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ABSTRACT

Software effort estimation is an important task within soft-
ware engineering. It is widely used for planning and mon-
itoring software project development as a means to deliver
the product on time and within budget. Several approaches
for generating predictive models from collected metrics have
been proposed throughout the years. Machine learning al-
gorithms, in particular, have been widely-employed to this
task, bearing in mind their capability of providing accurate
predictive models for the analysis of project stakeholders. In
this paper, we propose a grammatical evolution approach for
software metrics estimation. Our novel algorithm, namely
SEEGE, is empirically evaluated on public project data sets,
and we compare its performance with state-of-the-art ma-
chine learning algorithms such as support vector machines
for regression and artificial neural networks, and also to pop-
ular linear regression. Results show that SEEGE outper-
forms the other algorithms considering three different eval-
uation measures, clearly indicating its effectiveness for the
effort estimation task.

Categories and Subject Descriptors

I.2.m.c [Artificial Intelligence]: Miscellaneous— Evolution-
ary computing and genetic algorithms; D.2.8 [Software En-
gineering]: Metrics/Measurement
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1. INTRODUCTION

Properly estimating the effort required to develop (or main-
tain) software is of great importance. Effort estimation sup-
ports project management in scheduling resources and evalu-
ating risk factors. Either over or underestimation of software
effort can result in troublesome scenarios. For instance, un-
derestimation leads to schedule and budget overruns, which
are recurrent causes of project cancellation. Overestimation,
on the other hand, leads to loss of competitiveness and waste
of resources, and it may ultimately prevent the company of
securing a contract due to the excessive calculated costs.

The need for accurate effort estimates has motivated the
investigation of many different strategies for generating pre-
dictive models in an efficient and effective fashion. An in-
creasing number of machine learning approaches have been
proposed and/or applied to predict software development
(or maintenance) effort. Examples include case-based rea-
soning [10,17,20], artificial neural networks [5,6,19], decision
trees [2,12,15], Bayesian networks [26,29], support vector
machines for regression [11,27], genetic programming [23,
31], and evolutionary algorithms in general [3,4].

The idea of exploiting evolutionary algorithms (EAs) for
software effort estimation is based on the assumption that
effort estimation can be formulated as an optimization prob-
lem [31], in which the EA strives for the predictive model
that globally optimizes a given evaluation criterion — usu-
ally a measure of predictive performance. Given that the
most popular technique for estimating software effort! is lin-
ear regression [22], it is fair to say that genetic programming
(GP) is an obvious choice of EA for estimating effort, bear-

'The work of Jorgensen and Shepperd [22] actually refers
to software cost estimation, though it is well-known that
cost and effort are directly related, and that effort is usually
preferred in academic studies due to confidentiality reasons.



ing in mind its straightforward application to evolve mathe-
matical functions. Both traditional GP [8,14] and grammar-
based (or grammar-guided) GP [33] have been successfully
applied to software effort estimation, with promising results
being reported.

In this work, we further exploit the use of EAs for soft-
ware effort estimation. We propose a new grammatical evo-
lution approach for software effort estimation called SEEGE
(Software Effort Estimation with Grammatical Evolution).
To the best of our knowledge, this is the first work to pro-
pose a grammatical evolution algorithm for software effort
estimation. We believe grammatical evolution combines the
advantages of grammar-based GP — flexibility and ability
of incorporating prior knowledge — with the advantages of
genetic algorithms — simplicity of breeding operations over
vectors. In addition, grammatical evolution allows for neu-
tral mutations, the so-called degenerative genetic code [28].

This paper is organized as follows. Section 2 presents
work related to our approach. Section 3 details SEEGE, our
novel grammatical evolution algorithm for software effort
estimation. Section 4 describes the methodology we followed
to set up the experiments, whereas Section 5 depicts the
performance analysis of SEEGE in public effort data sets.
Finally, we end this paper with our conclusions and future
work directions in Section 6.

2. RELATED WORK

Several studies in the literature have exploited traditional
GP for software effort estimation [1,8,9,16,23,31]. Burgess
and Lefley [8] critically evaluate the potential of GP for effort
estimation. They compare GP with previously published ap-
proaches, in terms of accuracy and ease of use. They show
evidence that GP can offer significant improvements in ac-
curacy, though they comment on the numerous parameters
that need to be set.

Lefley and Shepperd [23] evaluate various statistical and
machine learning techniques, including a GP tool, in the con-
text of effort estimation. The main hypothesis tested was
whether GP could significantly produce a better estimate
of effort taking into account a public data set. They con-
clude that sophisticated estimation techniques such as arti-
ficial neural networks and GP provide better fitting models,
though they require extra effort in design, whereas a simple
linear regression approach can still provide useful estimates.

Tsakonas and Dounias [1] also employ GP in order to
produce mathematical expressions that are highly accurate
and can be used for estimating the development effort by
revealing relationships between the project’s features and
the required work. According to the authors, their system
was proved capable to produce results that not only carry
higher regression accuracy as compared to those found in
literature, but also are interpretable mathematical formulas,
easy to be used by project managers.

Ferrucci et al. [16] carry out an empirical analysis to pro-
vide an insight on the use of GP for effort estimation, and
in particular to analyze how the estimation accuracy of GP
is affected by the use of different fitness functions. They
experiment with different fitness functions based on widely
recognized indicators used to evaluate the accuracy of the
estimates and combinations of them.

Chavoya et al. [9] make use of GP with the goal of esti-
mating the effort required in the development of short-scale
projects. They compare it with the results obtained from a
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neural network and linear regression. Accuracy results from
the model obtained with GP suggest that it could be used to
estimate software development effort of short-scale projects
when these projects are developed in a disciplined manner
within a development-controlled environment.

Sarro et al. [31] also aim at getting an insight on the
effects of using different measures as fitness function in a
GP for effort estimation. In their study, they analyzed the
performance of five different evaluation criteria — MMRE,
Pred(.25), MAMRE, MEMRE and MdEMRE.

Only the work of Shan et al. [33] attempts on employing
a grammar-based genetic programming approach (GGGP)
for effort estimation. They conclude that GGGP performs
better than linear regression in all aspects.

To the best of our knowledge, this is the first work to pro-
pose a grammatical evolution (GE) approach for software
effort estimation. GE is a reasonably recent evolutionary al-
gorithm that presents some interesting advantages over GP
and other EAs: it combines the flexibility of grammar-based
approaches with the simplicity of evolving linear strings.
Hence, it inherits the advantages of GGGP and genetic al-
gorithms, while taking advantage of neutral mutations [28].
We present our approach in detail in the next section.

3. SOFTWARE EFFORT ESTIMATION WITH

GRAMMATICAL EVOLUTION

Software Effort Estimation with Grammatical Evolution
(SEEGE) is a grammar-based Evolutionary Algorithm (EA)
aimed at estimating software effort. As it is grammar-based,
it differs from traditional EAs in the use of a grammar G in
the evolutionary process. The grammar G defines a language
L whose terms are the functions and terminals. A grammar
can be represented by a four-tuple G = {N, T, P, S}, where
N is the set of non-terminals, T is the terminal set, P is
the set of production rules and S is the start symbol. The
elements in P are responsible for deriving the language L
by combining elements from sets N and T'. The well-known
Chomsky hierarchy classifies the types of grammars in four
levels, from 0 to 3. Level 2, context-free grammars (CFG),
are the most commonly used in grammar-based EAs [7,25,
34].

Figure 1 presents a CFG grammar, written in the
well-known Backus-Naur form (BNF), and an example of a
derivation tree. For deriving the tree in 1(b), the following
production rules were executed: <start> =! <exp> =2
<exp><op><exp> =5 <var><op><exp> :>12 x<op><exp>
=5 x+<exp> =3 x+(<expr>) =* x+(<coef>*<var>)
=10 x+(ax<var>) =% x+(axy).

In grammar-based GP, the individual that undergoes evo-
lution is the derivation tree presented in Figure 1(b). There-
fore, genotype and phenotype are both represented by the
derivation tree. Grammatical Evolution (GE) differs from
grammar-based GP in the sense that genotype and pheno-
type have different encoding structures. The genotype is
represented as a linear string of bits and/or integers of vari-
able size. The phenotype, which is the structure that de-
fines fitness, is represented by the derivation tree. Hence, a
mapping from genotype to phenotype is required in a GE
algorithm. The mapping process to decode the string chro-
mosomes into derivation trees is called genotype-phenotype
mapping (GPM). Some allegedly benefits of this approach
are the unconstrained search of the genotype while ensur-



a) CFG grammar: b) Example of derivation tree:

(1) <start>::= <exp> <exp>

(2) <exp>::= <exp><op><exp> |

(3) (<exp>) | <exp> <op> <exp>

(4) <coef>*<var> |

5) <var> | | |

<var> + (<exp>)

(6) <op>::= + | |

(7 -

(®) * | x <coef>*<var>
© / | |
(10)<coef>::= a | a Y
(1) b

(12) <var>::= x |

(13) Y
Figure 1: (a) CFG grammar for deriving expres-
sions. (b) An example of tree derived from the
grammar in (a). The derived expression was = +
(axy).

ing phenotype validity, and enhancing genetic diversity by
allowing mutations which are neutral with respect to the
phenotype (various genotypes can represent the same phe-
notype). Figure 2 depicts the grammatical evolution scheme.

Individual
200/43]09[36[101] 94|
)

o
Grammar—— |

<var> +

<exp>

x <coef> * <var>

Fitness

Figure 2: Grammatical evolution scheme.

3.1 Grammar and
Mapping

SEEGE employs the GPM process proposed by Ryan et
al. [30], in which codons are used to decide which choice to
take when a non-terminal has more than one outcome. In
molecular biology, a codon is a triplet of nucleic acids which
encodes one amino acid. Its analogue in our case is a bit
sequence of b bits, each encoding a symbol of the program.
The genotype, thus, is a binary string consisting of n codons.
Just like in a nucleotide sequence, where different codons can
encode one amino acid, it is desirable that several codons
get mapped into the same symbol (many-to-one mapping)
in order to allow different genotypes to represent the same
phenotype. Each codon is coded as a 8-bit sequence, and a
chromosome consists of a variable number of codons. A 8-bit
codon represents an integer value, which is used in a GPM
function to choose the appropriate production rule from the
grammar.

The GPM function is given by: (codon integer value) MOD
(number of rules for the current non-terminal), where MOD

Genotype-Phenotype
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is the modulus operation (it returns the remainder of the
division of one number by another).

As an example of the GE approach, suppose we
want to map the individual depicted in Figure 2
[200, 43, 09, 36,101, 94] (already decoded from binary to in-
teger) into a derivation tree, and consider that we are using
the grammar shown in Figure 1. The GPM function in GE
starts reading the string from left to right. The first inte-
ger is 200, and the grammar starts with the non-terminal
<exp>. This non-terminal has 4 production rules associated
to it (each element separate by “|”). The computation of the
MOD operation — MOD(200, 4) — results in index 0. Consider-
ing that each non-terminal has n production rules associated
to it, and that they are indexed from 0 to n — 1, the selected
production rule derives the non-terminal <exp><op><exp>.
Next, we derive the leftmost non-terminal <exp> by map-
ping the next integer from the sequence (43) through the
MOD function, resulting in index 3. The selected production
rule derives the non-terminal <var>. Following this proce-
dure, integer 9 results in index 1, which points to terminal z.
Integer 36 is used to select the production rule in the <op>
non-terminal. It results in index 0, selecting terminal 4.
Next, integer 101 applied to the non-terminal <exp> results
in index 1, selecting non-terminal (<exp>). Then, integer 94
results in index 2, selecting non-terminal <coef>x<var>. At
this moment, an important function from GE called wrap-
ping is invoked, because the string has run out of codons
before the derivation tree is complete. Wrapping works by
returning the pointer to the beginning of the codons string,
so codons can be re-utilized. In this example, 200 is once
again evaluated, this time regarding non-terminal <coef>.
It results in index 0, which means that terminal a is se-
lected. The final non-terminal to be derived is <var>. The
next integer to be read is 43, which results in index 1 and
the posterior selection of terminal y. The derivation tree
is completed, even though the second “scanning” over the
codons has ended in the middle of the string.

To estimate software effort, we implemented two different
grammars in SEEGE (see Figure 3). Grammar (a) is a sim-
plified version of grammar (b). In both grammars, <coef>
is a number (ephemeral random constant) that has its value
randomly drawn from a uniform distribution — U(0, 1) gen-
erates real numbers between 0 and 1, whereas U (0, 100) gen-
erates integer numbers between 0 and 100 — and <var>
is a predictive attribute of the training data set (chosen
randomly from the set of predictive attributes). Note that
grammar (b) allows if-then-else rules to be derived, enhanc-
ing the search-space of the resulting mathematical function.

3.2 Evolution

In the beginning of the evolutionary process, the individ-
uals of the population are randomly initialized. They have
variable length, with a minimum of five codons each, and a
chance of 85% that new codons will be added to the individ-
ual. Hence, the process of adding codons finishes when the
85% probability is not fulfilled. Recall that each codon is
comprised of 1 byte (8 bits), which is randomly generated.

To evolve the current generation of individuals, the fol-
lowing mutually-exclusive genetic operations can be per-
formed: crossover, mutation, and duplication. Crossover
has a chance of 90% of being performed, and both dupli-
cation and mutation have a chance of 5% of being applied.



<start>::= <exp>

<exp>::= <exp><op><exp> | <coef><op><var> |
<op2><exp> | <coef> | <var>

<op>:i:= + | = | * | /

<op2>::= sin | cos | log

<coef>::= U(0,1)

<var>::= Predictive Attribute

(a) A simplified context-free grammar for effort estima-
tion.

<start>::= <exp>
<exp>::= <exp><op><exp> | <coef><op><var> |
<op2><exp> | <coef> | <var> |

if<bool>then<exp>else<exp>

<op>::= + | - | * | /

<op2>::= sin | cos | log
<bool>::= <exp><op3><exp>
<op3>::= > | < | >= | <= | = | !=
<coef>::= U(0,1) | U(0,100)
<var>::= Predictive Attribute

(b) A more detailed context-free grammar for effort esti-
mation.

Figure 3: Grammars used in SEEGE.

These operations are executed until all individuals of the
new population are generated.

For crossover to be performed, two individuals are chosen
via tournament selection (default tournament size of 7). Af-
ter the individuals are selected, they are truncated, which
means that the codons that are not used to generate the
derivation tree are removed. The truncated individuals then
take part in a standard one-point crossover operation, gen-
erating two children. In the duplication process, one indi-
vidual is also selected using tournament selection, and it is
also truncated to eliminate codons that are not used to gen-
erate a derivation tree. Then, two codons of the individual
are randomly selected, and all codons located between these
two selected codons are copied to the end of the individual.
Regarding mutation, it requires one individual to be selected
via tournament selection. This individual is then traversed
codon by codon, where each codon has a 10% probability
of having its value replaced by a randomly-generated 8-bit
value. The three operators are illustrated in Figure 4.

Most papers that propose EAs for software effort esti-
mation employ either the mean square error (MSE) or the
mean magnitude of the relative error (MMRE) as fitness
functions [31]. In the current version of SEEGE, we follow
the literature and also employ the MSE error measure:
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Figure 4: SEEGE evolutionary operators.

N
1 2
MSE = — i — Ui 1
N (=) M
where y; is the actual effort, ¢; is the predicted effort value,
and N is the number of objects in the data set.

4. EXPERIMENTAL PLAN

In this section, we present the methodology we employ
for evaluating the performance of SEEGE in software effort
data sets. In Section 4.1, we describe the data sets that we
employ during the experiments, whereas in Section 4.2 we
detail the algorithms that are used as baselines for SEEGE.
Finally, Section 4.3 depicts the statistical tests we make use
for providing some reassurance about the validity of the com-
parison results.

4.1 Data Sets

The empirical analysis presented in this paper is based on
10 different data sets from the PRedictOr Models In Soft-
ware Engineering (PROMISE) Repository [32]. They are:
albrecht, china, coc81, coc81lnh, cocomo-sdr, cocomo-nasa,
desharnais, kemerer, maxwell, and nasa93. Table 1 provides
some details about these data sets.

4.2 Algorithms, Parameters, and Evaluation

In order to assess the relative performance of SEEGE,
we compare it to state-of-the-art machine learning algo-
rithms, namely support vector machines for regression
(SVM-Regression) and artificial neural networks (ANN). In
addition, we compare it to traditional least-square linear
regression, which is frequently employed for software effort
estimation [22].

The implementations of the baseline methods are those
found within the Weka Machine Learning Toolkit [18],
namely: SMOreg (SVM-Regression), MultilayerPerceptron
(ANN), and LinearRegression (Linear Regression).

SEEGE was implemented within the ECJ framework of
evolutionary computation [24]. Bearing in mind that we



Table 1: Summary of the 10 effort data sets.

Data Set #projects  #features min Effort max Effort p Effort o Effort Description

albrecht 24 7 0.5 105.2 21.88 28.42  Data from 24 applications developed by IBM.

china 499 17 26 54620 3921.05 6480.86 No description available.

coc81 63 20 5.9 11400 683.53 1821.51 Data from COCOMO data analysis of 63
projects.

coc81lnh 63 71 5.9 11400 683.32 1821.58 Data from COCOMO data analysis of 63
projects with effort multipliers expressed as
“low,medium,hight”.

cocomo-sdr 12 134 1 22 5.73 6.84 Data from a Turkish Software Industry.

cocomonasa-vl 60 56 8.4 3240 406.41 656.97 Data from 60 NASA projects from 1980s and
1990s.

desharnais 81 11 546 23940 5046.31 4418.77 Data from a Canadian software house in the late
1980s.

kemerer 15 6 23.2 1107.31 219.247 263.06 Data from large business applications.

maxwell 62 27 583 63694 8223.21 10499.90 Data from one of the biggest commercial banks
in Finland.

nasa93 93 124 8.4 8211 1135.93 1135.93  Data from 93 NASA projects from 1971 to 1987.

have proposed two grammars for SEEGE, we name its two
versions as SEFEGE-a and SEEGE-b, where SEEGE-a is the
implementation of SEEGE with the grammar presented in
Figure 3(a), and SEEGE-b is the implementation of SEEGE
with the grammar presented in Figure 3(b).

The baseline methods were executed with their default
parameter values, which are usually a combination of val-
ues that work well across a wide variety of data sets. In
order to keep the comparison as fair as possible, we did not
attempt to optimize the parameters of SEEGE. The list of
configurable parameters of SEEGE is presented in Table 2.

Since SEEGE is a non-deterministic method, we execute it
10 different times varying the random seed of the stochastic
operations. For evaluating the performance of both SEEGE
and baseline methods, we employ a 10-fold cross-validation
procedure, in which we collect the following evaluation mea-
sures: root mean square error (RMSE), which is simply the
root of MSE; mean absolute error (MAE), and mean mag-
nitude of the relative error (MMRE):

N
1 X
MAE:NZkyi—yH (2)
i=1
1 <~ [9: — wil
MMRE ==Y 122 3
NX:I m (3)

Table 2: Configurable SEEGE parameters.

data sets, and it is based on the use of the Friedman test
with a corresponding post-hoc test. The Friedman test is
a non-parametric counterpart of ANOVA, as follows. Let
R? Dbe the rank of the jt" of k algorithms on the ‘" of N
data sets. The Friedman test compares the average ranks of
algorithms, R; = % >, R!. The Friedman statistic, given
by:

12N

X2F = m (4)

4

2
ZR?—M
J

is distributed according to x% with k— 1 degrees of freedom,
when N and k are large enough.

Iman and Davenport [21] showed that Friedman’s x% is
undesirably conservative and derived an adjusted statistic:

_ (N-1)xxF
SN G-D- G ®)

which is distributed according to the F-distribution with
k—1and (k—1)(N — 1) degrees of freedom.

If the null hypothesis of similar performances is rejected,
we proceed with the Nemenyi post-hoc test for pairwise com-
parisons. The performance of two classifiers is significantly
different if their corresponding average ranks differ by at
least the critical difference

Fy

k(k + 1)

CD = qo 6N (6)

Parameter Value
Initialization Probability 85%
Number of Individuals 1000
Minimum Individual Size 5
Number of Generations 100
Crossover Probability 90%
Duplication Probability 5%
Mutation Probability 5%
Mutation per Codon Probability 10%
Tournament Size 7
Elite 10

where critical values ¢, are based on the Studentized range
statistic divided by v/2.

5. RESULTS AND DISCUSSION

Table 3 shows the RMSE values for Linear Regression,
ANN, SVM-Regression, and both SEEGE versions (SEEGE-
a and SEEGE-D). It illustrates the average RMSE over the
10-fold cross-validation runs and the standard deviation of
the RMSE obtained in those runs (best absolute values in
bold). It is possible to see that SEEGE generates the model

4.3 Statistical Analysis

To evaluate the statistical significance of the experimental
results, we present the results of statistical tests by follow-
ing the approach proposed by Demsar [13]. In brief, this
approach seeks to compare multiple algorithms on multiple

with the lowest error values for all data sets. SEEGE-a pro-
vides the best model for seven data sets, whereas SEEGE-b
achieves it in the remaining three.

To evaluate the statistical significance of the RMSE re-
sults, we calculated the average Friedman rank for Linear
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Table 3: RMSE values of Linear Regression, ANN, SVM-Regression, and SEEGE.

Data Set Linear Regression ANN SVM-Regression SEEGE-a SEEGE-b
albrecht 12.23 + 11.20 11.50 £ 8.92 11.73 £+ 10.11 2.41 + 4.81 2.87 £ 4.92
china 775.06 £ 502.78 991.86 £ 599.01 720.92 + 581.80 544.34 + 133.71 597.55 £ 148.91
coc81 1359.14 £ 1184.96 815.88 £ 1143.77 758.13 £ 1325.62 375.58 + 173.83 386.39 + 227.29
coc81lnh 1081.15 £ 1530.09 1143.03 £ 1494.28 2422.65 + 1169.92 453.40 £ 341.74 428.35 + 197.11

cocomo-sdr
cocomonasa-vl
desharnais

7.66 £ 6.05
545.96 £ 421.03
2921.27 + 1199.51

9.93 + 4.94
303.35 £ 334.83
6045.28 + 3728.47

8.75 £ 6.97
481.73 £ 468.43
2828.75 + 1235.14

0.66 + 2.01
81.45 + 62.95
1551.03 + 412.06

0.57 + 1.68
112.90 £+ 80.27
1755.36 £ 408.50

kemerer 183.05 + 162.60 178.52 £+ 203.75 91.65 £ 156.25 25.58 + 55.70 24.30 + 48.96

maxwell 6160.94 £ 3709.70 5952.22 + 2604.27 5758.57 £+ 3117.25 2391.53 £ 1119.28 2746.10 £+ 1065.49

nasa93 819.01 + 864.54 1336.17 £ 990.01 1384.26 £+ 921.77 347.55 + 138.35 444.10 4+ 125.45

Average Rank 4.2 4.1 3.7 1.3 1.7
Table 4: MAE values of Linear Regression, ANN, SVM-Regression, and SEEGE.

Data Set Linear Regression ANN SVM-Regression SEEGE-a SEEGE-b
albrecht 10.69 £ 9.20 10.30 £ 7.86 10.50 £ 8.26 2.09 £ 4.15 2.51 £ 4.42
china 351.31 4+ 109.85 474.27 + 166.24 270.54 £ 119.03 293.31 + 46.25 307.68 £ 53.50
coc81 1078.00 £ 804.84 553.69 £+ 753.86 523.14 £ 863.54 243.87 £+ 96.78 270.83 £ 149.07
coc81lnh 892.00 £+ 1025.29 832.00 £+ 1019.81 1987.11 £ 770.11 292.54 + 195.10 310.54 £ 143.92

7.48 £ 6.11
437.08 £+ 297.18

9.74 £ 5.00
234.79 £ 259.85

cocomo-sdr
cocomonasa-vl

desharnais 2277.29 £+ 908.01 4387.11 4+ 2717.91
kemerer 167.69 + 133.60 168.36 + 193.84
maxwell 4642.71 £+ 2545.82 4250.80 + 1727.51
nasa93 560.13 + 511.89 1020.66 + 694.63

8.61 £ 6.96
385.62 + 411.86
2235.54 + 1035.25
78.61 + 128.21
4190.51 + 1875.96
1054.89 £ 722.09

0.66 £+ 2.00

61.26 + 42.91
1209.47 + 279.83
23.16 + 50.92
1858.02 + 768.23

0.57 + 1.67
85.98 + 58.11
1420.81 + 329.92
21.29 + 41.78
2177.90 + 805.25

252.81 + 90.40 319.10 £ 91.19

Average Rank 4.2 4.1

3.5 1.3 1.9

Regression, ANN, SVM-Regression, SEEGE-a, and SEEGE-
b: 4.2, 4.1, 3.7, 1.3 and 1.7, respectively. The average rank
clearly suggests that both versions of SEEGE outperform
the baseline methods regarding RMSE. The calculation of
Iman’s F' statistic resulted in Fy = 30.47. Critical value of
Flk—1,(k—1)(n—-1)) = F(4,36) for « = 0.05 is 2.63.
Since Fy > Fo.05(4,36) (30.47 > 2.63), the null-hypothesis
is rejected. We proceed with a post-hoc Nemenyi test to find
which method provides better results in a pairwise fashion.
The critical difference CD = 1.93. The differences between
the average rank of SEEGE-a and the rank of the baseline
methods — Linear Regression, ANN, and SVM-Regression —
are 2.90, 2.8, and 2.4, respectively. The difference between
SEEGE-b and the baseline methods are: 2.5, 2.4, and 2.0,
respectively. Given that every difference is greater than C'D,
we can argue that the performance of SEEGE is significantly
better than Linear Regression, ANN, and SVM-Regression
with statistical significance, regarding RMSE.

Table 4 shows the MAE values for Linear Regression,
ANN, SVM-Regression, SEEGE-a, and SEEGE-b. Results
show once again that SEEGE generates the best models for
all data sets. In eight data sets SEEGE-a generated the
best model, whereas SEEGE-b did the same for two data
sets. Regarding the statistical analysis, the computed value
of Fy = 21. Since Fy > Fp.05(4,36) (21 > 2.63), the null-
hypothesis is rejected. The differences between the average
rank of SEEGE-a and the baseline methods — Linear Re-
gression, ANN, and SVM-Regression — are 2.9, 2.8 and 2.2,
respectively. The differences between the average rank of
SEEGE-b and the baseline methods are 2.3, 2.2, and 1.6.
Note that only the difference between SEEGE-b and SVM-
Regression (1.6) is not greater than C'D (1.93).

Finally, Table 5 shows the MMRE values for all methods.
Results show that SEEGE generates the best model in nine
out of ten data sets: SEEGE-a is the best method in seven
data sets and SEEGE-b in two. SVM-Regression generates
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the best model for the china data set, whereas the remaining
methods do not provide the best model for any data set.

The average rank for Linear Regression, ANN, SVM-
Regression, SEEGE-a, and SEEGE-b are: 4.0, 4.2, 3.6, 1.4,
and 1.8, respectively. It clearly suggests that SEEGE is
the best performing method regarding MMRE. The calcu-
lation of Iman’s F statistic results in Fy = 19.13. Since
Fy > Fy.05(4,36) (19.13 > 2.63), the null-hypothesis is re-
jected.

The differences between the average rank of SEEGE-a and
the baseline methods (Linear Regression, ANN, and SVM-
Regression) are 2.6, 2.8, and 2.2, respectively. Also, the
differences between SEEGE-b and the baselines are 2.2, 2.4,
and 1.8, respectively. Once again, with the exception of
the difference between SEEGE-b and SVM-Regression, all
the others are greater than C'D, which indicates that the
performance of SEEEGE is significantly better than Linear
Regression, ANN, and SVM-Regression regarding MMRE
with a significance level of a = 0.05.

The statistical analysis previously presented clearly shows
that the models generated by SEEGE outperform well-
known methods such as Linear Regression, ANN, and SVM-
Regression regarding their predictive performance in terms
of three distinct evaluation measures, namely: RMSE, MAE,
and MMRE.

It is interesting to notice that SEEGE-a often outperforms
SEEGE-b, though the grammar employed in SEEGE-b of-
fers many more choices for building mathematical models
than SEEGE-a (i.e., it allows if-then-else rules and inte-
ger constants). We believe SEEGE-b may have been slightly
affected by overfitting — when the model over-learns the
training data and fails to properly generalize to unseen data.
Nevertheless, there were data sets in which SEEGE-b was
indeed the best option, which means that some data sets re-
quire more complex functions than others. This was clearly
the case of the cocomo-sdr and kemerer data sets, in which



Table 5: MMRE values of Linear Regression, ANN, SVM-Regression, and SEEGE.

Data Set Linear Regression ANN SVM-Regression SEEGE-a SEEGE-b
albrecht 1.15 +£ 1.73 1.69 £+ 2.98 1.62 4+ 2.48 0.24 + 0.54 0.29 £+ 0.49
china 0.24 £+ 0.10 0.32 £ 0.08 0.10 £+ 0.04 0.11 £+ 0.02 0.11 £ 0.02
coc81 20.56 + 18.47 4.51 £ 2.96 6.59 £ 6.22 1.06 + 0.49 2.34 £ 1.45
coc81lnh 18.94 £ 14.67 9.08 £ 7.21 44.04 + 34.46 1.23 + 1.03 3.53 £ 3.69
cocomo-sdr 2.34 + 2.39 3.03 £ 2.36 2.91 £+ 3.12 0.19 £ 0.57 0.15 £+ 0.45
cocomonasa-v1l 5.34 + 4.53 0.93 £ 0.69 1.74 + 1.75 0.25 + 0.10 0.54 £ 0.29
desharnais 0.66 £+ 0.26 1.33 £+ 0.87 0.58 £ 0.24 0.37 + 0.09 0.47 £ 0.10
kemerer 1.16 + 0.92 1.23 + 1.38 0.36 £ 0.41 0.18 £+ 0.36 0.13 £+ 0.20
maxwell 1.46 + 1.73 0.95 £ 0.63 1.07 + 0.94 0.35 + 0.10 0.44 £ 0.10
nasa93 4.19 £ 3.42 6.48 £ 5.76 5.83 £ 4.61 1.03 + 0.52 1.64 + 1.24
Average Rank 4.0 4.2 3.6 1.4 1.8

SEEGE-b consistently provided the best models regardless
of the evaluation measure. For exemplifying this behavior,
consider the following model generated by SEEGE-b for a
particular training fold of the cocomo-sdr data:

IF (0.63 + x132) > (0.63/x17)
THEN effort = xg
ELSE effort = cos(zi21/(sin(z13) — (=5 — z13)))

Albeit its high complexity, the above model was required
so SEEGE-b could achieve its good results in cocomo-sdr.
The thin line between accurate modeling and data overfit-
ting has to be carefully explored. When in doubt, we recom-
mend the user to choose the less-complex model, since the
comprehensibility of simple models increases the confidence
of the project manager in the prediction of effort for new
projects to be developed.

We also highlight that SEEGE is capable of producing
comprehensible models (much the same as linear regres-
sion), whereas ANN and SVM-Regression are “black box”
approaches that do not offer any insight on the predic-
tions that are provided. A comprehensible model allows the
stakeholder to create new hypotheses regarding the avail-
able data, and also visually inspect whether the predictive
model produces a logical output — e.g., more requirement
documents and adjusted function points necessarily mean
more effort. By careful inspecting the generated model, the
project manager can detect possible errors in the model that
are a result of a poor data collection process, and then act
towards improving the data collection and pre-processing.

6. CONCLUSIONS

In this paper, we proposed a new grammatical evolution
(GE) algorithm called SEEGE (Software Effort Estimation
with Grammatical Evolution). To the best of our knowl-
edge, this was the first work to develop a GE approach
for software effort estimation. GE is the state-of-the-art
in grammar-based evolutionary computation, since it com-
bines the flexibility of grammar-based approaches with the
simplicity and efficiency of linear-string genetic operators.

We implemented two different grammars for SEEGE, and
we evaluated its performance through three different eval-
uation measures, namely RMSE, MAE, and MMRE. The
experiments were conducted taking into account 10 public
software effort data sets from the PROMISE repository [32].
For comparison purposes, we analyzed the performance of
SEEGE against state-of-the-art machine learning algorithms
such as SVMs for regression and artificial neural networks.
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Also, we compared SEEGE with least-square linear regres-
sion, which is a widely-employed technique for software ef-
fort estimation [22].

Results indicated that SEEGE clearly outperforms the
baseline methods with statistical significance, according to
the protocol recommended by Demsar [13]. In addition,
they indicated that in most cases, a simpler grammar is
preferred over a more detailed one. Overly-complex models
were shown to be useful only in two out of the ten data sets
employed in this study.

As future work, we plan to perform a deeper analysis on
the causes of overfitting in order to develop a strategy that
can detect it during evolution, and act accordingly. A multi-
objective fitness function that takes into account model com-
plexity could be developed to mitigate this problem.
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