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Otsu’s function measures the properness of threshold values in multilevel image thresholding. Optimal threshold values are
necessary for some applications and a global search algorithm is required. Differential evolution (DE) is an algorithm that has been
used successfully for solving this problem. Because the difficulty of a problem grows exponentially when the number of thresholds
increases, the ordinaryDE fails when the number of thresholds is greater than 12. An improvedDE, using a newmutation strategy, is
proposed to overcome this problem. Experiments were conducted on 20 real images and the number of thresholds varied from 2 to
16. Existing global optimization algorithms were compared with the proposed algorithms, that is, DE, rank-DE, artificial bee colony
(ABC), particle swarm optimization (PSO), DPSO, and FODPSO. The experimental results show that the proposed algorithm not
only achieves a more successful rate but also yields a lower threshold value distortion than its competitors in the search for optimal
threshold values, especially when the number of thresholds is large.

1. Introduction

Thresholding is the simplest and most commonly used
method of image segmentation. It can be bilevel or multilevel
[1]. Both of these types can be classified into parametric
and nonparametric approaches [1]. Surveys of thresholding
techniques for image segmentation can be found in [2–7].
The surveys revealed that Otsu’s method is a commonly used
technique [4, 8]. This method finds the optimal thresholds
by maximizing the weighted sum of between-class variances
(BCV) [9]. The BCV function is also called Otsu’s function.
However, the solution finding process is an exhaustive search
and it is a very time-consuming process because the complex-
ity grows exponentially with the number of thresholds.

Multilevel image thresholding based on Otsu’s function
has been used as a benchmark for comparing the capability of
evolutionary algorithms (EA).The EA is a nongradient based
optimization algorithm. Several algorithms have been widely
applied to solvemultilevel thresholding.A group of successful
works were based on a combination of Otsu’s function with
some state-of-the-art algorithms: PSO [10], DE [11], ABC
[12], and FOSPSO [13]. Kulkarni and Venayagamoorthy [14]

showed that PSO was faster than Otsu’s method in searching
the optimal thresholds of multilevel image thresholding.
Akay [15] presented a comprehensive comparative study of
the ABC and PSO algorithms. The results showed that the
ABC algorithm with both the between-class variance and
the entropy criterion can be efficiently used in multilevel
thresholding. Hammouche et al. [16] focused on solving the
image thresholding problem by combining Otsu’s function
with metaheuristic techniques, that is, genetic algorithm
(GA), PSO, DE, ant colony, simulated annealing, and Tabu
search. Their results revealed that DE was the most efficient
with respect to the quality of solution. Osuna-Enciso et al.
[17] presented an empirical comparative study of the ABC,
PSO, andDE algorithms to perform image thresholding using
a mixture of Gaussian functions. The results showed that the
DE algorithmwas superior in performance inminimizing the
Hellinger distance and used less evaluations of the Hellinger
distance. Ghamisia et al. [18] showed that a global optimal
search for optimal threshold values of Otsu’s function was
essential for the multilevel segmentation of multispectral and
hyperspectral images.
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The DE algorithm was selected for multilevel image
thresholding. It is simple to implement and produces good
results. However, based on our experiments, DE could
not reach an optimal solution when it was applied to a
very difficult problem. Therefore, a better DE algorithm is
required. We noticed that the mechanism of vector selection
and the size of the higher ranked population are an important
criterion for success.

The contribution of this paper is as follows.
DE with the onlooker and ranking-based mutation oper-

ation, named 𝑂(𝛽)𝑅-DE, is proposed to overcome the draw-
back of the DE algorithm for multilevel image thresholding,
especially when the number of thresholds is large. The
proposed algorithm homogenizes the onlooker phase of the
ABC algorithm and the ranking-based mutation operator
of the rank-DE [19]. The main advantage of the proposed
algorithm is that a user can adjust the balancing of the
exploitation and exploration capabilities of the algorithm.

To verify the capabilities of the proposed 𝑂(𝛽)𝑅-DE
algorithm, experiments to find the optimal solutions in
the multilevel image thresholding, when the number of
thresholds ranged from two to 16, were set up. It was found
that the optimal solutions could be effectively reached using
the proposed 𝑂(𝛽)𝑅-DE algorithm.

The remainder of the paper is organized as follows.
Section 2 describes the multilevel thresholding problem.
Section 3 presents a brief review of the differential evolution
algorithm (DE). In Section 4, the proposed new version
of the DE algorithm with the onlooker and ranking-based
mutation operator algorithm, 𝑂(𝛽)𝑅-DE, is described in
detail. Section 5 shows the experimental results of applying
the proposed method to multilevel segmentation in different
images. Finally, the conclusion of the paper is discussed in
Section 6.

2. Multilevel Thresholding
Problem Formulation

Otsu’s method [9] is based on the maximization of the
between-class variance. Consider a digital image having the
size 𝐻 × 𝑊, where 𝑊 is the width and 𝐻 is the height. The
pixels of a given picture are represented in 𝐿 gray levels and
they are in {0, 1, 2, . . . . , 𝐿 − 1}. The number of pixels at level
𝑖 is denoted by 𝑛

𝑖
and the total number of pixels by 𝑁 =

𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝐿
. The gray-level histogram is normalized

and regarded as a probability distribution and is written as
follows:

𝑝
𝑖
=

𝑛
𝑖

𝑁
, 𝑝
𝑖
≥ 0,

𝐿

∑

𝑖=1

𝑝
𝑖
= 1. (1)

The total mean of the image can be defined as

𝜇
𝑇
=

𝐿

∑

𝑖=1

𝑖 × 𝑝
𝑖
. (2)

The multilevel thresholding with respect to the given 𝑛 − 1

threshold values 𝑡
𝑗
, 𝑗 = 1, . . . , 𝑛 − 1 can be performed as

follows:
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...
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𝑛−1

,

(3)

where (𝑥, 𝑦) is the coordinate of a pixel and 𝑓(𝑥, 𝑦) denotes
the intensity level of a pixel. The pixels of a given image will
be divided into 𝑛 classes 𝐷

1
, . . . , 𝐷

𝑛
in this regard.

The optimal threshold can be determined by maximizing
the between-class variance function (BCV), 𝜎2

𝐵
, which can be

defined by

𝜎
2

𝐵
=

𝑛

∑

𝑗=1

𝑤
𝑗
(𝜇
𝑗
− 𝜇
𝑇
)
2

, (4)

where 𝑗 represents a specific class in such a way that 𝑤
𝑗
and

𝜇
𝑗
are the probability of occurrence and the mean of class

𝑗, respectively. Equation (4) is also called Otsu’s function.
The probabilities of occurrence 𝑤

𝑗
of classes 𝐷

1
, . . . , 𝐷

𝑛
are

defined by

𝑤
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(5)

The mean of each class 𝜇
𝑗
can be given by
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(6)

Thus, the 𝑛-level thresholding problem is transformed to an
optimization problem. The process is to search for 𝑛 − 1

thresholds 𝑡
𝑗
that maximize the value 𝜑, which is generally

defined as

𝜑 = max
1<𝑡1<⋅⋅⋅<𝑡𝑛−1<𝐿

𝜎
2

𝐵
(𝑡
𝑗
) . (7)

3. Differential Evolution Algorithm

The DE algorithm is an evolutionary optimization technique
proposed by Storn and Price [11].Themain procedures of DE
are briefly described as follows.
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3.1. Initialization. The DE algorithm starts with a popu-
lation of initial solutions, each of dimension 𝐷, 𝑋

𝑖,𝑔
=

(𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝐷
), 𝑖 = 1, . . . ,NP, where the index 𝑖 denotes

the 𝑖th solution, or vector, of the population, 𝑔 is the
generation, and NP is the population size. The initial pop-
ulation (at 𝑔 = 0) is randomly generated to be within the
search space constrained by the minimum and maximum
bounds, 𝑋min = {𝑥

1,min, 𝑥2,min, . . . , 𝑥𝐷,min} and 𝑋max =

{𝑥
1,max, 𝑥2,max, . . . , 𝑥𝐷,max}. The 𝑖th vector 𝑥

𝑖
is initialized as

follows:

𝑥
𝑗,𝑖,0

= 𝑥
𝑗,min + rndreal

𝑖,𝑗 [0, 1) ⋅ (𝑥𝑗,max − 𝑥
𝑗,min) , (8)

where rndreal
𝑖,𝑗
[0, 1) is a uniformly distributed random real

number between 0 and 1, (0 ≤ rndreal
𝑖,𝑗
[0, 1) < 1).

3.2. Mutation Operators. The differential mutation operator
is one of the three operators of DE. The mutation operator is
applied to generate the mutant vector V

𝑖
for each target vector

𝑥
𝑖
in the current population. A mutant vector is generated

according to

V
𝑖,𝑔+1

= 𝑥
𝑟1 ,𝑔

+ 𝐹 ⋅ (𝑥
𝑟2 ,𝑔

− 𝑥
𝑟3 ,𝑔

) , (9)

where the randomly chosen indexes, random indexes,
𝑟
1
, 𝑟
2
, 𝑟
3

∈ {1, 2, . . . ,NP} are mutually different random
integer indices and they are also different from the running
index 𝑖. Further, 𝑖, 𝑟

1
, 𝑟
2
, and 𝑟

3
are different so that NP ≥ 4.

𝐹 is a real and constant factor, 𝐹 ∈ [ 0, 2], which controls the
amplification of the differential variation; 𝑥

𝑟1 ,𝑔
is called the

base vector,𝑥
𝑟2,𝑔

is called the terminal vector,𝑥
𝑟3,𝑔

is called the
other vector, and (𝑥

𝑟2 ,𝑔
− 𝑥
𝑟3 ,𝑔

) is called the difference vector.
There have been many proposed mutation strategies for

DE [20, 21]. Each different strategy has different character-
istics and is suitable for a set of problems. However, the
choice of the best mutation operators for DE is difficult
for a specific problem [22–24]. The “DE/rand/1/bin” strategy
has been widely used in DE literature [25–28]. It is more
reliable than the strategies based on the best-so-far solution
such as “DE/best/1” and “DE/current-to-best/1”. However,
“DE/rand/1/bin” has slower convergence. Simply put, it has
high exploration but low exploitation abilities.

3.3. Crossover. DE utilizes the crossover operation to gen-
erate new solutions by shuffling competing vectors and to
increase the diversity of the population. The classical version
of the DE (DE/rand/1/bin) uses the binary crossover. It
defines the following trial vector:

𝑢
𝑖,𝑔+1

= (𝑢
1𝑖,𝑔+1

, 𝑢
2𝑖,𝑔+1

, . . . , 𝑢
𝐷𝑖,𝑔+1

) , (10)

where 𝑗 = 1, . . . , 𝐷 (𝐷 = problem dimension) and

𝑢
𝑗𝑖,𝑔+1

=
{

{

{

V
𝑗𝑖,𝑔+1

if (randb (𝑗) ≤ CR) and 𝑗 = rnbr (𝑖)

𝑥
𝑗𝑖,𝑔

if (randb (𝑗) > CR) and 𝑗 ̸= rnbr (𝑖) .
(11)

CR is the crossover rate ∈ [0, 1], randb(𝑗) is the 𝑗th evaluation
of a uniform random number generator with outcome ∈

[0, 1], and rnbr(𝑖) is a randomly chosen index ∈ 1, 2, . . . , 𝐷

that ensures 𝑢
𝑖,𝑔+1

will get at least one parameter from V
𝑖,𝑔+1

.

3.4. Selection. Selection determines whether the target or the
trial vector survives to the next generation. The selection
operation is described as

𝑥
𝑖,𝑔+1

=
{

{

{

𝑢
𝑖,𝑔,

if 𝑓 (𝑢
𝑖,𝑔
) ≤ 𝑓 (𝑥

𝑖,𝑔
)

𝑥
𝑖,𝑔,

if 𝑓 (𝑢
𝑖,𝑔
) > 𝑓 (𝑥

𝑖,𝑔
) ,

(12)

where 𝑓(𝑥) is the objective function to be minimized.
Therefore, if the objective of the new trial vector, 𝑓(𝑢

𝑖,𝑔
),

is equal to or less than the objective of the old trial vector,
𝑓(𝑥
𝑖,𝑔
), then 𝑥

𝑖,𝑔+1
is set to 𝑢

𝑖,𝑔
; otherwise, the old value 𝑥

𝑖,𝑔

is retained.
The pseudocode of basic DE with “DE/rand/1/bin” strat-

egy is shown in Algorithm 1.
The function rndint[1, 𝐷] returns a uniformly distributed

random integer number between 1 and D. rndreal
𝑗
[0, 1) is a

uniformly distributed random real value of [0, 1). The word
“better” in line 17 means “less than” if the problem requires
minimization, see (12) and its explanation, and it means
“greater than,” if the problem requiresmaximization.The best
𝑋
𝑖,𝐺
, where 𝐺 is the maximum number of generations, is the

solution of the algorithm. The word “best” also depends on
the type of problem.

4. The Proposed DE with Onlooker Ranking-
Based Mutation Operator

In 2013 Gong and Cai [19] proposed a rank-DE algorithm.
They claimed that probabilistically selecting the vectors 𝑥

𝑟1

and 𝑥
𝑟2
in the mutation operator from the better population

can improve the exploitation ability of basic DE. To the
best of the authors’ knowledge, rank-DE may, however, also
lead to premature convergence (this will be shown in the
experiments). That means that the rank-DE has too much
exploitation ability. Furthermore, it cannot balance between
the exploration and the exploitation abilities. In order to
balance between the two abilities, we propose DE with
the onlooker and ranking-based mutation operator, named
𝑂(𝛽)𝑅-DE.The proposed algorithm is an improvement of the
rank-DE by homogenizing the rank-DE with the onlooker
phase of ABC algorithm. The detail of the 𝑂(𝛽)𝑅-DE algo-
rithm is described as follows.

4.1. Ranking Assignment. To perform the maximization, the
fitness of each vector is sorted in ascending order (i.e., from
worst to best). Then, the rank of the 𝑖th vector, 𝑅

𝑖
, is assigned

based on its sorted ordering as follows:

𝑅order = order, order = 1, 2, . . . ,NP. (13)

As a result, the best vector in the current population will
obtain the highest ranking, that is, NP.
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(1) Generate the initial population randomly
(2) Evaluate the fitness for each individual in the population
(3) while the maximum generation G is not reached do
(4) for 𝑖 = 1 to NP do
(5) Select uniform randomly 𝑟

1
̸= 𝑟
2

̸= 𝑟
3

̸= 𝑖

(6) 𝑗rand = rndint [1, 𝐷]

(7) for 𝑗 = 1 to𝐷 do
(8) if rndreal

𝑗
[0, 1) ≤ CR or 𝑗 is equal to 𝑗rand then

(9) 𝑢
𝑖,𝑗

= 𝑥
𝑟1 ,𝑗

+ 𝐹 ⋅ (𝑥
𝑟2 ,𝑗

− 𝑥
𝑟3 ,𝑗

)

(10) else
(11) 𝑢

𝑖,𝑗
= 𝑥
𝑖,𝑗

(12) end if
(13) end for
(14) end for
(15) for 𝑖 = 1 to NP do
(16) Evaluate the offspring 𝑢

𝑖

(17) if 𝑓(𝑢
𝑖
) is better than or equal to 𝑓(𝑥

𝑖
) then

(18) Replace 𝑥
𝑖
with 𝑢

𝑖

(19) end if
(20) end for
(21) end while

Algorithm 1: The DE algorithm with “DE/rand/1/bin” strategy.

4.2. Probabilistic Selection. After assigning the ranking for
each vector, the selection probability 𝑝

𝑖
of the 𝑖th vector 𝑥

𝑖

is calculated as

𝑝
𝑖
=

𝑅
𝑖

NP
, 𝑖 = 1, 2, . . . ,NP. (14)

4.3. A New Strategy for Base Vector, Terminal Point,
and the Other Vector Selections

Definition 1 (a worse population and a better population).
Let 𝜁 be a real value and 0 ≤ 𝜁 < 1. A population having
probability less than 𝜁 is called a worse population and a
population having probability greater than or equal to 𝜁 is
called a better population.

In the rank-DE, the base vector 𝑥
𝑟1
and the terminal point

𝑥
𝑟2

were based on their selection probabilities. The other
vector in themutation operator,𝑥

𝑟3
, is selected randomly as in

the original DE algorithm. The vectors with higher rankings
(higher selection probabilities) aremore likely to be chosen as
the base vector or the terminal point in themutation operator.

Our investigation revealed that if both 𝑥
𝑟1
and 𝑥

𝑟2
vec-

tors of rank-DE were chosen from better vectors, then the
distribution of the target vector may collapse quickly and
possibly lead to premature convergence. Accordingly, when
the rank-DE was applied to a very difficult problem, it could
not reach the optimal solution.

If the steps of the DE algorithm are compared with the
ABC algorithm, the population in the current generation can
be considered as the employed bees and the population in
the next generation can be considered as the onlooker bees.
To follow the concept of ABC, a new vector, 𝑥

𝑟1
, which is

called the base vector, chooses a food source with respect to

the probability that is computed from the fitness values of
the current population. The probability value, 𝑝

𝑡
, of which

𝑥
𝑡
is chosen by a base vector 𝑥

𝑟1
can be calculated by using

the expression given in (14). After a base source 𝑥
𝑟1

for
a new vector is probabilistically chosen, both 𝑥

𝑟2
and 𝑥

𝑟3

are also chosen in the same manner as the terminal point
and the other vector selections in the rank-DE. The target
vector is created by a mutation formula of DE. The mutant
vector 𝑢

𝑖
is created after the target vector is crossed with

a randomly selected vector, and then the fitness value is
computed.As in the ordinaryDE, a greedy selection is applied
between 𝑢

𝑖
and 𝑥

𝑖
. Hence, the new population contains better

sources and positive feedback behavior appears. This idea
can be expressed as pseudocode, as in Algorithm 2. Since the
selection of 𝑥

𝑟1
is the onlooker selection and the selections of

𝑥
𝑟2
and 𝑥

𝑟3
are brought from the rank-DE, then the algorithm

is called onlooker and ranking-based vector selection.
The pseudocode of onlooker and ranking-based vector

selection is shown in Algorithm 2. The differences between
the original ranking-based and onlooker and ranking based
selection are highlighted by “⇐”.

The function minprop(𝛽) is added to generalize the
algorithm. Its output depends on the parameter 𝛽. The
outcome can be either a constant value of [0, 1) or a value
of the uniform random function rndreal[0, 1). The balance
of the exploration and exploitation ability can be set by the
parameter 𝛽. And the function is defined by

minprop (𝛽)

= {
𝛽, if𝛽 is a constant and 0 ≤ 𝛽 < 1

rndreal [0, 1) , otherwise.
(15)
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(1) Input: The target vector index 𝑖, the last index of onlooker 𝑟
1
, and 𝛽 ⇐

(2) Output: The selected vector indexes 𝑟
1
, 𝑟
2
, 𝑟
3

(3) 𝑟
1
= 𝑟
1
+ 1; if 𝑟

1
> NP then 𝑟

1
= 1; end if ⇐

(4) while minprop(𝛽) > 𝑝
𝑟1

//onlooker-like selection ⇐

(5) 𝑟
1
= 𝑟
1
+ 1; if 𝑟

1
> NP then 𝑟

1
= 1; end if ⇐

(6) end while
(7) Randomly select 𝑟

2
∈ {1,NP} //terminal vector index

(8) while rndreal[0, 1) > 𝑝
𝑟2
or 𝑟
2
== 𝑖 or 𝑟

2
== 𝑟
1
do

(9) Randomly select 𝑟
2
∈ {1,NP}

(10) end while
(11) Randomly select 𝑟

3
∈ {1,NP} //the other vector index

(12) while 𝑟
3
== 𝑟
2
or 𝑟
3
== 𝑟
1
or 𝑟
3
== 𝑖 do

(13) Randomly select 𝑟
3
∈ {1,NP}

(14) end while

Algorithm 2: Onlooker and ranking-based vector selection for DE.

(1) Randomly generate the initial population
(2) Evaluate the fitness for each individual in the population
(3) while the maximum generation G is not reached do
(4) Sort and rank the fitness values of population according to (13)
(5) Calculate the selection probability for each individual according to (14)
(6) 𝑟

1
= 0 ⇐

(7) for 𝑖 = 1 to NP do
(8) Select 𝑟

1
, 𝑟
2
, 𝑟
3
as shown in Algorithm 2 based on the current 𝑟

1
and 𝛽 ⇐

(9) 𝑗rand = rndint[1, 𝐷]

(10) for 𝑗 = 1 to𝐷 do
(11) if rndreal

𝑗
[0, 1) ≤ CR or 𝑗 is equal to 𝑗rand then

(12) 𝑢
𝑖,𝑗

= 𝑥
𝑟1 ,𝑗

+ 𝐹 ⋅ (𝑥
𝑟2 ,𝑗

− 𝑥
𝑟3 ,𝑗

)

(13) else
(14) 𝑢

𝑖,𝑗
= 𝑥
𝑖,𝑗

(15) end if
(16) end for
(17) end for
(18) for 𝑖 = 1 to NP do
(19) Evaluate the offspring 𝑢

𝑖

(20) if 𝑓(𝑢
𝑖
) is better than or equal to 𝑓(𝑥

𝑖
) then

(21) Replace 𝑥
𝑖
with 𝑢

𝑖

(22) end if
(23) end for
(24) end while

Algorithm 3: DE with onlooker and ranking-based mutation.

4.4.TheDEwithOnlooker-Ranking-BasedMutationOperator.
The procedures in Sections 4.1, 4.2, and 4.3 are combined
together to create a better DE algorithm. The parameter 0 ≤

𝛽 < 1 determines the fraction of the worse population to
be eliminated. When 𝛽 = 0 there is no worse population;
each single vector in the current population will act as the
base vector. If 0 < 𝛽 < 1, then each single vector having
a probability less than 𝛽 is a worse vector and will not be
selected as the base vector. If 𝛽 is not a constant or is outside
[0, 1), each single base vector is an onlooker bee. Accordingly,
the name of the algorithm is Onlooker(𝛽) Ranking-Base
Differential Evolution (𝑂(𝛽)𝑅-DE). To achieve the global
solution, a user can set a proper value for 𝛽 to control

the balance of the exploration and exploitation abilities of
the algorithm. The pseudocode of 𝑂(𝛽)𝑅-DE is shown in
Algorithm 3 and the differences between the rank-DE and
𝑂(𝛽)𝑅-DE are highlighted by “⇐”.

5. Experiments and Results

5.1. Experimental Setup. The global multilevel thresholding
problem deals with finding optimal thresholds within the
range [0, 𝐿 − 1] that maximize the BCV function. The
dimension of the optimization problem is the number of
thresholds, 𝑛, and the search space is [0, 𝐿−1]𝑛.Theparameter
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𝛽 of 𝑂(𝛽)𝑅-DE is rndreal[0, 1) or is set to be one of 0.0,
0.1, . . . , 0.9. The variation of the proposed 𝑂(𝛽)𝑅-DE was
implemented and compared with the existing metaheuristics
that performed image thresholding, that is, PSO, DPSO,
FODPSO, ABC, and several variations of DE algorithms.
All the methods were programmed in Matlab R2013a and
were run on a personal computer with a 3.4GHz CPU, 8GB
RAM with Microsoft Windows 7 64-bit operating system.
The experiments were conducted on 20 real images. The 19
images, namely, starfish, mountain, cactus, butterfly, circus,
snow, palace, flower, wherry, waterfall, bird, police, ostrich,
viaduct, fish, houses, mushroom, snowmountain, and snake,
were taken from the Berkeley Segmentation Dataset and
Benchmark [29]. The last image, namely, Riosanpablo, is a
satellite image “New ISS Eyes see Rio San Pablo”, March 1,
2013 (http://visibleearth.nasa.gov/view.php?id=80561). Each
image has a unique gray level histogram. These original
images and their histograms are depictedin Figure 1. An
experiment of an image with a specific number of thresholds
is called a “subproblem.” The number of thresholds inves-
tigated in the experiments was 2, 3, . . . , 16. Thus, there are
20 × 15 subproblems per algorithm. Each subproblem was
repeated 50 times and each time is called a run.

To compare with PSO, ABC, and DEs algorithms, the
objective function evaluation is computed for NP×𝑁

𝑖
, where

NP is population size and 𝑁
𝑖
is the number of generations.

A population of PSO and the DEs calls Otsu’s function one
time per generation. The population size in the PSO and
DEs algorithms was set to 50. A bee in the ABC calls Otsu’s
function two times per generation; therefore their number of
food sources were set to a half of the PSO’s size, that is, 25.
The stopping criteria were set by the maximum amount of
generations 𝐺. In this experiment, 𝐺 was set to 50, 100, 150,
200, 300, 400, 600, 800, 1000, 1500, 2000, 3000, 4000, 5000,
and 6000 when 𝑛 was 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, and 16, respectively. For the PSO, DPSO, and FODPSO
algorithms, the parameters were set as per the suggestion in
[30] and is shown in Table 1. The other control parameter
of the ABC algorithm, limit, was set to 50 [15]. The control
parameters 𝐹 and CR of the DE algorithms were set to 0.5
and 0.9, respectively [31, 32].

5.2. Comparison Strategies and Metrics. To compare the
performance of different algorithms, there are three metrics:
(1) the convergence rate of algorithms was compared by the
average of generations (NG), a lower NG means a faster
convergence rate; (2) the stability of algorithmswas compared
by the average of the success rate, (SRHM), a higher SRHM
means higher stability; (3) the reliability was compared by
the threshold value distortion measure (TVD), a lower TVD
means higher reliability. The details of the three metrics are
described as follows.

When all 50 runs of an algorithm performing on an
image with a specific number of thresholds are terminated,
the outcomes will be analyzed. Run 𝑟’th is called a successful
run if there is a generation of 𝑡 ≤ G such that BCV

𝑟
(𝑡) ≥ VTR

Table 1: Essential parameters of the PSO, DPSO, and FODPSO
taken from [30].

Parameter PSO DPSO FODPSO
Population 50 50 50
𝜌
1

1.5 1.5 1.5
𝜌
2

1.5 1.5 1.5
𝑊 1.2 1.2 1.2
𝑉max 2 2 2
𝑉min −2 −2 −2
𝑥max 255 255 255
𝑥min 0 0 0
Min population — 10 10
Max population — 50 50
No. of swarms — 4 4
Min swarms — 2 2
Max swarms — 6 6
Stagnancy — 10 10
Fractional coefficient — — 0.75

and the number of generations (NG) of the successful run is
recorded. Thus, the number can be defined by

NG
𝑟
= ArgMin

𝑡

(BCV
𝑟 (𝑡) ≥ VTR) ,

if 𝑟 is a successful run and otherwise undefined.
(16)

The average of NG
𝑟
from those successful runs is represented

by NG as follows:

NG =
1

number of successful runs
∑

All successful runs
NG
𝑟
.

(17)

The ratio of success rate (SR) for which the algorithm
succeeds to reach the VTR for each subproblem is computed
as

SR =
number of successful runs

total number of runs
. (18)

The experiments were conducted on 20 images. The arith-
meticmean (AM) ofNG (NGAM) over the entire set of images
with a specific number of thresholds is calculated as

NGAM =
1

𝑁
∑

All images
NG, (19)

where 𝑁 is the total number of images. NGAM is shown in
Table 3. The worst-case scenario is that there is no successful
run for a subproblem; this subproblem is called an “unsuc-
cessful subproblem.” If an algorithm encounters this scenario,
the subproblem will be grouped by its number of thresholds
and the number of images in the group will be counted and
assigned to 𝑥. These scenarios will be represented by NA(𝑥),
as shown in Tables 3 and 4.
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Figure 1: Continued.
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Figure 1: The test images and corresponding histograms.



Mathematical Problems in Engineering 9

The average of the success rate over the entire dataset with
a specific number of thresholds (SRHM) is averaged by the
Harmonic mean, HM, as follows:

SRHM =
𝑁

∑All images (1/SR)
. (20)

The SRHM is very important in measuring the stability of
an algorithm and it means the ratio of runs that are achieving
the target solution. Because the evolutionary methods are
based on stochastic searching algorithms, the solutions are
not the same in each run of the algorithm and depend on the
search ability of the algorithm.Therefore, the SRHM is vital in
evaluating the stability of the algorithms. The comparison of
the stability gives us valuable information in terms of the ratio
representing the success rates (SRHM). A higher SRHM means
better stability of the algorithm.

An algorithm producing SRHM < 0.5 means that more
than 50 percent of the independent runs of the algorithm
cannot reach the global solution. Thus, the algorithm that
yields SRHM < 0.5 should not be selected to solve the
problem.The experiments were conducted for the number of
thresholds varying from 2 to 16.These experiments contained
the maximum number of thresholds such that the algorithm
yields SRHM ≥ 0.5, which is represented by 𝑛

0.5
in Table 4.

Furthermore, the experiments also contained the maximum
number of thresholds that the algorithm can solve; and above
this value there was the case such that all 50 runs of some
subproblems missed the VTR.This number is represented by
𝑛max. In this case the success rate was zero and the associated
SRHM was zero too. And the definitions of the two values are
presented in (21)

𝑛
0.5

= max ({𝑛 | 𝑛 = number of thresholds that

has SRHM ≥ 0.5})

𝑛max = min ({𝑛 | 𝑛 = number of thresholds that

has SRHM = 0}) − 1.

(21)

Let 𝑛 be the number of thresholds.The reliability of a solution
is measured by threshold value distortion measure (TVD)
and is computed as

TVD =

∑All images ∑
run
𝑟=1

∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝑇
∗

𝑟𝑖
− 𝑇
𝑚

𝑟𝑖

󵄨󵄨󵄨󵄨

1 + ∑All images ∑
run
𝑟=1

∑
𝑛

𝑖=1
1
{𝑇
∗
𝑟𝑖
̸= 𝑇
𝑚
𝑟𝑖
}

× (1 − SR) × 100,

(22)

where𝑇∗ is the threshold value producing the VTR,𝑇𝑚 is the
threshold value obtained from the algorithm, and 1

{𝑇
∗
𝑟𝑖
̸= 𝑇
𝑚
𝑟𝑖
}
is

the indicator function, which is equal to 1 when 𝑇
∗

𝑟𝑖
̸= 𝑇
𝑚

𝑟𝑖
and

is zero otherwise. TVD is zero if the algorithm can reach the
VTR in every run. The lower the TVD the more reliable the
algorithm is.

5.2.1. The Value to Reach (VTR). Following the completion
of all of the experiments the best values of the between-class
variance and the corresponding thresholds were collected
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Figure 2:The threshold value distortion (TVD) of algorithms versus
number of thresholds.

and are shown in Table 6. The results are shown image by
image and the numbers of thresholds vary from 2 to 16. The
between-class variance values in column 3 are used as the
VTR values.

5.2.2. Results Produced by Local Search Method. The multi-
thresh function of the Matlab toolbox was conducted on the
same images and number of thresholds as the other search
methods. The capabilities of solving the optimal solution
between a local search and a global search will be discussed
here. This is the reason we focused on the global search,
that is, the proposed 𝑂(0.0)𝑅-DE algorithm. Table 2 shows
the between-class variances and threshold values of the
“mountain” image. These values were the best outcomes of
50 runs produced by the multithresh function in the Matlab
R2013a toolbox and by the proposed 𝑂(0.0)𝑅-DE algorithm.
The terminated condition of the multithresh function was set
by “MaxFunEvals” = 500000.That is themultithresh function
performs more function calls than that of the 𝑂(0.0)𝑅-DE
algorithm. It can be seen from columns 3 and 5 that all
the BCVs produced by the 𝑂(0.0)𝑅-DE algorithm are better
than the BCVs produced by the multithresh function; the
difference of the BCVs is shown in column 7. The differences
in the thresholds from the two algorithms, shown in column
8, tended to be large if the number of thresholds increased.

Figure 2 shows the graph of the TVDof all the images and
thresholds.These results are in the same pattern of the results
of the “mountain” image in Table 2. That means the ability to
search for the optimal solution of the proposed global search
algorithm is higher than that of the multithresh function,
especially when the number of thresholds is large. This goes
to illustrate the difficulty of the problem. The problem with
this kind is that it can be multimodal [33] or can be a
nearly flat top surface [34]. The multithresh function solves
the problem by performing the Nelder-Mead Simplex
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Table 6: The between-class variance criterion and the best thresholds for test images.

Image 𝑛 Between-class variance (VTR) Thresholds

Starfish

2 2546.885 85, 157
3 2779.925 68, 119, 177
4 2865.707 60, 101, 138, 187
5 2912.859 52, 86, 117, 150, 194
6 2941.728 47, 77, 105, 132, 162, 201
7 2960.158 44, 71, 95, 118, 142, 170, 206
8 2972.356 43, 68, 90, 110, 131, 153, 180, 212
9 2981.138 38, 58, 78, 97, 116, 136, 157, 183, 214
10 2988.206 37, 56, 75, 93, 110, 128, 146, 167, 192, 219
11 2993.348 35, 53, 71, 88, 103, 119, 135, 152, 172, 196, 221
12 2997.352 34, 51, 68, 84, 98, 112, 127, 142, 158, 177, 200, 223
13 3000.480 33, 48, 64, 79, 93, 106, 119, 133, 147, 162, 181, 203, 225
14 3003.076 32, 47, 62, 76, 89, 101, 114, 127, 140, 154, 169, 187, 207, 227
15 3005.235 30, 43, 56, 70, 83, 95, 107, 119, 131, 143, 156, 171, 189, 209, 228
16 3007.060 30, 42, 55, 68, 80, 92, 103, 114, 126, 138, 150, 163, 178, 195, 213, 230

Mountain

2 2372.923 61, 128
3 2496.113 33, 77, 131
4 2551.955 33, 73, 109, 147
5 2580.336 32, 69, 99, 125, 159
6 2596.956 24, 46, 74, 101, 126, 160
7 2608.807 24, 46, 73, 98, 119, 145, 175
8 2616.294 24, 46, 73, 97, 115, 135, 160, 191
9 2622.314 20, 37, 54, 76, 98, 116, 136, 160, 191
10 2627.194 20, 36, 53, 74, 93, 106, 121, 140, 163, 194
11 2630.496 20, 36, 53, 74, 93, 105, 118, 134, 152, 172, 201
12 2633.189 18, 31, 45, 59, 76, 93, 105, 118, 134, 152, 172, 201
13 2635.290 18, 31, 45, 59, 76, 92, 103, 115, 129, 144, 161, 179, 207
14 2637.088 17, 29, 42, 56, 72, 86, 96, 106, 117, 130, 145, 161, 179, 207
15 2638.449 17, 28, 39, 50, 61, 75, 88, 97, 107, 118, 131, 146, 162, 179, 207
16 2639.616 17, 27, 38, 49, 60, 74, 86, 95, 104, 113, 123, 135, 149, 164, 181, 209

Cactus

2 1816.448 73, 151
3 1970.112 64, 106, 173
4 2042.275 55, 87, 125, 187
5 2080.884 49, 76, 102, 138, 196
6 2104.147 46, 70, 93, 119, 157, 208
7 2119.670 44, 65, 85, 105, 131, 168, 215
8 2129.358 42, 60, 77, 94, 113, 138, 174, 218
9 2136.162 41, 58, 74, 89, 105, 125, 152, 186, 224
10 2141.579 40, 56, 71, 85, 99, 115, 135, 161, 193, 228
11 2145.397 39, 53, 66, 79, 91, 104, 119, 139, 165, 196, 229
12 2148.282 38, 51, 64, 76, 88, 100, 114, 131, 152, 176, 204, 233
13 2150.740 37, 49, 61, 72, 83, 94, 105, 118, 135, 155, 178, 205, 233
14 2152.626 36, 47, 58, 68, 78, 88, 98, 109, 122, 138, 158, 181, 207, 234
15 2154.162 36, 46, 56, 66, 76, 85, 94, 104, 115, 128, 144, 164, 187, 212, 237
16 2155.471 36, 46, 56, 66, 75, 84, 93, 102, 112, 124, 138, 155, 174, 195, 217, 239
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Table 6: Continued.

Image 𝑛 Between-class variance (VTR) Thresholds

Butterfly

2 3873.222 84, 155
3 3990.855 81, 144, 199
4 4051.357 77, 121, 167, 207
5 4092.929 60, 89, 129, 172, 209
6 4119.448 59, 87, 122, 161, 193, 221
7 4135.937 53, 74, 98, 128, 165, 195, 222
8 4148.556 53, 73, 96, 123, 156, 183, 203, 228
9 4156.528 52, 72, 94, 118, 144, 170, 190, 207, 231
10 4163.794 48, 63, 80, 99, 121, 147, 172, 191, 208, 231
11 4168.489 47, 62, 79, 98, 118, 141, 164, 183, 198, 213, 234
12 4172.517 46, 59, 73, 89, 104, 122, 144, 167, 185, 199, 214, 235
13 4175.487 46, 59, 72, 87, 102, 118, 137, 157, 175, 189, 202, 216, 236
14 4177.893 44, 55, 66, 79, 93, 106, 121, 141, 161, 178, 191, 203, 217, 237
15 4179.908 44, 55, 66, 78, 92, 105, 119, 137, 156, 173, 186, 197, 208, 221, 239
16 4181.559 42, 52, 61, 71, 83, 95, 107, 121, 139, 157, 173, 186, 197, 208, 221, 239

Circus

2 1651.257 118, 172
3 1760.512 105, 150, 187
4 1817.487 93, 132, 165, 195
5 1850.243 87, 122, 152, 177, 203
6 1870.083 82, 113, 141, 164, 185, 208
7 1883.966 77, 104, 129, 151, 171, 190, 212
8 1893.450 73, 98, 122, 143, 161, 178, 195, 216
9 1900.592 70, 92, 114, 134, 152, 168, 183, 199, 219
10 1905.992 68, 89, 109, 128, 145, 160, 174, 188, 203, 222
11 1909.887 66, 86, 105, 123, 139, 153, 166, 179, 192, 206, 225
12 1913.079 63, 81, 98, 114, 130, 145, 158, 170, 182, 194, 208, 226
13 1915.676 62, 79, 95, 111, 126, 140, 152, 164, 175, 186, 197, 210, 228
14 1917.756 61, 78, 94, 109, 123, 136, 148, 159, 170, 180, 190, 201, 214, 231
15 1919.524 59, 74, 88, 102, 115, 128, 140, 151, 161, 171, 181, 191, 202, 214, 231
16 1920.958 58, 73, 87, 100, 113, 126, 138, 149, 159, 169, 178, 187, 196, 206, 218, 234

Snow

2 5261.705 80, 169
3 5624.289 71, 139, 207
4 5729.116 50, 92, 144, 208
5 5785.138 49, 91, 140, 192, 231
6 5819.333 45, 81, 111, 148, 194, 232
7 5835.770 43, 76, 101, 127, 159, 196, 232
8 5850.190 30, 55, 83, 107, 133, 163, 197, 233
9 5862.437 30, 55, 82, 106, 129, 157, 185, 211, 237
10 5870.284 29, 52, 75, 94, 111, 132, 159, 186, 212, 237
11 5875.817 29, 52, 75, 94, 111, 132, 158, 183, 206, 227, 244
12 5880.335 29, 52, 74, 93, 109, 127, 149, 169, 188, 209, 228, 244
13 5884.513 23, 39, 57, 76, 94, 110, 128, 150, 170, 188, 209, 228, 244
14 5887.355 22, 37, 54, 70, 84, 98, 112, 129, 151, 170, 188, 209, 228, 244
15 5889.953 21, 36, 53, 69, 83, 97, 110, 124, 141, 159, 175, 192, 211, 229, 245
16 5891.998 21, 36, 53, 69, 83, 97, 110, 124, 141, 159, 174, 189, 207, 222, 236, 248
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Table 6: Continued.

Image 𝑛 Between-class variance (VTR) Thresholds

Palace

2 2623.440 99, 165
3 2791.488 84, 132, 186
4 2860.98 70, 103, 143, 191
5 2908.165 69, 101, 138, 177, 218
6 2934.330 64, 89, 117, 147, 181, 220
7 2953.745 54, 75, 99, 126, 153, 183, 220
8 2966.250 50, 69, 89, 111, 134, 158, 185, 221
9 2974.719 47, 65, 81, 100, 120, 141, 163, 188, 222
10 2981.875 47, 64, 80, 98, 117, 137, 157, 178, 199, 226
11 2986.898 45, 61, 75, 90, 106, 123, 141, 159, 179, 200, 227
12 2990.579 43, 58, 69, 82, 96, 111, 126, 143, 160, 180, 201, 227
13 2993.809 43, 58, 69, 81, 95, 110, 125, 141, 157, 173, 190, 208, 231
14 2996.112 43, 57, 68, 80, 94, 108, 123, 138, 153, 167, 182, 199, 218, 239
15 2998.213 42, 56, 66, 77, 88, 100, 113, 126, 140, 154, 167, 182, 199, 218, 239
16 2999.918 42, 55, 65, 75, 86, 98, 110, 123, 136, 149, 162, 176, 191, 205, 222, 241

Flower

2 1489.281 61, 130
3 1627.897 39, 77, 141
4 1685.956 36, 67, 105, 160
5 1715.220 28, 49, 75, 111, 164
6 1736.423 27, 47, 71, 102, 143, 192
7 1752.512 26, 43, 61, 83, 111, 151, 199
8 1761.968 25, 42, 58, 77, 99, 126, 161, 204
9 1768.354 24, 40, 54, 70, 88, 109, 135, 167, 207
10 1772.903 23, 37, 48, 60, 75, 92, 112, 138, 169, 208
11 1776.470 23, 36, 47, 58, 72, 87, 104, 124, 149, 177, 211
12 1779.106 22, 34, 44, 54, 65, 78, 92, 108, 128, 152, 179, 212
13 1781.251 20, 30, 39, 48, 58, 70, 83, 96, 112, 131, 154, 180, 213
14 1783.049 19, 29, 38, 47, 56, 66, 78, 90, 104, 120, 139, 161, 185, 215
15 1784.478 19, 29, 38, 46, 54, 63, 74, 85, 97, 111, 128, 147, 168, 190, 218
16 1785.641 19, 28, 37, 45, 53, 62, 72, 83, 94, 106, 120, 136, 155, 175, 196, 222

Wherry

2 3313.161 108, 189
3 3543.272 102, 161, 218
4 3599.924 83, 121, 163, 218
5 3634.708 81, 118, 152, 184, 224
6 3656.048 72, 103, 130, 156, 186, 225
7 3668.313 68, 94, 120, 139, 161, 189, 226
8 3678.216 60, 83, 110, 132, 152, 175, 198, 230
9 3686.001 56, 77, 100, 122, 138, 156, 179, 201, 231
10 3691.730 56, 76, 98, 120, 136, 153, 174, 194, 219, 243
11 3696.416 55, 74, 94, 114, 130, 142, 158, 178, 197, 222, 245
12 3699.866 54, 72, 91, 110, 126, 138, 151, 168, 185, 202, 225, 246
13 3702.619 52, 68, 83, 100, 117, 130, 140, 153, 169, 185, 202, 225, 246
14 3705.033 52, 68, 83, 100, 117, 130, 140, 152, 167, 182, 197, 215, 235, 249
15 3706.937 51, 66, 79, 94, 110, 123, 133, 142, 154, 169, 184, 199, 216, 235, 249
16 3708.484 49, 63, 75, 89, 104, 118, 129, 138, 147, 159, 173, 186, 200, 217, 235, 249
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Table 6: Continued.

Image 𝑛 Between-class variance (VTR) Thresholds

Waterfall

2 4512.801 88, 170
3 4646.137 72, 115, 182
4 4711.019 67, 103, 150, 204
5 4752.267 58, 87, 119, 164, 212
6 4777.063 53, 78, 104, 134, 176, 217
7 4793.510 48, 70, 92, 116, 147, 186, 221
8 4805.756 46, 66, 86, 107, 131, 163, 199, 226
9 4814.097 43, 61, 79, 97, 117, 141, 173, 205, 228
10 4820.724 40, 57, 73, 90, 108, 128, 152, 182, 210, 230
11 4825.739 38, 54, 69, 84, 100, 117, 137, 162, 191, 215, 232
12 4829.689 37, 53, 67, 81, 96, 111, 128, 148, 173, 198, 218, 233
13 4832.826 35, 50, 63, 76, 89, 103, 117, 133, 153, 177, 201, 220, 234
14 4835.371 32, 46, 58, 70, 82, 95, 108, 122, 138, 158, 182, 204, 221, 234
15 4837.537 32, 46, 57, 68, 80, 92, 104, 117, 131, 148, 169, 191, 210, 224, 236
16 4839.226 30, 43, 54, 64, 74, 85, 96, 108, 120, 134, 151, 172, 193, 211, 225, 236

Bird

2 901.450 71, 122
3 975.230 64, 111, 140
4 1027.509 61, 104, 131, 164
5 1051.482 54, 93, 119, 138, 169
6 1067.992 47, 82, 108, 127, 142, 172
7 1077.304 40, 70, 94, 113, 129, 143, 173
8 1086.005 39, 69, 93, 112, 128, 141, 159, 192
9 1091.341 37, 65, 88, 105, 119, 131, 142, 160, 193
10 1095.355 37, 64, 86, 103, 117, 129, 139, 149, 167, 200
11 1098.475 33, 56, 77, 93, 107, 119, 130, 140, 150, 169, 202
12 1100.749 33, 56, 77, 93, 107, 119, 129, 138, 146, 158, 178, 209
13 1102.639 31, 52, 71, 87, 100, 111, 121, 130, 139, 147, 159, 179, 210
14 1104.132 29, 48, 66, 82, 95, 107, 118, 127, 134, 141, 149, 161, 181, 211
15 1105.446 28, 45, 62, 77, 90, 101, 111, 120, 128, 135, 142, 150, 162, 182, 212
16 1106.500 28, 45, 62, 77, 90, 101, 111, 120, 128, 135, 141, 148, 157, 171, 191, 219

Police

2 3647.353 74, 150
3 3844.314 70, 135, 192
4 3966.225 63, 112, 158, 209
5 4013.875 61, 104, 140, 174, 214
6 4047.198 32, 67, 106, 141, 175, 214
7 4067.996 32, 67, 104, 133, 161, 186, 219
8 4084.933 29, 52, 78, 106, 134, 162, 187, 219
9 4094.705 29, 52, 78, 103, 125, 147, 169, 190, 220
10 4101.702 29, 52, 78, 102, 123, 143, 165, 184, 203, 228
11 4108.018 28, 49, 71, 90, 107, 126, 146, 166, 185, 204, 229
12 4112.304 28, 49, 71, 89, 105, 122, 139, 157, 174, 189, 207, 231
13 4115.165 28, 46, 62, 78, 92, 106, 123, 140, 158, 174, 189, 207, 231
14 4117.926 28, 46, 62, 78, 91, 105, 120, 135, 151, 166, 180, 193, 210, 232
15 4120.045 28, 46, 62, 78, 91, 103, 116, 129, 143, 158, 172, 185, 197, 214, 235
16 4121.861 28, 46, 62, 78, 91, 103, 116, 128, 142, 156, 170, 182, 193, 206, 223, 240



18 Mathematical Problems in Engineering

Table 6: Continued.

Image 𝑛 Between-class variance (VTR) Thresholds

Ostrich

2 1073.452 75, 135
3 1139.260 69, 101, 149
4 1178.650 65, 92, 125, 176
5 1203.749 56, 78, 100, 131, 179
6 1218.643 47, 65, 85, 103, 133, 181
7 1228.925 47, 64, 83, 100, 122, 152, 192
8 1236.023 45, 59, 75, 90, 104, 125, 155, 194
9 1240.756 40, 52, 65, 80, 94, 107, 128, 157, 195
10 1244.909 40, 52, 64, 78, 91, 103, 119, 141, 168, 201
11 1247.879 40, 51, 62, 75, 87, 97, 108, 125, 148, 174, 205
12 1250.313 37, 48, 57, 68, 80, 91, 101, 112, 128, 150, 175, 206
13 1252.298 31, 44, 53, 63, 75, 86, 95, 105, 117, 134, 154, 178, 207
14 1253.956 29, 42, 50, 58, 68, 79, 89, 98, 108, 120, 137, 157, 181, 209
15 1255.366 29, 42, 50, 58, 67, 77, 86, 94, 102, 111, 124, 141, 160, 183, 210
16 1256.490 28, 41, 49, 57, 66, 76, 85, 93, 101, 110, 122, 137, 155, 174, 196, 219

Viaduct

2 7920.458 77, 180
3 8117.991 54, 109, 193
4 8203.807 42, 84, 131, 203
5 8246.806 35, 68, 103, 146, 210
6 8272.775 31, 59, 88, 120, 160, 216
7 8287.714 28, 53, 77, 103, 132, 169, 220
8 8298.322 27, 51, 75, 100, 128, 164, 212, 246
9 8308.240 24, 45, 66, 88, 112, 139, 172, 216, 247
10 8315.133 22, 41, 60, 79, 99, 121, 146, 178, 219, 247
11 8320.032 20, 37, 54, 71, 89, 108, 128, 152, 183, 221, 248
12 8323.799 20, 36, 52, 68, 84, 101, 119, 139, 162, 190, 224, 248
13 8326.793 18, 33, 48, 62, 77, 92, 108, 125, 144, 167, 195, 226, 248
14 8329.119 17, 31, 44, 57, 70, 84, 98, 113, 129, 148, 170, 197, 227, 248
15 8330.983 17, 31, 44, 57, 70, 84, 98, 113, 129, 147, 169, 195, 224, 243, 251
16 8332.744 16, 29, 42, 54, 66, 78, 91, 104, 118, 133, 151, 172, 196, 224, 243, 251

Fish

2 3593.389 64, 148
3 3870.456 44, 104, 177
4 3972.731 34, 81, 127, 188
5 4024.885 27, 63, 101, 139, 194
6 4054.836 24, 56, 90, 123, 156, 205
7 4075.236 22, 49, 78, 107, 135, 168, 213
8 4088.300 20, 44, 68, 93, 118, 142, 173, 216
9 4097.101 19, 40, 62, 85, 107, 128, 149, 178, 218
10 4103.194 18, 38, 58, 78, 98, 118, 137, 158, 185, 222
11 4107.954 16, 34, 51, 69, 88, 107, 125, 143, 163, 190, 224
12 4111.678 15, 31, 47, 64, 82, 100, 117, 133, 149, 169, 195, 227
13 4114.783 14, 28, 43, 58, 74, 90, 106, 121, 136, 152, 172, 198, 228
14 4116.954 14, 28, 43, 58, 73, 88, 103, 117, 131, 145, 160, 179, 203, 231
15 4118.931 13, 25, 38, 51, 64, 78, 92, 106, 120, 133, 147, 162, 181, 205, 232
16 4120.522 13, 25, 37, 49, 62, 75, 89, 102, 115, 127, 139, 152, 168, 188, 211, 235
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Table 6: Continued.

Image 𝑛 Between-class variance (VTR) Thresholds

Houses

2 2543.788 56, 116
3 2627.230 53, 105, 150
4 2663.698 42, 69, 110, 152
5 2694.902 39, 65, 96, 130, 158
6 2708.655 39, 65, 95, 127, 150, 169
7 2720.263 35, 55, 74, 98, 128, 151, 170
8 2726.676 35, 55, 74, 98, 127, 148, 164, 184
9 2732.853 32, 48, 65, 80, 101, 128, 148, 164, 184
10 2736.510 30, 45, 60, 74, 87, 106, 129, 149, 164, 184
11 2739.566 30, 45, 60, 73, 86, 105, 128, 145, 156, 168, 187
12 2742.148 29, 42, 55, 68, 79, 94, 112, 130, 145, 156, 168, 187
13 2744.071 28, 39, 51, 63, 74, 84, 98, 115, 131, 145, 156, 168, 187
14 2745.542 28, 39, 51, 63, 74, 84, 98, 115, 131, 145, 155, 165, 176, 193
15 2746.817 27, 37, 47, 58, 68, 77, 86, 100, 116, 131, 145, 155, 165, 176, 193
16 2747.991 27, 37, 47, 57, 67, 76, 85, 98, 113, 127, 139, 147, 156, 165, 176, 193

Mushroom

2 1988.328 76, 145
3 2153.037 65, 110, 174
4 2237.441 59, 93, 135, 193
5 2277.427 52, 78, 106, 145, 199
6 2301.629 48, 71, 94, 122, 157, 205
7 2317.538 46, 67, 87, 110, 138, 171, 213
8 2328.526 44, 62, 79, 97, 118, 145, 177, 216
9 2335.812 42, 58, 74, 90, 107, 127, 152, 181, 218
10 2340.981 41, 56, 70, 84, 99, 116, 136, 159, 186, 220
11 2345.160 39, 52, 65, 78, 92, 107, 124, 144, 166, 191, 223
12 2348.413 38, 51, 63, 75, 87, 100, 115, 132, 152, 174, 199, 227
13 2350.988 38, 50, 62, 74, 85, 97, 110, 125, 142, 160, 180, 203, 229
14 2353.119 37, 48, 59, 69, 79, 89, 100, 113, 127, 144, 162, 181, 204, 230
15 2354.748 36, 46, 56, 66, 75, 84, 94, 105, 117, 130, 146, 163, 182, 205, 230
16 2356.113 36, 46, 56, 65, 74, 83, 92, 102, 113, 125, 139, 154, 169, 187, 208, 232

Snow mountain

2 1912.613 85, 149
3 2135.274 79, 137, 197
4 2234.669 70, 119, 154, 204
5 2288.799 55, 96, 129, 160, 206
6 2317.224 52, 90, 118, 142, 167, 209
7 2333.078 50, 85, 111, 132, 153, 174, 212
8 2344.629 45, 76, 100, 120, 139, 158, 177, 214
9 2352.951 44, 74, 97, 116, 133, 150, 167, 187, 220
10 2359.175 41, 68, 90, 108, 124, 140, 156, 172, 193, 225
11 2364.304 38, 62, 84, 102, 117, 132, 146, 160, 175, 196, 227
12 2367.971 34, 56, 78, 96, 111, 125, 139, 152, 165, 179, 199, 228
13 2371.208 33, 53, 73, 90, 104, 117, 130, 143, 155, 167, 180, 200, 229
14 2373.567 32, 52, 72, 89, 103, 115, 127, 139, 150, 161, 172, 185, 205, 232
15 2375.586 31, 49, 68, 84, 98, 109, 120, 131, 142, 153, 164, 175, 188, 208, 233
16 2377.255 26, 42, 59, 75, 89, 101, 111, 121, 132, 143, 154, 165, 176, 189, 209, 234
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Table 6: Continued.

Image 𝑛 Between-class variance (VTR) Thresholds

Snake

2 1118.615 87, 134
3 1231.320 76, 114, 154
4 1286.555 69, 101, 129, 166
5 1317.027 63, 91, 115, 140, 175
6 1336.172 59, 84, 105, 126, 149, 182
7 1348.933 55, 78, 97, 115, 133, 155, 187
8 1357.665 52, 73, 91, 107, 123, 140, 161, 192
9 1364.159 50, 70, 87, 102, 116, 131, 148, 169, 198
10 1368.955 47, 65, 81, 95, 108, 121, 135, 151, 172, 200
11 1372.626 46, 63, 78, 91, 103, 115, 127, 140, 156, 176, 203
12 1375.513 45, 61, 75, 88, 99, 110, 121, 133, 146, 162, 182, 208
13 1377.847 43, 58, 72, 84, 95, 106, 116, 127, 138, 151, 166, 185, 211
14 1379.736 42, 56, 69, 81, 92, 102, 112, 122, 132, 143, 155, 170, 189, 214
15 1381.282 41, 54, 66, 77, 87, 97, 106, 115, 124, 134, 145, 157, 172, 191, 215
16 1382.603 40, 52, 63, 74, 84, 93, 102, 111, 120, 129, 139, 150, 162, 177, 195, 219

Riosanpablo

2 2667.020 95, 160
3 2818.660 75, 121, 177
4 2892.439 68, 102, 143, 189
5 2931.654 62, 89, 121, 158, 197
6 2957.018 58, 82, 107, 138, 171, 204
7 2973.269 53, 74, 95, 119, 147, 177, 207
8 2984.972 50, 69, 87, 108, 133, 159, 185, 212
9 2993.359 48, 66, 83, 101, 122, 145, 168, 191, 215
10 2999.615 46, 63, 78, 93, 110, 130, 151, 173, 195, 217
11 3004.374 45, 61, 75, 89, 104, 121, 140, 160, 180, 200, 220
12 3008.082 44, 59, 72, 84, 97, 112, 129, 147, 166, 185, 203, 222
13 3011.101 43, 57, 69, 81, 93, 107, 122, 138, 155, 172, 189, 206, 224
14 3013.465 41, 54, 66, 77, 88, 100, 113, 128, 144, 160, 176, 192, 208, 225
15 3015.423 40, 53, 64, 74, 84, 95, 107, 121, 135, 150, 165, 180, 195, 210, 226
16 3017.081 39, 51, 62, 72, 82, 92, 103, 115, 128, 142, 156, 170, 184, 198, 212, 227

method [35], which is a local search method that cannot
guarantee an optimal solution.Thus, its solutions are inferior
to the solution produced by the algorithm using a global
search.

5.2.3. Convergence Rate Comparison. The number of gen-
erations (NG) is a measure used for the convergence rate
comparisons. If the target value, VTR, is achieved in a lesser
number of generations (NG), it means a faster convergence
rate for the algorithm. Table 3 shows the average of NG
(NGAM) for each specific number of thresholds.The results of
each algorithmare represented in the corresponding column’s
name. In each column, the cell containing NGAM starts from
the row associated with 𝑛 = 2 until the row associated with
𝑛 = 𝑛max. The cells associated with 𝑛 = 𝑛max + 1 to the row

associated with 𝑛 = 16 are filled by NA(𝑥). The second last
row of the table is filled by the triple:

(𝑛max,NA (number of unsuccessful subproblem) ,

AM (NGAM of 𝑛 = 2 until 𝑛 = 𝑛max)) .
(23)

The algorithm with the highest 𝑛max, that is, the lowest
number of unsuccessful subproblems and the lowest average
of generation is the winner. The ranking of the algorithms
depends on the ordering of (a

1
, b
1
, c
1
) and (a

2
, b
2
, c
2
) as

follows.
First, rank on a

1
and a

2
. Since both a

1
and a

2
are

numeric, the higher value has the higher rank.
Second, rank on b

1
and b

2
. If a
1
is 16, then b

1
must

be NA(0). If a
1
is less than 16, then b

1
must be NA
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(number of unsuccessful subproblems) and b
2
has the

same characteristics as b
1
. Perform the order of the

two numeric values in reverse; the lower value has the
higher rank.
Third, rank on c

1
and c

2
. They are numeric but the

lower is better; perform the order of the two numeric
values in reverse.The lower value has the higher rank.

When the ordering is finished, assign the numeric value of
“1” to the object having the highest rank, assign the numeric
value of “2” to the first runner up, and so on.These values are
represented in the last row of the table.

If the row having 𝑛 = 𝑚 must be ranked, it can be done
in the samemanner as above with someminormodifications.
If 𝑚 is less than 𝑛max, the values of the triple pair will be 𝑚,
NA(0), NGAM. If𝑚 is greater than 𝑛max, the values of the triple
pair will be (𝑛max, NA(𝑥), ∞). Thus the ranking can now be
performed.

From the ranking results, see the second last row of
Table 3; the convergence rate can be ranked from best to
worst in the following order: 𝑂(0.2)𝑅-DE, 𝑂(0.1)𝑅-DE,
𝑂(0.0)𝑅-DE, 𝑂(rand)𝑅-DE, 𝑂(0.3)𝑅-DE, 𝑂(0.4)𝑅-DE,
𝑂(0.5)𝑅-DE, 𝑂(0.6)𝑅-DE, DE, 𝑂(0.7)𝑅-DE, 𝑂(0.8)𝑅-DE,
rank-DE, 𝑂(0.9)𝑅-DE, ABC, PSO, DPSO, FODPSO.

As can be seen from Table 3, the DE algorithm cannot
complete the task when 𝑛 > 12 and the rank-DE algorithm
cannot complete the task when 𝑛 > 9. Thus, rank-DE
cannot compete with DE on searching for global multilevel
thresholding.

In order for𝑂(𝛽)𝑅-DE to outperform DE then 𝛽must be
in the range of [0.1, 0.6] or set to rndreal[0, 1).

5.2.4. Stability Analysis. The harmonic mean of the success
rate (SRHM) for each specific number of thresholds was
computed and is presented in Table 4. The results of each
algorithm are represented in the corresponding column’s
name. The second row from the bottom shows the harmonic
mean of the success rate of each algorithm for all threshold
levels.

In each column, the cells containing SRHM start from the
row associated with 𝑛 = 2 to the row associated with 𝑛 = 𝑛

0.5
.

The cells from the row associated with 𝑛 = 𝑛
0.5

+ 1 to the row
associatedwith 𝑛 = 𝑛max are filled by SRHM.The cells from the
row associatedwith 𝑛 = 𝑛max+1 to the row associatedwith 𝑛 =

16 are the cells that have SRHM; these cells will be excluded
from the comparison.The second last row of the table is filled
with the triple:

(𝑛
0.5

, 𝑛max,HM (SRHM of 𝑛 = 2 until 𝑛 = 𝑛max)) . (24)

The algorithm with the highest 𝑛
0.5
, the highest 𝑛max, and

the highest average success rate is the winner. The ranking of
the algorithms depends on the ordering of (a

1
, b
1
, c
1
) and (a

2
,

b
2
, c
2
) as follows.

First, rank on a
1
and a
2
.

Second, rank on b
1
and b
2
.

Third, rank on c
1
and c
2
.

Because they are numeric the higher value has the higher
rank. When the ordering is finished, the numeric value of “1”
is assigned to the object having the highest rank, the numeric
value of “2” is assigned to the first runner up, and so on.

If the row having 𝑛 = 𝑚must be ranked, it can be done in
the samemanner as above with someminor modifications. If
𝑚 is less than or equal to 𝑛

0.5
, the values of the triple pair will

be (𝑚, 𝑚, SRHM). If 𝑛0.5 < 𝑚 ≤ 𝑛max, then the values of the
triple pair will be (𝑛

0.5
, 𝑚, SRHM). If 𝑚 is greater than 𝑛max,

the values of the triple pair will be (𝑛
0.5
, 𝑛max, SRHM). Thus,

the ranking can now be performed.
From the ranking results, see Table 4, the success rate

can be ranked from best to worst in the following order:
𝑂(0.0)𝑅-DE, 𝑂(0.1)𝑅-DE, 𝑂(0.2)𝑅-DE, 𝑂(rand)𝑅-DE,
𝑂(0.3)𝑅-DE, 𝑂(0.5)𝑅-DE, 𝑂(0.4)𝑅-DE, DE, 𝑂(0.6)𝑅-DE,
𝑂(0.7)𝑅-DE, 𝑂(0.8)𝑅-DE, rank-DE, 𝑂(0.9)𝑅-DE, ABC,
PSO, DPSO, FODPSO, multithresh.

As can be seen from Table 4, the DE algorithm has an
SRHM ≥ 0.5 until 𝑛 = 9 and the rank-DE algorithm
has an SRHM ≥ 0.5 until 𝑛 = 7. This result confirms
that rank-DE cannot compete with DE on searching for
global multilevel thresholding. If the correct 𝛽 is selected,
the proposed algorithm can work very well. For 𝛽 ≤ 0.5,
𝑂(𝛽)𝑅-DE has a higher rank than DE. The multithresh
function cannot compete with any of the other algorithms.
It can also be seen that the proposed 𝑂(0.0)𝑅-DE algorithm
has the best stability because its SRHM is greater than 0.5when
𝑛 = 2 to 16.

5.2.5. Reliability Comparison. The threshold value distortion
a.k.a. TVD for each specific threshold is computed, shown
in Table 5 and depicted in Figure 2. The results of each
algorithmare illustrated in the corresponding column’s name.
The second last row of Table 5 shows the slope or the
approximated growth rate, 𝛿, of the TVD of each algorithm
for all threshold levels. The 𝛿 is the slope of the robust linear
regression computed by the Matlab function “robustfit.” The
lower slope exhibits the better reliability. The 𝛿 of each
algorithm is sorted in descending order. From the results, the
reliability can be ranked from best to worst in the following
order: 𝑂(0.0)𝑅-DE, 𝑂(0.1)𝑅-DE, 𝑂(0.2)𝑅-DE, 𝑂(0.3)𝑅-DE,
𝑂(0.4)𝑅-DE, 𝑂(0.5)𝑅-DE, 𝑂(rand)𝑅-DE, DE, 𝑂(0.6)𝑅-DE,
ABC, rank-DE, 𝑂(0.7)𝑅-DE, 𝑂(0.8)𝑅-DE, 𝑂(0.9)𝑅-DE,
DPSO, FODPSO, PSO, multithresh.

We can see from these results that rank-DE has a higher
approximatedTVDgrowth rate thanDE.𝑂(𝛽)𝑅-DEwith𝛽 ≤

0.5 and 𝑂(rand)𝑅-DE are still better than DE. 𝑂(0.0)𝑅-DE
produced the best result with a very flat slope and a very
low 𝑦-intercept. The multithresh function yielded a higher
growth rate of solution distortion and a higher 𝑦-intercept
than the other algorithms.The higher growth rate of solution
distortion means the quality of solution drops very fast if
the number of thresholds increases. The higher 𝑦-intercept
means that the solution distortion at the lowest number of
thresholds is high.Thus, the global optimization algorithm is
required for solving the multilevel thresholding.
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6. Conclusions

The differential evolution with onlooker (𝛽) ranking-based
mutation operator 𝑂(𝛽)𝑅-DE algorithm was proposed and
applied to the multilevel image thresholding problem. The
objective of this proposed algorithm was to increase the
ability for adjusting the balance of the exploitation and
exploration abilities. Its concept is a combination of the
ranking-difference evolution and onlooker selection of the
ABC algorithm. The experiments compared the proposed
𝑂(𝛽)𝑅-DE algorithm with six existing algorithms: PSO,
DPSO, FODPSO, ABC, DE, and rank-DE on 20 real images
of the Berkeley Segmentation Dataset and Benchmark and
a satellite image. The stability analysis, convergence speed,
and the reliability were measured. The results signified that
the proposed 𝑂(𝛽)𝑅-DE algorithm is more efficient than the
six tested algorithms. The onlooker ranking-based mutation
operator is able to enhance the performance of the proposed
algorithm. The 𝑂(𝛽)𝑅-DE not only obtained more stability
analysis, but it also achieved faster convergence rates to reach
the target BCV, if a proper value of 𝛽 is set.

For future work based on this paper, the proposed
𝑂(𝛽)R-DE algorithm has one parameter to be set by a user;
the mechanism to automatically adapt this parameter is not
presented but is required.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the Higher Education Research
Promotion andNational Research University Project ofThai-
land, Office of the Higher Education Commission, through
the Cluster of Research to Enhance the Quality of Basic
Education.

References

[1] W. K. Pratt, Digital Image Processing, John Wiley & Sons, New
York, NY, USA, 1978.

[2] J. S. Weszka, “A survey of threshold selection techniques,” Com-
puter Graphics and Image Processing, vol. 7, no. 2, pp. 259–265,
1978.

[3] K. S. Fu and J. K. Mui, “A survey on image segmentation,” Pat-
tern Recognition, vol. 13, no. 1, pp. 3–16, 1981.

[4] P. K. Sahoo, S. Soltani, and A. K. C. Wong, “A survey of
thresholding techniques,”Computer Vision, Graphics and Image
Processing, vol. 41, no. 2, pp. 233–260, 1988.

[5] N. R. Pal and S. K. Pal, “A review on image segmentation tech-
niques,” Pattern Recognition, vol. 26, no. 9, pp. 1277–1294, 1993.

[6] A. T. Abak, U. Baris, and B. Sankur, “The performance
evaluation of thresholding algorithms for optical character
recognition,” in Proceedings of the 4th International Conference
on Document Analysis and Recognition, pp. 697–700, Ulm,
Germany, August 1997.

[7] M. Sezgin and B. Sankur, “Survey over image thresholding
techniques and quantitative performance evaluation,” Journal of
Electronic Imaging, vol. 13, no. 1, pp. 146–168, 2004.

[8] S.U. Lee and S. YoonChung, “A comparative performance study
of several global thresholding techniques for segmentation,”
Computer Vision, Graphics and Image Processing, vol. 52, no. 2,
pp. 171–190, 1990.

[9] N. Otsu, “A threshold selection method from gray level his-
tograms,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 9, no. 1, pp. 62–66, 1979.

[10] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks (ICNN ’95), vol. 4, pp. 1942–1948, Perth, Australia,
December 1995.

[11] R. Storn and K. Price, “Differential evolution-a simple and
efficient heuristic for global optimization over continuous
spaces,” Tech. Rep. TR-95-012, International Computer Sciences
Institute, Berkeley, Calif, USA, 1995.

[12] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Tech. Rep. TR06, ErciyesUniversity, Engineering
Faculty, Computer Engineering Department, 2005.

[13] M. S. Couceiro, R. P. Rocha, N. M. F. Ferreira, and J. A. T.
Machado, “Introducing the fractional-order Darwinian PSO,”
Signal Image and Video Processing, vol. 6, no. 3, pp. 343–350,
2012.

[14] R. V. Kulkarni and G. K. Venayagamoorthy, “Bio-inspired algo-
rithms for autonomous deployment and localization of sensor
nodes,” IEEE Transactions on Systems, Man and Cybernetics C,
vol. 40, no. 6, pp. 663–675, 2010.

[15] B. Akay, “A study on particle swarm optimization and artificial
bee colony algorithms for multilevel thresholding,” Applied Soft
Computing Journal, vol. 3, no. 6, pp. 3066–3091, 2013.

[16] K. Hammouche, M. Diaf, and P. Siarry, “A comparative study
of various meta-heuristic techniques applied to the multilevel
thresholding problem,” Engineering Applications of Artificial
Intelligence, vol. 23, no. 5, pp. 676–688, 2010.

[17] V. Osuna-Enciso, E. Cuevas, and H. Sossa, “A comparison of
nature inspired algorithms for multi-threshold image segmen-
tation,” Expert Systems with Applications, vol. 40, no. 4, pp. 1213–
1219, 2013.

[18] P. Ghamisia, M. S. Couceiro, F. Martins, and J. A. Benediktsson,
“Multilevel image segmentation based on Fractional-Order
Darwinian particle swarm optimization,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 52, no. 1, pp. 1–44, 2013.

[19] W. Gong and Z. Cai, “Differential evolution with ranking-based
mutation operators,” IEEE Transactions on Cybernetics, vol. 43,
no. 6, pp. 2066–2081, 2013.

[20] K. Price, R. Storn, and J. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization, Springer, Berlin,
Germany, 2005.

[21] R. Storn and K. Price, Home Page of Differential Evolution,
International Computer Science Institute, Berkeley, Calif, USA,
2010.

[22] A. K. Qin and P. N. Suganthan, “Self-adaptive differential
evolution algorithm for numerical optimization,” in Proceedings
of the IEEE Congress on Evolutionary Computation (CEC ’05),
pp. 1785–1791, September 2005.

[23] E.Mezura-Montes, J. Velázquez-Reyes, andC. A. Coello Coello,
“A comparative study of differential evolution variants for global
optimization,” in Proceedings of the 8th Annual Genetic and
Evolutionary Computation Conference, pp. 485–492, July 2006.



Mathematical Problems in Engineering 23

[24] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[25] S. Das, A. Abraham, and A. Konar, “Automatic clustering using
an improved differential evolution algorithm,” IEEE Transac-
tions on Systems, Man, and Cybernetics A, vol. 38, no. 1, pp. 218–
237, 2008.

[26] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer,
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