practice because it often provides sufficient selection
pressure on the most fit individuals [Legg et al. 2004].

— Population size: 100. This value was arbitrarily chosen.

— Number of epochs used for the Backpropagation applied to the offspring individuals:
5. This is the same value as used by Chandra and Yao [2006].

— Anneal_time: number of generations divided by 4, as in [Chandra and Yao 2006].

— Probability of crossover: 0.8. Chosen between 0.8 and 0.9 (the value used by Wang
et al. [2010]) so as to reduce the MMRE in five preliminary executions for cocomo81.
We decided to check whether 0.8 would be better than 0.9 because 0.9 can be consid-
ered as a fairly large probability.

— Probability of mutation: 0.05. Chosen between 0.05 and 0.1 (the value used by Wang
et al. [2010]) so as to reduce the MMRE in five preliminary executions for cocomo81.
We decided to check whether 0.05 would be better than 0.1 because the value 0.1 can
be considered large considering the size of each individual of the population in our
case.
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A population size arbitrarily reduced to 30 and number of epochs for the off-
spring Backpropagation reduced to zero (no Backpropagation) were used for additional
MOEA executions in the analysis. Unless stated otherwise, the original parameters
summarized above were used.

6. DATA SETS

The analysis presented in this paper is based on five data sets from the PRedictOr
Models In Software Engineering Software (PROMISE) Repository [Shirabad and Men-
zies 2005] and eight data sets based on the International Software Benchmarking
Standards Group (ISBSG) Repository [ISBSG 2011] Release 10, as in Minku and Yao
[2011]. The data sets were chosen to cover a wide range of problem features, such as
number of projects, types of features, countries and companies. Sections 6.1 and 6.2
provide their description and processing.

6.1. PROMISE Data

The PROMISE data sets used in this study are: cocomo81, nasa93, nasa, sdr and de-
sharnais. Cocomo81 consists of the projects analysed by Boehm to introduce COCOMO
[Boehm 1981]. Nasa93 and nasa are two data sets containing Nasa projects from the
1970s to the 1980s and from the 1980s to the 1990s, respectively. Sdr contains projects
implemented in the 2000s and was collected at Bogazici University Software Engineer-
ing Research Laboratory from software development organisations in Turkey. Deshar-
nais’ projects are dated from late 1980s. Table III provides additional details and the
next subsections explain their features, missing values and outliers.

Table III: PROMISE data sets.

Data Set # Projects | # Features | Min Effort | Max Effort | Avg Effort | Std Dev Effort
Cocomo81 (effort in person-months) 63 17 59 11,400 683.53 1,821.51
Nasa93 (effort in person-months) 93 17 8.4 8,211 624.41 1,135.93
Nasa (effort in person-months) 60 16 8.4 3,240 406.41 656.95
Sdr (effort in person-months) 12 23 1 22 5.73 6.84
Desharnais (effort in person-hours) 81 9 546 23,940 5,046.31 4,418.77

6.1.1. Features. Cocomo81, nasa93 and nasa are based on the COCOMO [Boehm
1981] format, containing as input features 15 cost drivers, the number of lines of code
and the development type (except for nasa, which does not contain the latter feature).
The actual effort in person-months is the dependent variable. Sdr is based on CO-
COMO 1II [Boehm et al. 2000], containing as input features 22 cost drivers and the
number of lines of code. The actual effort in person-months is the dependent variable.
The data sets were processed to use the COCOMO numeric values for the cost drivers.
The development type was transformed into dummy variables.

Desharnais follows an independent format, containing as input features the team
experience in years, the manager experience in years, the year the project ended,
the number of basic logical transactions in function points, the number of entities in
the system’s data model in function points, the total number of non-adjusted function
points, the number of adjusted function points, the adjustment factor and the program-
ming language. Actual effort in person-hours is the dependent variable.

6.1.2. Missing Values. The only data set with missing values is desharnais. In total, it
contains only 4 in 81 projects with missing values. So, these projects were eliminated.
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6.1.3. Outliers. The literature shows that SEE data sets frequently have a few out-
liers, which may hinder the SEEs for future projects [Seo et al. 2008]. In the current
work, outliers were detected using k-means. This method was chosen because it has
shown to improve performance in the SEE context [Seo et al. 2008]. K-means is used
to divide the projects into clusters. The silhouette value for each project represents the
similarity of the project to the other projects of its cluster in comparison to projects of
the other clusters, ranging from -1 (more dissimilar) to 1 (more similar). So, the aver-
age silhouette value can be used to determine the number of clusters k. After applying
k-means to the data, clusters with less than a certain number n of projects or projects
with negative silhouette values are considered outliers.

We used n = 3, as in Seo et al. [2008]’s work. The number of clusters £ was chosen
among k = {2,3,4,5}, according to the average silhouette values. As shown in table
IV, the highest average silhouette values were always for k£ = 2 and were very high for
all data sets (between 0.8367 and 0.9778), indicating that the clusters are generally
homogeneous. The number of outliers was also small (from none to 3), representing
less than 5% of the total number of projects, except for sdr. The projects considered as
outliers were eliminated from the data sets, apart from the outlier identified for sdr. As
this data set is very small (only 11 projects), there is not enough evidence to consider
the identified project as an outlier.

Table IV: PROMISE data sets — outliers detection. The numbers identifying the outlier
projects represent the order in which they appear in the original data set, starting from
one.

Data Set K | Average Silhouette Outliers Number of outliers / Total data set size
Cocomo81 2 0.9778 None 0.00%
Nasa93 2 0.9103 42,46, 62 3.23%
Nasa 2 0.9070 2,3 3.33%
Sdr 2 0.9585 9 8.33%
Desharnais 2 0.8367 9,39, 54 3.70%

6.2. ISBSG Data

The ISBSG repository contains a large body of data about completed software projects.
The release 10 contains 5,052 projects, covering many different companies, several
countries, organisation types, application types, etc. The data can be used for several
different purposes, such as evaluating the benefits of changing a software or hardware
development environment; improving practices and performance; and estimation.

In order to produce reasonable SEE using ISBSG data, a set of relevant comparison
projects needs to be selected. We preprocessed the data set to use projects that are
compatible and do not present strong issues affecting their effort or sizes, as these are
the most important variables for SEE. With that in mind, we maintained only projects
with:

— Data quality and function points quality A (assessed as being sound with nothing
being identified that might affect their integrity) or B (appears sound but there are
some factors which could affect their integrity / integrity cannot be assured).

— Recorded effort that considers only the development team.

— Normalised effort equal to total recorded effort, meaning that the reported effort is
the actual effort across the whole life cycle.

— Functional sizing method IFPUG version 4+ or NESMA.
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— No missing organisation type field. Projects with missing organisation type field were
eliminated because we use this field to create different subsets, as explained in the
next paragraph.

The preprocessing resulted in 621 projects.

Table V: ISBSG data — organisation types used in the study.

Organisation Type Id # Projects
Financial, Property Orgl 76

& Business Services

Banking Org2 32
Communications Org3 162
Government Org4 122
Manufacturing; Orgb 21
Transport & Storage

Ordering Org6 22
Billing Org7 21

After that, with the objective of creating different subsets, the projects were grouped
according to organisation type. Only the groups with at least 20 projects were main-
tained, following ISBSG’s data set size guidelines. The resulting organisation types
are shown in table V.

Table VI contains additional information about the subsets. As we can see, the pro-
ductivity rate of different companies varies. A 7-way 1 factor Analysis of Variance
(ANOVA) [Montgomery 2004] was used to determine whether the mean productivity
rate for all different subsets are equal or not. The factor considered was organisa-
tion type, with seven different levels representing each of the organisation types, and
each level containing its corresponding projects as the observations. ANOVA indicates
that there is statistically significant difference at the 95% confidence interval (p-value
< 2.2e—16).

Table VI: ISBSG subsets.

Id Unadjusted Function Points Effort Productivity
Min Max Avg Std Dev | Min Max Avg Std Dev | Min | Max Avg Std Dev
Orgl 43 2906 215.32 383.72 91 134211 | 4081.64 | 15951.03 1.2 75.2 12.71 12.58
Org2 53 499 225.44 135.12 737 14040 3218.50 3114.34 4.5 55.1 15.05 9.94
Org3 3 893 133.24 154.42 4 20164 | 2007.10 | 2665.93 0.3 435 | 17.37 9.98
Org4 32 3088 371.41 394.10 360 60826 5970.32 8141.26 14 97.9 18.75 16.69
Orgh 17 13580 | 1112.19 | 2994.62 | 762 | 54620 | 8842.62 | 1171539 | 2.2 52.5 | 23.38 14.17
Org6 50 1278 163.41 255.07 361 28441 4855.41 6093.45 5.6 60.4 30.52 17.70
Org7 51 615 160.10 142.88 867 19888 6960.19 5932.72 14.4 | 203.8 | 58.10 61.63

The next sections explain how the features were selected, how to deal with the miss-
ing values and outliers.

6.2.1. Features. The ISBSG suggests that the most important criteria for estimation
purposes are the functional size; the development type (new development, enhance-
ment or re-development); the primary programming language or the language type
(e.g., 3GL, 4GL); and the development platform (mainframe, midrange or PC). As de-
velopment platform has more than 40% missing feature values for two organisation
types, the following criteria were used as features:

— Functional size.
— Development type.
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Table VII: ISBSG subsets — outliers detection. The numbers identifying the outlier
projects represent the order in which they appear in the original data set, starting
from one.

Id K | Average Silhouette Outliers Number of outliers / Total subset size
Orgl | 2 0.9961 38 1.32%
Org2 | 2 0.9074 None 0.00%
Org3 | 2 0.8911 80, 91, 103, 160 2.47%
Orgd | 2 0.8956 4,10, 75, 89, 104 4.10%
Orgh 2 0.9734 20 4.76%
Org6 | 3 0.8821 4 4.55%
Org7 | 3 0.8898 None 0.00%
— Language type.

The normalised work effort in hours is the dependent variable. Due to the preprocess-
ing, this is the actual development effort across the whole life cycle.

6.2.2. Missing Values. The features “functional size” and “development type” have no
missing values. The feature “language type” is missing in several subsets, even though
it is never missing in more than 40% of the projects of any subset.

So, an imputation method based on k-Nearest Neighbours (k-NN) was used so that
this feature can be kept without having to discard the projects in which it is missing.
K-NN imputation has shown to be able to improve SEEs [Cartwright et al. 2003]. It is
particularly benefic for this area because it is simple and does not require large data
sets. Another method, based on the sample mean, also presents these features, but
k-NN has shown to outperform it in two SEE case studies [Cartwright et al. 2003].

According to Cartwright et al. [2003], “4-NN works by finding the & most similar
complete cases to the target case to be imputed where similarity is measured by Eu-
clidean distance”. When k > 1, several different methods can be used to determine the
value to be imputed, for example, simple average. For categorical values, vote counting
is adopted. Typically, £ = 1 or 2. As language type is a categorical feature, using k = 2
could cause draws. So, we chose k = 1. The Euclidean distance considered normalised
data sets.

6.2.3. Outliers. Similarly to the PROMISE data sets (section 6.1), outliers were de-
tected through k-means [Hartigan 1975] and eliminated. K was chosen among k =
{2,3,4,5} based on the average silhouette values. The best silhouette values, their cor-
responding ks and the projects considered as outliers are shown in table VII. As with
the PROMISE data sets, the silhouette values were high (between 0.8821 and 0.9961),
showing that the clusters are homogeneous. The number of outliers varied from none
to 5, representing always less than 5% of the total number of projects. None of the data
sets were reduced to less than 20 projects after outliers elimination.

7. THE RELATIONSHIP AMONG DIFFERENT PERFORMANCE MEASURES

This section presents an analysis of the Pareto solutions with the aim of providing a
better understanding of the relationship among MMRE, PRED(25) and LSD (RQ1).
All the plots presented here refer to the execution among the thirty runs in which
the Pareto ensemble obtained the median test MMRE, unless its test PRED(25) was
zero. In that case, the non-zero test PRED(25) execution closest to the median MMRE
solution was chosen. This execution will be called median MMRE run.

Figure 2 presents an example of Pareto solutions plot for Nasa93. We can see that
solutions with better PRED(25) do not necessarily have better MMRE and LSD. The
same is valid for the other performance measures. For example, a solution with rela-
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tively good MMRE may have very bad LSD, and a solution with good LLSD may have
very bad PRED(25). This demonstrates that model choice or creation based solely on
one performance measure may not be ideal. In the same way, choosing a model based
solely on MMRE when the difference in MMRE is statistically significant [Menzies
et al. 2006] may not be ideal.

0.05

0.1 « ¥
@ ‘ x K
& 015 * % *
aQ *
o o2 * ¥ *
o & *
0.25

o
w
*

0.35

4
MMRE 4 LSD

Fig. 2: An example plot of “Pareto solutions” (nondominated solutions in the last gen-
eration) for Nasa93. The red square represents the best position that can be plotted in
this graph.

In order to better understand the relationship among the performance measures,
we plotted graphs LSD vs MMRE, LSD vs PRED(25) and MMRE vs PRED(25) for the
median MMRE run, for each PROMISE data set and for ISBSG OrgAll. Figure 3 shows
representative plots for cocomo81 and orgAll. Other figures were omitted due to space
restrictions and present the same tendencies. It is worth noting that, even though
some Pareto solutions have worse performance than other solutions considering the
two measures in the plots, they are still nondominated when all three objectives are
considered. All the three objectives have to be considered at the same time to determine
whether a solution is (non)dominated.

Considering LSD vs MMRE (figures 3a and 3b), we can see that as MMRE is im-
proved (reduced), LSD tends to get worse (increased). This tendency is particularly
noticeable for cocomo81, which contains more solutions in the Pareto front.

Considering LSD vs PRED(25) (figures 3c and 3d), we can see that solutions with
similar PRED(25) frequently present different LSD. The opposite is also valid: solu-
tions with similar LSD frequently present different PRED(25). As PRED(25) is the
percentage of estimations within 25% of the actual effort, one would expect several
solutions with different LSD to have the same PRED(25), as a big improvement is
necessary to cause impact on PRED(25). The opposite is somewhat more surprising.
It indicates that average LSD by itself is not necessarily a good performance measure
and may be affected by a few estimations containing extreme values.

A similar behaviour is observed in the graphs MMRE vs PRED(25) (figure 3e and
3f), but it is even more extreme in this case: solutions with even more different MMRE
present the same PRED(25).
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Fig. 3: Plot of solutions in the last generation according to two of the three objectives.
Points in red (dark points) represent the Pareto solutions. Points in light grey repre-
sent the other solutions in the population.

Overall, the plots show that, even though a certain solution may appear better than
another in terms of a certain measure, it may be actually worse in terms of the other
measures. As none of the existing performance measures has a perfect behaviour, the
software manager may opt to analyse solutions using several different measures, in-
stead of basing decisions on a single measure. For instance, s’/he may opt for a solu-
tion which behaves better considering most performance measures. The analysis also
shows that MMRE, PRED(25) and LSD behave differently, indicating that they may
be useful for creating SEE ensembles. This is further investigated in section 8.

Moreover, considering this difference in behaviour, the choice of a solution by a soft-
ware manager may not be easy. If the software manager has a reason for emphasizing
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a certain performance measure, s’/he may choose the solution more likely to perform
best for this measure. However, if it is not known what measure to emphasize, s’he may
be interested in a solution which provides a good trade-off among different measures.
We show in section 8 that MOEA can be used to automatically generate an ensemble
that provides a good trade-off among different measures, so that the software manager
does not necessarily need to decide on a particular solution or performance measure.
Our approach is also robust, allowing the software manager to emphasize a certain
measure should s/he wish to, as shown in section 9.

8. ENSEMBLES BASED ON CONCURRENT OPTIMISATION OF PERFORMANCE MEASURES

This section concentrates on answering RQ2. As explained in section 7, different mea-
sures behave differently, indicating they may provide a natural way to generate diverse
models to compose SEE ensembles. In this section, we show that the best fit MOEA
Pareto solutions in terms of each objective can be combined to produce an SEE en-
semble (Pareto ensemble) which achieves good results in comparison to a traditional
algorithm that does not consider several different measures explicitly. So, the main ob-
jective of the comparison presented in this section is to analyse whether MOEA can be
used improve the performance over the non-use of MOEA considering the same type
of base models. Comparison against other types of models is shown in section 11.

The analysis is done by comparing the Pareto ensemble of MLPs created by the
MOEA as explained in section 4 against MLPs trained using Backpropagation [Bishop
2005], which is the learning algorithm most widely used for training MLPs. Each best
fit solution used to create the Pareto ensemble is the one with the best train perfor-
mance considering a particular measure. The Pareto ensemble represents a good trade-
off among different performance measures, if the software manager does not wish to
emphasize any particular measure.

Firstly, let’s analyse the test performance average considering all data sets. Table
VIII shows the average test performance and standard deviation for the Pareto en-
semble and the Backpropagation MLP. The cells in light grey represent better averages
(not necessarily statistically different). The table also shows the overall average and
p-value of the Wilcoxon test used for the statistical comparison of all runs over mul-
tiple data sets. P-values less than 0.0167 (shown in dark grey) indicate statistically
significant difference using Bonferroni corrections considering the three performance
measures at the overall level of significance of 0.05. As we can see, the two approaches
are statistically the same considering the overall MMRE, but different when consider-
ing LSD and PRED(25). In the latter case, the Pareto ensemble wins in 7 out of 13 data
sets considering LSD and PRED(25), as shown by the light grey cells. This number of
wins is similar to the number of losses, so additional analysis is necessary to better
understand the Pareto ensemble’s behaviour and check if it can be improved, as shown
in the next paragraphs.

Hence, secondly, if we take a closer look, we can see that Backpropagation MLP
frequently wins for the smallest data sets, whereas the Pareto ensemble tends behave
better for the largest data sets. Considering LLSD, the Pareto ensemble wins in 6 out of
8 large data sets. Considering MMRE, it wins in 5 out of 8 large data sets. Considering
PRED(25), it wins in 7 out of 8 large data sets. So, we performed additional statistical
tests to compare the behaviour of all the runs considering the data sets with less than
35 projects (sdr, org2, orgh, org6, org7) and with 60 or more projects (cocomo81, nasa93,
nasa, desharnais, orgl, org3, org4, orgAll) separately.

Table VIIIb shows the overall averages and p-values for these two groups of data
sets. We can see that there is statistically significant difference considering all per-
formance measures for the large data sets, including MMRE. That together with the
fact that the Pareto ensemble wins in most cases for these data sets indicates that it
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Table VIII: Test performance average and standard deviation. The p-values of the
Wilcoxon tests for the comparison over multiple data sets are also shown. P-values
less than 0.0167 indicate statistically significant difference using Bonferroni correc-
tions at the overall level of significance of 0.05 and are in dark grey.

Data Set Pareto Ensemble Backpropagation MLP
LSD MMRE PRED(25) LSD MMRE PRED(25)
Cocomo81 1.9193+-0.7709 | 4.2374+-5.3865 | 0.1600+-0.1354 | 2.8237+-1.5270 | 2.7914+-1.6687 | 0.1300+-0.1179
Sdr 2.0944+-0.8367 | 8.6331+-19.0015 | 0.0833+-0.1295 1.5782+-0.4282 | 1.9254+-0.9617 | 0.1444+-0.1217
Nasa 1.4005+-0.9419 1.1140+-0.8244 | 0.3200+-0.1606 | 1.6676+-1.0735 | 1.0805+-0.9497 | 0.4267+-0.1530
Desharnais | 1.1515+-1.3872 | 0.4701+-0.1903 | 0.4200+-0.1846 | 1.0291+-1.2157 | 0.4986+-0.1712 | 0.3333+-0.1373
Nasa93 1.2518+-0.4061 1.8031+-1.2951 | 0.1848+-0.1318 | 2.6262+-1.4871 | 1.7866+-0.8316 | 0.1970+-0.0927
Orgl 1.1560+-1.3867 | 0.8739+-0.4551 | 0.2967+-0.1564 | 1.8601+-2.2647 | 1.2233+-0.9439 | 0.2600+-0.1653
Org2 0.8120+-0.2751 1.6575+-3.5308 | 0.2633+-0.1402 | 1.2455+-1.0130 | 1.0554+-0.3322 | 0.2200+-0.1186
Org3 0.7076+-0.2120 | 0.9449+-1.4016 | 0.2909+-0.1338 | 1.8770+-2.3732 | 3.2484+-9.6361 | 0.2333+-0.1485
Org4 1.1074+-1.1572 | 0.8596+-0.2613 | 0.2121+-0.1271 | 2.0374+-2.6682 | 1.1014+-0.6457 | 0.1848+-0.1157
Orgh 6.4777+-5.4380 | 5.4348+-14.5110 | 0.2033+-0.0964 | 3.0275+-4.1660 | 1.2569+-0.7010 | 0.2133+-0.1106
Org6 1.4703+-1.5488 1.1507+-0.6037 | 0.1833+-0.1053 | 0.8470+-0.1909 | 1.0493+-0.4745 | 0.2067+-0.0944
Org7 2.1753+-1.5659 | 4.3080+-5.2502 | 0.1633+-0.1129 | 1.9786+-3.2286 | 1.3280+-0.8346 | 0.1833+-0.0913
OrgAll 1.1025+-0.9509 0.7313+-0.2866 0.2641+-0.1350 | 2.6782+-2.7064 | 2.0317+-2.5790 | 0.1744+-0.1068
Average 1.7559 2.4783 0.2343 1.9443 1.5675 0.2236
P-value 0.2168
(a) Pareto ensemble vs Backpropagation MLP.
Data Set Pareto Ensemble Backpropagation MLP
LSD MMRE | PRED(25) LSD MMRE | PRED(25)

Large 1.2246 | 1.3793 0.2686 2.0749 | 1.7202 0.2424

P-value

Small 4.2368 | 0.1793 | 1.7354 | 1.323 0.1936

P-value 0.0444 0.8449

(b) Pareto ensemble vs Backpropagation MLP considering large and small data
sets separately.
Data Set Pareto Ensemble Backpropagation MLP
LSD MMRE PRED(25) LSD MMRE PRED(25)

Sdr 2.1160+-0.7330 | 4.1618+-2.7773 | 0.0944+-0.1132 | 1.5782+-0.4282 | 1.9254+-0.9617 | 0.1444+-0.1217
Org2 0.9022+-0.7834 | 0.5966+-0.2501 | 0.2833+-0.1416 | 1.2455+-1.0130 | 1.0554+-0.3322 | 0.2200+-0.1186
Orgh 3.4037+-4.1020 | 1.5130+-1.6793 | 0.2833+-0.1234 | 3.0275+-4.1660 | 1.2569+-0.7010 | 0.2133+-0.1106
Org6 0.8075+-0.2065 | 0.7688+-0.3216 | 0.2800+-0.1126 | 0.8470+-0.1909 | 1.0493+-0.4745 | 0.2067+-0.0944
Org7 1.8411+-1.2749 | 1.9268+-1.7951 | 0.1700+-0.1088 | 1.9786+-3.2286 | 1.3280+-0.8346 | 0.1833+-0.0913
Average 1.8141 1.7934 0.2222 1.7354 1.3230 0.1936
P-value 0.1170 0.7166 |  0.0004 |

(c) Pareto ensemble using adjusted parameters (reduced population size and no backpropagation) vs Backpropaga-
tion MLP for small data sets.

is likely to perform better than Backpropagation MLPs for large data sets. That is a
very good achievement, especially considering that the Backpropagation MLPs were
very well tuned for providing good MMRE. For the small data sets, the two approaches
obtained statistically significantly different LSD and the Pareto ensemble was worse
in 4 out of 5 small data sets. The two approaches were statistically equal in terms of
MMRE and PRED(25) for the small data sets.

A possible reason for the worse behaviour for the smallest data sets is overfitting. To
make this hypothesis more well grounded, we checked the MMRESs obtained by each
MLP of the Pareto ensemble for the median MMRE run of Org5. Org5 was chosen for
being the data set in which the Pareto ensemble obtained the worst test MMRE, but
not the one with the smallest number of projects, as only 12 projects may be too little
for a significant analysis. The test MMREs were 1.9396, 1.9217 and 1.9613, whereas

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.




Software Effort Estimation as a Multi-objective Learning Problem A:23

the corresponding train MMRESs were 0.0998, 0.0976 and 0.1017, respectively. We can
see that the test MMREs were drastically larger than the train MMRESs. On the other
hand, the three runs on and around the median test MMRE for the Backpropagation
MLPs obtained 1.0403, 1.0433 and 1.1599 test MMRE, whereas the train MMREs
were 0.3183, 1.0857 and 0.1176. So, the train MMREs were higher (worse) for the
Backpropagation MLPs than for the best fit Pareto MLPs. That indicates that the
MOEA may indeed be overfitting when the data sets are too small. Besides the fact that
learning is inherently hard due to the small number of training examples, a possible
cause for that is the parameters choice, as the parameters were not so well tuned for
the MOEA.

So, thirdly, additional MOEA runs were performed in such a way to use the essence
of the early stopping strategy to avoid overfitting [Finnoff et al. 1993]. This was done by
reducing the population size from 100 to 30 and the number of epochs for the offspring
Backpropagation from 5 to zero (no Backpropagation). The results are shown in table
VlIlc. As we can see, the Pareto ensemble obtained similar LSD and MMRE to Back-
propagation MLPs. PRED(25) was statistically significantly different and the Pareto
ensemble won in 3 out of 5 data sets. The improvement in the overall average was of
about 0.79 for LSD, 2.44 for MMRE and 0.04 for PRED(25). The test MMREs for the
median MMRE run of the Pareto ensemble for Org5 were 0.8649, 0.8528 and 1.4543,
whereas the corresponding train MMREs were 0.3311, 0.3116 and 0.5427. These train
MMREs are closer to the corresponding test MMREs than when using the previous
parameters configuration, indicating less overfitting.

Lastly, in order to check the performance of the Pareto ensemble for outlier projects,
we have also tested it using test sets composed only of the outliers identified in sec-
tion 6. The MMRE and PRED(25) obtained for the outlier sets were compared to the
original test sets’. It is not possible to compare LSD because the number of outliers
is too small and LSD’s equation is divided by the number of projects minus one. So,
even if the error obtained for the outlier sets is potentially smaller, the small number
of examples increases LSD.

The results show that PRED(25) was always worse for the outlier sets than for the
original test sets. That means that these outliers are projects to which the Pareto
ensemble has difficulties in predicting within 25% of the actual effort. However, the
MMRE is actually better for 3 out of 9 data sets that involve outliers. So, in about a
third of the cases, the outliers are not projects to which the Pareto ensemble obtains
the worst performances. For the other cases, the MMRE was usually less than 0.27
higher.

The analysis performed in this section shows that the use of MOEA for considering
several performance measures at the same time is successful in generating SEE en-
sembles. The Pareto ensemble manages to obtain similar or better performance than
Backpropagation MLP across data sets in terms of all the measures used as objec-
tives by the MOEA. So, it is worth considering the creation of SEE models as a multi-
objective problem and the Pareto ensemble can be used when none of the performance
measures is to be emphasized over the others.

9. EMPHASIZING PARTICULAR PERFORMANCE MEASURES

This section concentrates on answering RQ3. As shown in section 8, MOEA can be used
to automatically generate an ensemble that provides an ideal trade-off among differ-
ent measures, so that the software manager does not need to decide on a particular
solution or performance measure. The main objective of the comparison presented in
the present section is to analyse whether we can further increase the test performance
for each measure separately if we wish to emphasize this particular measure. This
section provides a better understanding of the solutions that can be produced by the
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MOEA and shows that our approach is robust to the case where the manager wishes to
emphasize a certain measure. In order to do so, we check the performance of the best
fit solution considering each objective separately. The best fit solution is the one with
the best train performance considering a particular measure.

Tables IXa and IXb show the results of the comparisons between the best fit Pareto
MLP in terms of each objective versus the Pareto ensemble for large and small data
sets. The MOEA parameters for the small data sets are the ones with population size
30 and no Backpropagation. Dark grey color means statistically significant difference
using Wilcoxon tests with Bonferroni corrections at the overall level of significance of
0.05 (statistically significant difference when p-value < 0.05/(3 * 3)). The number of
times in which each approach wins against the Pareto ensemble is also shown and is
in light grey when the approach wins more times.

Table IX: Test performance average of best fit Pareto MLPs against the Pareto ensem-
ble. The adjusted MOEA parameters were used for the small data sets. The p-values
of the Wilcoxon tests for the comparison over multiple data sets are also shown. P-
values less than 0.0056 (in dark grey) indicate statistically significant difference using
Bonferroni corrections at the overall level of significance of 0.05.

Data Set LSD MMRE | PRED(25)
Pareto ensemble 1.2246 | 1.3793 0.2686
Best LSD MLP avg 1.1356 | 2.1518 0.2587
Wins vs Pareto ens 6 0 3
P-value .
Best MMRE MLP avg 2.0070 | 0.8256

Wins vs Pareto ens

P-value

Best PRED MLP avg 1.4775 | 1.5084

Wins vs Pareto ens

P-value

(a) For large data sets.

Data Set LSD MMRE | PRED
Pareto ensemble avg 1.8141 | 1.7934 | 0.2222
Best LSD MLP avg 1.8432 | 25741 | 0.1913
Wins vs Pareto ens 3 0 2
P-value 0.1326 .
Best MMRE MLP avg 2.1598 | 1.3511

Wins vs Pareto ens 0 5

P-value

Best PRED MLP avg 2.0739 | 1.9623

Wins vs Pareto ens
P-value

(b) For small data sets.

The results of these comparisons indicate that using each best fit Pareto MLP con-
sidering a certain objective can sometimes improve the test performance considering
this objective. Even though the test performance to be emphasized becomes equal or
better than the Pareto ensemble, as shown by the statistical test and the number of
wins, the performance considering the other measures gets equal or worse. It is worth
noting, though, that the best fit Pareto MLPs are still nondominated solutions, pro-
viding acceptable performance in terms of all the measures in comparison to other
solutions generated by the MOEA.

In addition to the statistical comparison, we are also interested in the effect size A
(equation 5, section 5) of each best MLP in comparison to the Pareto ensemble, in terms
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of the performance measure for which the MLP performs best. Table X presents the
minimum, maximum, average and standard deviation of the effect size A, as well as
the number of data sets for which the effect size was small, medium or large. Even
though using each best MLP separately can provide some improvement in perfor-
mance, the improvements are usually small. Nevertheless, as it would be very easy
to configure an approach to use the best MLPs instead of the Pareto ensemble, one
may wish to use the best MLPs to emphasize a certain performance measure even
considering that the improvement in performance is small.

Table X: Effect size for each best MLP against the Pareto ensemble, in terms of the
performance measure for which the MLP performs best.

0
4
0

Min A | Max A | Avg. A | Std. A # Small | # Medium | # Large | # Medium+Large
Best LSD MLP 0.0257 | 0.3221 0.1395 | 0.0993 8 0 0
Best MMRE MLP | 0.0046 | 0.7983 0.3462 | 0.3035 4 3 1
Best PRED MLP 0.0542 | 0.2953 | 0.1699 | 0.0987 8 0 0

(a) Large data sets

Min A | Max A | Avg. A | Std. A # Small | # Medium | # Large | # Medium+Large

Best LSD MLP 0.0294 | 0.4468 | 0.2009 | 0.1687 4 1 0
Best MMRE MLP | 0.0567 | 0.5913 | 0.2665 | 0.2080 4 1 0
Best PRED MLP 0.0235 | 0.9502 | 0.4050 | 0.3977 2 1 2

1
1
3

(b) Small data sets

10. FURTHER ANALYSIS OF THE MODEL CHOICE

The main objective of the comparison presented in this section is to analyse whether
our approach still has room for improvement in terms of model choice. If so, as future
work, other methods for choosing models for the Pareto ensemble should be investi-
gated with the aim of improving this approach further. In order to make this analysis,
we used the best Pareto MLPs according to each test performance. These MLPs rep-
resent the best possible choice of solutions generated by the MOEA considering each
objective separately. A Pareto ensemble composed of these MLPs was also formed. Ta-
bles XIa and XIb show the results of the comparisons. Again, the parameters used
by the MOEA for the small data sets here are the ones with population size 30 and
no Backpropagation. Wilcoxon tests with Bonferroni corrections at the overall signifi-
cance level of 0.05 (statistically significant difference when p-value < 0.05/(3%4)) were
used to aid the comparison.

We can see that there are test performance improvements in almost all cases, both
when using the best Pareto MLPs by themselves and when combining them into a
Pareto ensemble. In particular, for most results with statistically significant difference
in the average LSD, MMRE or PRED(25), the best test performance approach wins
more times than the Backpropagation MLPs. This analysis shows that, even though
our approach can significantly reduce overfitting by reducing the population size and
eliminating offspring Backpropagation for smaller data sets, simply choosing the best
fit Pareto MLPs according to the train performance still does not necessarily lead to the
best achievable performance. As future work, other strategies to chose models among
the Pareto solutions should be investigated to improve the performance even further.

11. COMPARISON AGAINST OTHER TYPES OF MODELS

The main objectives of RQ2 and RQ3 were to show that MOEAs can be used to evolve
models considering different performance measures at the same time, being able to
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Table XI: Test performance average of best test performing Pareto MLPs against Back-
propagation MLP. The adjusted MOEA parameters were used for the small data sets.
The p-values of the Wilcoxon tests for the comparison over multiple data sets are also
shown. P-values less than 0.0042 (in dark grey) indicate statistically significant differ-
ence using Bonferroni corrections at the overall level of significance of 0.05.

Data Set LSD MMRE | PRED(25)
Backprop MLP 2.0749 | 1.7202 0.2424
MLP Best LSD 0.8651 1.363 0.2994
Wins vs Backprop MLP 8 6 7
P-value
MLP Best MMRE 1.4759 | 0.6423
Wins vs Backprop MLP 7 8
P-value
MLP Best PRED 1.241 1.0735 0.437
Wins vs Backprop MLP 8 6
P-value
Pareto ensemble 0.9951 | 0.9649 0.3272
Wins vs Backprop MLP 7 5
P-value

(a) For large data sets.
Data Set LSD MMRE | PRED(25)
Backprop MLP 1.7354 1.323 0.1936
MLP Best LSD 1.3761 1.4272 0.2267
Wins vs Backprop MLP 5 2 4
P-value 0.0812
MLP Best MMRE 1.8198
Wins vs Backprop MLP 1
P-value 0.3141
MLP Best PRED 1.785
Wins vs Backprop MLP 2
P-value 0.5729
Pareto ensemble 1.5671
Wins vs Backprop MLP 3
P-value 0.1653

(b) For small data sets.

produce solutions that achieve good results in comparison to a traditional algorithm
that does not use several different measures explicitly to generate the same type of
models, besides being flexible to allow emphasizing different performance measures.
The analyses explained in sections 8 and 9 answer RQ2 and RQ3. Nevertheless, even
though it is not the key point of this paper, it is still interesting to know how well
MOEAs to evolve MLPs behave in comparison to other types of model. Differently
from the previous analysis, such a comparison mixes the evaluation of the MOEA to
the evaluation of the underlying model being evolved (MLP).

In this section, we present a comparison of the Pareto ensemble to several different
types of model besides MLPs: RBFs, RTs, EBA with log transformed data, Bagging
with MLPs, Bagging with RBFs, Bagging with RTs, Random with MLPs and NCL
with MLPs, as explained in section 5. For this comparison, the parameters used by the
MOEA on the small data sets were adjusted to population size of 30 and no offspring
Backpropagation. The performance measures used to evaluate the models are LSD,
MMRE, PRED(25), MAMRE, MAE and MdAE.

The first step of our analysis consists in performing Friedman tests [Demsar 2006]
for the statistical comparison of multiple models over multiple data sets for each per-
formance measure. The null hypothesis is that all the models perform similarly ac-
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cording to the measure considered. The tests rejected the null hypothesis for the six
performance measures with Holm-Bonferroni corrections at the overall level of sig-
nificance of 0.05. The Friedman tests also provide rankings of the approaches across
data sets, which show that Pareto ensemble, bagging +MLPs, log + EBA and RTs have
the top half average ranks considering all measures but LSD. Models based on MLPs,
including the Pareto ensemble, tend to be lower ranked considering LSD. A closer anal-
ysis of the MLPs revealed that they can sometimes make negative estimations, which
have a strong impact on LSD. RTs, on the other hand, can never give negative estima-
tions or estimations close to zero when the training data does not contain such effort
values. So, learners based on RTs obtained in general better LSD. Bagging + RTs is
the highest ranked approach in terms of both LSD and MAE.

It is important to note that MOEAs could also be used to evolve other types of struc-
ture than MLPs. However, the key point of this paper is the investigation of the multi-
objective formulation of the problem of creating SEE models and obtaining a better
understanding of the performance measures. The use MOEA to evolve other types of
model such as RTs, which could improve LSD, is proposed as future work.

It is also interesting to verify the standard deviation of the Friedman ranking across
different performance measures. The Pareto ensemble and log + EBA presented the
median standard deviation, meaning that their average ranking across data sets does
not vary too much when considering different performance measures, even though they
are not the approaches that vary the least. Bagging + MLPs presented the lowest and
bagging + RTs presented the highest standard deviation.

Nevertheless, simply looking at the ranking provided by the Friedman test is not
very descriptive for SEE, as the models tend to behave very differently depending on
the data set. Ideally, we would like to use the approach that is most suitable for the
dataset in hands. So, as the second step of our analysis, we determine what approaches
are ranked first according to the test performance on each data set separately. This
is particularly interesting because it allows us to identify on what type of data sets
a certain approach behaves better. Table XIIa shows the approaches ranked as first
considering each data set and performance measure. Table XIIb helps us to see that
the Pareto ensemble appears more often as the first than the other approaches in terms
of all measures but LSD. Table XIIc shows that the Pareto ensemble is never ranked
last more than twice considering all 13 data sets and it is only ranked worse twice
in terms of MMRE. For the reason explained in the previous paragraphs, approaches
based on MLPs are rarely ranked first in terms of LSD, whereas bagging + RTs and
RTs are the approaches that appear most often as first in terms of this measure.

Table XIIa also reveals that the Pareto ensemble was first more often for the ISBSG
data sets than for the PROMISE data sets. ISBSG data sets are considered as very
heterogeneous. So, MOEAs might be particularly useful for more heterogeneous data.
A possible reason for that is that the Pareto ensemble uses a global optimisation algo-
rithm, which is usually better at identifying the most promising regions of the search
space than local algorithms such as Backpropagation. More heterogeneous data sets
may present search surfaces with several peaks, more difficult to tackle by local search
algorithms.

As a third step of our analysis, the absolute value of the effect size A (equation 5,
section 5) using MAE as the performance measure were calculated (table XIII). We
report A based on MAE because this performance measure is symmetric/unbiased. As
we can see, many of the effect sizes are medium or large. So, the choice of a certain
approach instead of the Pareto ensemble can have a big impact on the performance of
the SEEs.

Finally, it is also worth noting that, in terms of computational time, some approaches
such as log + EBA are faster than the MOEA. However, we do not consider the differ-
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Table XII: Approaches ranked as first.

L. Minku and X. Yao

Approach LSD MMRE PRED(25) MdMRE MAE MdJAE
Cocomo81 RT Bag+MLP Bag+MLP Bag+ MLP Bag + MLP | Bag + MLP
Sdr RT RT Bag+RT RT RT RBF
Nasa Bag+RT RT Bag+MLP Bag + MLP Bag +RT Bag + RT
Desharnais Bag+RT Bag+MLP | Pareto Ens Pareto Ens Pareto Ens | Pareto Ens
Nasa93 RT RT RT RT RT RT
Orgl Bag+RBF | Pareto Ens | Pareto Ens Pareto Ens Pareto Ens | Pareto Ens
Org2 Bag+RT Pareto Ens | Pareto Ens Pareto Ens Pareto Ens | Pareto Ens
Org3 Pareto Ens | Pareto Ens | Log + EBA Log + EBA Log + EBA | Log + EBA
Org4 Bag+RBF | Pareto Ens RT RT Pareto Ens | Pareto Ens
Orgb Bag+RT Log + EBA | Bag+RBF | Rand + MLP Bag + RT RT
Org6 Bag+RBF | Pareto Ens | Pareto Ens Pareto Ens Bag + RBF | Pareto Ens
Org7 Bag+RT Log + EBA | Log + EBA Log + EBA Bag + RBF | Pareto Ens
OrgAll RT Pareto Ens | Pareto Ens Pareto Ens Pareto Ens | Pareto Ens
(a) Approaches per data set.

Approach

Pareto Ens

RT 3 2 3 2 2

Bag+RT 0 1 0 2 1

Bag+MLP 0 2 2 2 1 1

Log + EBA 0 2 2 2 1 1

Bag+RBF 3 0 1 0 2 0

Rand+MLP 0 0 0 1 0 0

RBF 0 0 0 0 0 1

Total 13 13 13 13 13 13

(b) Total number of times ranked as first per approach. Approaches never ranked as first are omitted.
Values higher than 3 are highlighted in grey.

Approach

=
&)

MMRE

PRED(25)

MdMRE

M

:

Bag + MLP
MLP

RT

Bag + RT
Pareto Ens
Rand + MLP
Bag + RBF

oONHOO KON

[y

NWHEDNFHEOOO

WHOMHOKO

WNNHOFEOOJ

o»—u—ao»—no»—n%

RBF
NCL
Total 13 13 13 13 13 13
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(¢) Total number of times ranked as last per approach. Approaches never ranked as last are
omitted. Values higher than 3 are highlighted in grey.

Table XIII: Effect size for each approach against the Pareto ensemble.

Approach Min A | Max A | Avg. A Std. A # Small | # Medium | # Large | # Medium+Large
Bag+MLP | 0.0296 | 0.9194 | 0.3775 | 0.2839494668 7 4 2 6
Bag+RBF 0.0046 | 1.3072 | 0.5007 | 0.4233246489 6 3 4 7
Bag+RT 0.0518 | 1.3383 | 0.4842 [ 0.4195283097 7 3 3 6
Log + EBA | 0.0199 | 1.4054 | 0.5333 | 0.4839488764 7 2 4 6
MLP 0.0202 | 1.5049 | 0.4155 | 0.4034613873 7 3 3 6
NCL 0.0170 | 2.4236 | 0.7194 | 0.6534745379 5 3 5 8
Rand 0.0720 | 1.5655 | 0.4615 | 0.4444167846 7 3 3 6
RBF 0.0393 | 1.5730 | 0.6207 | 0.5299600056 6 2 5 7
RT 0.0392 | 1.8151 | 0.5614 | 0.5203035024 4 6 3 9

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.




Software Effort Estimation as a Multi-objective Learning Problem A:29

ences as of practical significance, because our approach did not present high running
time. The reasons for the low running time are (1) SEE data sets are usually small in
comparison to other ML applications and (2) our results were obtained without run-
ning the MOEA for too many generations. As an example, one run for the largest, the
second largest and the third largest data sets, which use 20, 100 and 200 generations,
respectively, takes less than 1 minute to finish.

In summary, this section shows that MOEA-evolved MLPs are able to achieve com-
petitive results in comparison to other approaches in the literature. The Pareto en-
semble usually obtained comparatively good results in terms of all measures but LSD.
Whether this is acceptable is problem (project) dependent and also depends on the
magnitude of loss in terms of LSD compared to the gain in other measures. Moreover,
the Pareto ensemble seems to perform better for more heterogeneous data sets such as

ISBSG.

12. CONCLUSIONS

This paper proposes and demonstrates how to view the problem of creating SEE mod-
els through a different perspective, by tackling it as a multi-objective problem that con-
siders different performance measures explicitly and simultaneously. Using a MOEA
to solve this problem allows us to better understand different performance measures
and to produce SEE models with good overall performance in comparison to a model
that does not consider these measures explicitly.

As an answer to RQ1, we show that LSD and MMRE are performance measures with
somewhat opposite behaviour. Moreover, models with similar LSD/MMRE are likely
to present different PRED(25) and vice-versa. So, one may wish to choose a model
that does not behave particularly bad for any intended performance measures. This is
one of the motivations for our approach to use MOEAs, as MOEAs consider all these
performance measures at the same time. This difference in behaviour also provides
the second motivation for our approach: it can produce diverse ensembles, which are
more likely to have increased performance.

The results above indicate that considering different performance measures explic-
itly when creating a model may be used to produce good ensembles. As an answer to
RQ2, we show that indeed a MOEA can be used to create models by explicitly consid-
ering different performance measures at the same time. Pareto ensemble of MLPs pro-
duced by a MOEA generally obtained similar or better performance than Backpropa-
gation MLPs considering both LSD, MMRE and PRED(25). The average performances
were generally better for the data sets with 60 or more projects.

As an answer to RQ3, we show that MOEAs are also flexible, allowing the software
manager to choose models that emphasize certain performance measures over the oth-
ers, if s/he desires to do so. A MOEA can be used to produce and choose models that
emphasize a particular measure without completely ignoring the performance using
other measures, whereas the Pareto ensemble can be used as a good trade-off among
measures, if the software manager does not wish to emphasize any particular measure.

As shown in our comparison of the Pareto ensemble against Backpropagation MLPs,
which produce the same type of model as the MOEA, the Pareto ensemble has shown to
be useful for both single and multi-company data sets. Our comparison against models
of a different type than the base models evolved by the MOEA further shows that
MOEASs may be particularly useful for more heterogeneous data sets. They can make
types of models that would usually not be ranked first in terms of performance become
ranked first through the Pareto ensemble.

Our proposed methodology still has room for improvements in terms of the choice of
models to compose the Pareto ensemble. The investigation of new strategies is left as
future work, as well as the experimentation of our approach using different MOEAs
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and creating different types of SEE models, and investigation on how much our ap-
proach would be affected by outliers in the training set used to build the models.
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