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Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD) guided firefly algorithm (FA).
A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-
class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed
algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as
Lévy flight (LF) guided FA and random operator guided FA. The performance assessment comparison between the proposed and
existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio
(PSNR), structural similarity (SSIM) index, and search time of CPU.The results show that BD guided FA provides better objective
function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.

1. Introduction

In imaging science, image processing plays a vital role in
the analysis and interpretation of images in fields such
as medical discipline, navigation, environment modeling,
automatic event detection, surveillance, texture and pattern
recognition, and damage detection. The development of dig-
ital imaging techniques and computing technology increased
the potential of imaging science.

During the image processing operation, a photograph or
a video frame is analyzed with a chosen signal processing
technique and the outcomes such as processed image, data,
and/or parameters related to image are further investigated
to extract the desired information from the raw input image.

Image segmentation is one of preprocessing techniques
used to regulate the features of an image. It is also judged to
be an important procedure for significant examination and
interpretation of input images [1].

Over the years, several techniques for segmentation have
been proposed and implemented in the literature [2–10]. In
segmentation, the input image is separated into nonoverlap-
ping, homogenous regions containing similar objects. Based
on the performance appraisal process, the segmentation
methods are classified into two groups such as supervised
and unsupervised evaluation. Unsupervised methods are
preferable in real-time processing because they do not require
a manually segmented image [11].

Thresholding is considered the most desired procedure
out of all the existing procedures used for image segmen-
tation, because of its simplicity, robustness, accuracy, and
competence [12]. If the input image is divided into two
classes, such as the background and the object of interest, it is
called bilevel thresholding. Bilevel thresholding is extended
to multilevel thresholding to obtain more than two classes
[11, 13, 14].
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The thresholds can be derived at a local or global level
[15]. In local thresholding, a different threshold is assigned
for each part of the image. In global thresholding, a single
global threshold in the probability density function of the
grey level histogram is obtained using parametric or non-
parametric approach to find the thresholds. In the parametric
approaches, the statistical parameters of the classes in the
image are estimated.They are computationally expensive, and
their performance may vary depending on the initial condi-
tions. In the nonparametric approaches, the thresholds are
determined by maximising some criteria, such as between-
class variance [16] or entropy measures.

The methods such as Kapur, Tsallis, and Otsu are widely
adopted by most of the researchers to find solution for
multilevel image segmentation problems [17–20]. In general,
Kapur and Otsu based thresholding techniques proved their
better shape and uniformity measures for the bilevel and
multilevel thresholding problems [1].

Traditional methods work well for a bilevel thresholding
problem, when the number of threshold level increases,
complexity of the thresholding problem also will increase
and the traditional method requires more computational
time. Hence, in recent years, soft computing algorithm based
multilevel image thresholdingprocedure is widely proposed
by the researchers.

Recent literature illustrates that the heuristic and meta-
heuristic algorithms such as particle swarm optimization
(PSO) [20–25], bacterial foraging algorithm (BFO) [1, 13,
17, 18], differential evaluation (DE) [19, 26–28], artificial
bee colony (ABC) [11, 29], cuckoo search (CS) [12, 30],
watershed algorithm [31], fuzzy logic [32], hybrid method
[33], and self-adaptive parameter optimization algorithm
[34] are widely considered for optimal multilevel image
segmentation problem to enhance the outcome.

In this work, the FA, initially proposed by Yang, is consid-
ered [35, 36]. From the recent literature, it is observed that the
FA offers better optimal solution for variety of engineering
problems [37–48]. In this work, recently proposed Brownian
distribution guided firefly algorithm (BDFA) by Sri Madhava
Raja et al. [49] is adopted for solving multilevel thresholding
image segmentation problem using Otsu’s between-class
variance method.The proposed technique is tested on twelve
standard test images and compared with the traditional FA
and Lévy flight guided firefly algorithm (LFFA).

The paper is organized as follows. Section 2 presents
the Otsu based multilevel thresholding problem. Section 3
presents the overview of the FA, and the implementation
of Otsu guided FA is discussed in Section 4. Experimental
results are evaluated and discussed in Section 5. Conclusion
of the present research work is given in Section 6.

2. Methodology

The classical and optimization algorithm based thresholding
methods existing in the literature are employed to find the
best possible threshold in the segmentedhistogramby satisfy-
ing some guiding parameters. Otsu based image thresholding
is initially proposed in 1979 [50]. This method presents the

optimal values by maximizing the objective function. In the
present work, Otsu’s nonparametric segmentation method
known as between-class variance is considered. A detailed
description of the between-class variance method could be
found in [1, 11].
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The mean intensity (𝜇
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) of the entire image can be repre-
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The objective function for the bilevel thresholding problem
can be expressed as
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The above discussed procedure can be extended to a
multilevel thresholding problem for various “𝑚” values as
follows.

Let us consider that there are “𝑚” thresholds
(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
), which divide the input image into “𝑚”

classes: 𝐶
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with gray levels in the range 0 to 𝑡 − 1, 𝐶
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1
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The objective function for the multilevel thresholding
problem can be expressed as
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functions are assigned for𝑚 = 2,𝑚 = 3,𝑚 = 4, and𝑚 = 5.)

3. Firefly Algorithm

Firefly algorithm is a nature inspired metaheuristic algo-
rithm initially proposed by Yang [35, 36]. This algorithm
is developed by imitating the flashing illumination patterns
generated by invertebrates such as glowworm and firefly.
They generate chemically produced light from their lower
abdomen.This bioluminescencewith varied flashing patterns
generated by glowworm/firefly is used to establish commu-
nication between two neighboring insects, to search for prey
and also to find mates.
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The classical FA is developed by taking the following
conditions into account [37–40].

(i) All the fireflies are unisex and one firefly will be
attracted to the nearest firefly regardless of their sex.

(ii) The attractiveness between two fireflies is propor-
tional to the luminance. For any couple of flash-
ing fireflies, the firefly with the brighter luminance
will attract the firefly with lesser luminance. The
attractiveness between two fireflies mainly depends
on the Cartesian distance and is proportional to the
brightness which decreases with increasing distance
between fireflies. In a region, if all the fireflies have
lesser luminance, then theywillmove randomly in the
“𝐷” dimensional search space until they find a firefly
with brighter luminance.

(iii) The brightness of a firefly is somehow related to the
analytical form of the objective function assigned to
guide the search process.

The overall performance (exploration time, speed of
convergence, and optimization accuracy) of the FA depends
on the cost function, which monitors the optimization
search. For a maximization problem, luminance of a firefly
is considered to be proportional to the value of cost function
(i.e., luminance = objective function).

3.1. Fundamentals. The chief parameters which decide the
efficiency of the FA are the variations of light intensity
and attractiveness between neighboring fireflies. These two
parameters will be affected by the increase in the distance
between fireflies [23].

Variation in luminance can be analytically expressed by
the following Gaussian form:
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𝑒
−𝛾𝑑
2

, (6)

where 𝐼 is the new light intensity, 𝐼
0
is the original light

intensity, and 𝛾 is the light absorption coefficient.
The attractiveness to the luminance can be analytically

represented as
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where 𝛽 is the attractiveness coefficient and 𝛽
0
is the attrac-

tiveness at 𝑟 = 0.
The above equation describes a characteristic distance

Γ = 1/√𝛾 over which the attractiveness changes significantly
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form:
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For a fixed 𝛾, the characteristic length becomes
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Conversely, for a given length scale Γ, the parameter 𝛾 can be
used as atypical initial value (i.e., 𝛾 = 1/Γ𝑚).
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In FA, the light intensity at a particular distance 𝑑 from
the light source 𝑋𝑡

𝑖
obeys the inverse square law. The light

intensity of a firefly 𝐼 reduces, as the distance 𝑑 increases in
terms of 𝐼 ∝ 1/𝑑

2. The movement of the attracted firefly 𝑖
towards a brighter firefly 𝑗 can be determined by the following
position update equation:
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where 𝑋𝑡+1
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is the updated position of firefly, 𝑋𝑡
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is the initial
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fireflies, and Ψ is the randomization parameter.
From (11), it is observed that updated position of the 𝑖th

firefly depends on initial position of the firefly, attractiveness
of firefly to the luminance, and the randomization parameter.
In this paper randomization parameters such as 𝛼𝜀𝑖 [36]
and 𝛼 sign (rand − 1/2) Lévy [37, 51] are considered. Lévy
flight based randomization parameter helps to achieve faster
convergence compared to other randomization parameters
existing in the literature.

3.2. Working Principle. The working principle of the tra-
ditional FA is demonstrated in this section using a two-
dimensional optimization problem. The total number of
fireflies is assigned as six.When the algorithm is initialized, all
the fireflies are randomly distributed in the two-dimensional
search space. In this problem, it is assumed that the search
space has two local best values and a global best value.

During the initial search, some fireflies move towards
the local best (LB) values and some reach the global best
(GB) value as illustrated in Figure 1(a). From Figure 1(a), it is
observed that firefly 1 (FF1) is at LB1, firefly 4 (FF4) is at GB,
and firefly 5 (FF5) is at LB2. FF2 lies between LB1 and GB,
FF3 lies between GB and LB2, and FF6 is between GB and
LB2. The light intensity produced by FF4 is brighter than the
light intensity by FF1 and FF5. At this condition, FF2 moves
towards LB1 or GB based on the Cartesian distance “𝑑” (8). In
this problem, the distance between FF1 and FF2 (𝐷1) is short
compared to 𝐷2; hence FF2 moves towards LB1. Similarly,
the Cartesian distance between FF4 and FF3 (𝐷3) is shorter
than𝐷4, and FF3 is more likely attracted to GB than LB2.The
Cartesian distance between FF6 and FF5 (𝐷5) is shorter than
𝐷6, and FF6 is likely attracted to LB2.

Figure 1(b) shows the second stage of search process.
When the search iteration increases, the firefly at the GB
is retained. The attraction signal between the fireflies at the
local best value is exponentially decreased with the increase
in search iteration and the entire fireflies move towards the
GB. Finally a considerable amount of fireflies are gathered
at the global best value as shown in Figure 1(c) at the end of
optimization search.
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Figure 1: Various stages of firefly search.
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Figure 2: Relation between LF and BD.

3.3. Lévy Flight and Brownian Distribution. In recently devel-
oped nature inspired methods such as firefly and cuckoo
algorithm, optimization search process is guided by Lévy
flight (LF) strategy [35].

LF is a random walk with a sequence of arbitrary steps
and is conceptually similar to the search path of a foraging
animal [52]. In LF, the flight span and the length between two
successive changes in direction are drawn from a probability
distribution. Similar to LF, Brownian distribution (BD) is
also in the family of random walks. Figure 2 shows the
relationship between LF and BD. Based on the temporal
exponent (𝛼) and spatial exponent (𝛽) values, LF and BD

can be realized from the random walks [53]. A detailed
justification of LF and BD is discussed in the book by Yang
[35]. Lévy flight is superdiffusive Markovian process, whose
step length is drawn from the Lévy distribution in terms of a
simple power-law formula:

𝐿 (𝑠) ∼ |𝑠|
−1−𝛽

, where 0 < 𝛽 ≤ 2. (12)

The Brownian walk is a subdiffusive non-Markovian
process, which obeys a Gaussian distribution with zero
mean and time-dependent variance. In (12), the ratio of
exponents 𝛼/𝛽 provides the relationship between sub- and
superdiffusion. When 𝛽 < 2𝛼, the continuous random walk
is superdiffusive, and for 𝛽 > 2𝛼 it is subdiffusive. For 𝛽 =
2𝛼, the search process exhibits the same scaling as ordinary
Brownian motion [52, 54].

Figures 3(a) and 3(b) depict the search patterns of a single
firefly with LF and BD in a two-dimensional search space.
Figure 3(a) shows that Lévy flight guided FA is very efficient
in exploring unknown search space with minimal number of
iterations, because of its large step size. Figure 3(b) shows that
the BD guided FA explores the search space with smaller step
size and provides the best possible solution. In this work, the
following formulae are considered:

Lévy flight: 𝐿
𝐹
(𝑠) = 𝐴 ⋅ |𝑠|

1/𝛽 (13)

Brownian distribution: 𝐵 (𝑠) = 𝐴 ⋅ |𝑠|𝛼/2 (14)

𝐴 = 𝛽Γ (𝛽) sin(
𝛽𝜋

2

)

1

𝜋

, (15)

where 𝐴 is the random variable, 𝛽 is the spatial exponent,
𝛼 is the temporal exponent, and Γ(𝛽) is a Gamma function.
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Figure 3: (a) Search pattern of a firefly with LF. (b) Search pattern of a firefly with BD.
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Equations (13) and (14) are formed as discussed in [49]. The
random variable presented in (15) is chosen based on the
article by Gandomi et al. [51].

4. Implementation

Themultilevel thresholding problem deals with finding opti-
mal thresholds within the gray scale range [0, 𝐿 − 1] that
maximize a fitness criterion 𝐽(𝑡). Otsu’s between-class vari-
ance function is employed to find the threshold values. The
search dimension of the optimization problem is assigned
based on the number of thresholds (𝑚) considered. In this
paper, optimal multilevel thresholding has been carried out
by an unsupervised global-level nonparametric approach. In
the proposed approach, the efficiencies of BDFA, LFFA, and
FA are tested separately, and their performances have been
compared.

Figure 4 depicts the flow chart of the proposed work.The
firefly algorithms are employed to find the optimal threshold
values by maximizing the objective function.

In metaheuristic algorithm based optimization methods,
the bounded search technique helps to achieve better val-
ues with lesser iterations [49]. In the proposed work, the
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Figure 6: (a)Original Barbara image, (b) histogram, and (c)–(f) segmented Barbara imagewith various “𝑚” levels and corresponding optimal
threshold values.

dimension of the search varies from 2 to 5 based on the
“𝑚” values. When 𝑚 = 2, it is a simple two-dimensional
optimization problem and an unbounded search may offer
better result with lesser iterations.When “𝑚” value increases,
the complexity of the optimization problem alsowill increase.

In this paper we introduced a bounded search technique
for the image segmentation problem. Instead of initializing
the search operation with a range of gray levels [0, 𝐿 − 1], we
propose a search boundary as

min value < gray levels < max value. (16)

Figure 5 shows the histogram of the Barbara image. The
value of “𝑚” is five; hence it is a five-dimensional optimization
problem (i.e., the number of threshold to be identified is
five). The search boundary for the threshold is assigned as
20 < gray levels < 220. During the boundary based search,
the optimization algorithm explores the gray levels situated
between 20 and 220 and ignores the rest of the gray levels.
This bounded search technique will provide better solution
with lesser iterations.

The performance of the Otsu guided firefly algorithms is
evaluated using the well-known parameters such as peak-to-
signal ratio (PSNR) and structural similarity indices (SSIM)
[11].

The PSNR is mathematically represented as

PSNR (𝑥, 𝑦) = 20 log
10
(

255

√MSE (𝑥, 𝑦)
) . (17)

The SSIM is normally used to estimate the image quality
and interdependencies between the original and processed
image. SSIM index combines luminance comparison, con-
trast comparison, and structure comparison and satisfies
symmetry, boundedness, and unique maximum properties:

SSIM (𝑥, 𝑦) =
(2𝜇
𝑥
𝜇
𝑦
+ 𝐶
1
) (2𝜎
𝑥𝑦
+ 𝐶
2
)

(𝜇
2

𝑥
+ 𝜇
2

𝑦
− 𝐶
1
) (𝜎
𝑥
2 + 𝜎
𝑦
2 + 𝐶
2
)

. (18)

Otsu guided firefly algorithm based multilevel threshold-
ing techniques have been tested on different standard test
images such as Barbara, where 𝜇

𝑥
is the average of 𝑥, 𝜇

𝑦
is

the average of 𝑦, 𝜎2
𝑥
is the variance of 𝑥, 𝜎2

𝑦
is the variance
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Figure 10: Mandrill.
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Figure 11: Jet.
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Figure 12: Boat.
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Figure 13: Zebra.
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Figure 14: Snake.
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Figure 15: Fish.
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Figure 16: Star Fish.
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Figure 17: Sailor.

of 𝑦, 𝜎
𝑥𝑦

is the covariance of 𝑥 and 𝑦, 𝐶
1
= (𝑘
1
𝐿)
2 and

𝐶
2
= (𝑘
1
𝐿)
2 stabilize the division with weak denominator,

𝐿 = 256, 𝑘
1
= 0.01, and 𝑘

2
= 0.03.

Like SSIM, structural dissimilarity (DSSIM) is also amea-
sure of the processed image quality and it can be expressed as

DSSIM (𝑥, 𝑦) =
1 − SSIM (𝑥, 𝑦)

2

. (19)

In this work, PSNR and SSIM are considered to evaluate
the performance of firefly algorithms.

5. Results and Discussion

The images Lena, Cameraman, Living Room, Mandrill, Jet,
and Boat are obtained from the database available at [55].
The remaining five images, Zebra, Snake, Fish, Star Fish,
and Sailor, were taken from the Berkeley Segmentation
Dataset [56]. The entire image has an inimitable grey level
histogram. All the test images are converted into a 256 ×
256 sized gray scale image before the analysis. In the test
images, most of them are difficult to segment because of their
multimodal histograms. Images such as Barbara and Lena
show multiple peaks and valleys whereas the Living Room
image shows abruptly changing pixel levels. Other images
such as Mandrill, Boat, Zebra, Snake, Fish, and Star Fish

show a smooth distribution in gray level compared to the
Cameraman and Jet.

All the experiments were performed on a work station
with an AMD C70 Dual Core 1 GHz CPU with 4GB of RAM
and equipped with MATLAB R2010a software.

Thefirefly algorithmparameters are assigned as discussed
in [51]; the number of fireflies is as follows: (𝑛) = 25, 𝛽

0
= 1,

𝛾 = 5, and 𝛼
0
= 0.5 (gradually reduced to 0.1 in steps of 0.01

as iterations proceed), and the total number of run is chosen
as 5000.

During the experiment, each image is examined with a
number of thresholds such as 𝑚 = 2 to 5. The simulation
study is repeated 20 times individually and the best value
among the search is recorded as the optimal threshold value.
In Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, (a) represents
the original image, (b) represents the histogram for a 256 ×
256 image, and (c) to (f) represent the segmented images of
Otsu guided BDFA for𝑚 = 2 to 5.

During the optimization exploration, the search bound-
aries for the images are assigned as follows.

Lena = 20 < gray levels < 220, Cameraman = 50 < gray
levels < 200, Living Room = 0 < gray levels < 230, Mandrill
30 < gray levels < 210, Jet = 50 < gray levels < 220, Boat = 50 <
gray levels < 200, Zebra = 50 < gray levels < 200, Snake = 20
< gray levels < 200, Fish = 30 < gray levels < 230, Star Fish =
30 < gray levels < 230, and Sailor = 10 < gray levels < 210.
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Table 1: Comparison of objective values achieved with Otsu guided various FAs.

Test images 𝑚

Objective function values Optimal threshold values
BDFA LFFA FA BDFA LFFA FA

Barbara

2 912.23 1023.28 1038.18 92, 158 90, 157 90, 156
3 961.89 1523.21 1300.15 74, 122, 181 77, 124, 183 73, 120, 178
4 1053.12 1593.82 1872.19 63, 96, 138, 191 61, 93, 137, 194 63, 96, 138, 191
5 2428.05 1735.34 2164.01 47, 79, 122, 143, 191 46, 81, 119, 140, 193 44, 81, 120, 147, 188

Lena

2 1105.92 952.36 1052.66 90, 148 92, 149 92, 148
3 1823.25 1271.83 1382.71 63, 119, 171 64, 117, 168 59, 111, 172
4 1858.92 1639.26 1429.52 55, 100, 133, 183 57, 102, 138, 179 51, 98, 142, 176
5 2017.63 1753.92 1742.08 49, 98, 124, 150, 185 53, 95, 128, 153, 187 49, 103, 128, 152, 186

Cameraman

2 1757.03 2071.36 1949.28 70, 148 70, 148 71, 148
3 1941.42 2418.92 2023.41 51, 119, 163 54, 120, 158 53, 118, 162
4 2056.55 2508.48 2205.20 49, 117, 144, 182 50, 113, 148, 174 49, 112, 148, 171
5 2592.04 2691.82 2533.75 38, 91, 137, 170, 201 42, 93, 138, 169, 198 44, 92, 140, 173, 204

Living Room

2 1053.87 925.83 1104.07 84, 152 82, 155 84, 152
3 1103.72 1053.62 1311.94 86, 141, 192 84, 138, 189 86, 141, 192
4 1376.21 1329.02 1482.10 61, 107, 148, 189 64, 105, 140, 187 66, 109, 146, 191
5 1855.16 1753.41 2153.12 62, 110, 129, 174, 195 66, 106, 138, 162, 203 61, 102, 135, 166, 198

Mandrill

2 903.63 1067.36 942.01 90, 147 88, 148 87, 148
3 1053.01 1271.53 1101.83 101, 148, 193 102, 153, 178 100, 148, 182
4 1187.49 1480.99 1359.22 70, 104, 133, 182 71, 109, 144, 175 71, 112, 138, 184
5 1609.61 1622.76 1472.94 71, 111, 134, 167, 187 69, 104, 141, 156, 183 74, 102, 138, 158, 181

Jet

2 836.42 753.36 1102.53 90, 213 98, 210 91, 213
3 1063.26 933.92 1491.25 93, 139, 203 98, 140, 211 96, 138, 215
4 1293.84 1077.32 1870.55 63, 111, 142, 199 66, 108, 142, 205 58, 112, 138, 203
5 1419.27 1121.66 2015.99 77, 92, 123, 151, 210 76, 96, 118, 149, 212 72, 95, 131, 148, 206

Boat

2 933.16 1047.83 1036.00 99, 176 98, 178 100, 181
3 1076.37 1154.34 1204.36 60, 119, 183 64, 121, 178 61, 124, 182
4 1192.01 1293.51 1528.04 48, 81, 138, 188 51, 86, 131, 184 52, 91, 133, 176
5 1302.33 1504.18 1597.61 39, 67, 110, 158, 187 42, 65, 109, 153, 183 46, 72, 116, 148, 189

Zebra

2 1392.22 1073.25 1530.03 94, 151 94, 149 91, 148
3 1503.87 1482.39 1677.92 82, 119, 188 81, 128, 185 78, 119, 189
4 1893.2 1629.06 1853.33 70, 115, 132, 185 73, 110, 135, 204 69, 98, 128, 187
5 2019.11 1865.35 2289.01 61, 95, 122, 153, 187 66, 93, 114, 146, 198 64, 97, 109, 145, 189

Snake

2 1398.36 1811.76 1195.21 77, 146 75, 147 74, 144
3 1639.22 2071.04 1584.73 61, 114, 166 68, 110, 153 61, 121, 169
4 1763.93 2191.55 1965.05 59, 93, 122, 175 54, 85, 123, 175 55, 76, 135, 182
5 1973.06 2305.04 2100.46 52, 84, 121, 144, 189 48, 82, 130, 152, 182 51, 81, 128, 151, 179

Fish

2 925.38 825.25 733.25 102, 182 98, 182 100, 184
3 955.26 1063.82 792.47 83, 143, 194 87, 144, 197 82, 139, 188
4 1005.03 1205.13 1052.35 72, 125, 162, 203 63, 118, 172, 202 65, 122, 164, 198
5 1052.77 1311.74 1360.35 57, 88, 134, 178, 197 48, 79, 141, 175, 202 54, 91, 127, 168, 206

Star Fish

2 1402.32 2061.65 1785.50 81, 159 82, 162 81, 158
3 1611.54 2095.16 2106.76 62, 109, 181 59, 116, 187 65, 111, 175
4 1638.02 2105.32 2201.45 57, 108, 142, 186 53, 112, 149, 178 48, 109, 138, 183
5 1977.28 2411.77 2311.86 47, 88, 123, 157, 192 44, 83, 127, 163, 188 53, 78, 120, 152, 176

Sailor

2 600.23 854.05 831.06 53, 175 51, 178 50, 172
3 712.93 1052.69 953.72 48, 126, 161 52, 132, 174 47, 136, 178
4 730.18 1172.07 1106.35 41, 84, 142, 181 38, 91, 138, 178 41, 84, 142, 181
5 826.24 1202.22 1290.60 39, 98, 127, 154, 186 41, 87, 122, 164, 192 45, 88, 133, 184, 203



14 Modelling and Simulation in Engineering

Table 2: Comparison of the standard deviation, PSNR, SSIM, and CPU time obtained for test images.

Test images 𝑚

Standard deviation PSNR (dB) SSIM CPU time (sec)
BDFA LFFA FA BDFA LFFA FA BDFA LFFA FA BDFA LFFA FA

Barbara

2 0.00914 0.02582 0.01457 20.0652 25.1241 23.0627 0.8068 0.7540 0.7882 100.46 26.15 47.05
3 0.07482 0.06925 0.06679 22.0239 25.2267 24.1197 0.8371 0.8201 0.8300 163.05 41.26 43.14
4 0.50224 0.62528 0.27874 21.7727 23.1895 22.0257 0.8553 0.8227 0.8285 187.25 57.31 50.42
5 0.62903 0.80425 0.70422 24.8064 24.9632 25.0159 0.8368 0.8113 0.8328 258.15 45.25 73.02

Lena

2 0.02891 0.16251 0.07539 23.2027 27.1066 25.1176 0.8208 0.8011 0.8116 102.36 18.02 25.14
3 0.04903 0.27180 0.13850 20.9014 22.0823 20.9964 0.8489 0.8246 0.8310 142.47 31.78 61.03
4 0.31176 0.52319 0.38196 24.1167 25.2476 25.5752 0.8606 0.8165 0.8206 204.52 56.23 71.32
5 0.58319 0.83251 0.61698 23.2251 24.1466 23.2257 0.8847 0.8542 0.8729 291.02 69.22 108.13

Cameraman

2 0.00176 0.27810 0.07972 25.2568 25.7741 25.8820 0.8258 0.7736 0.8211 104.15 37.28 42.05
3 0.11874 0.29826 0.31709 23.2942 26.0523 24.0368 0.8432 0.7302 0.8400 131.42 51.35 60.15
4 0.73652 0.52111 0.37073 25.1117 27.2476 25.8852 0.8478 0.7533 0.8218 128.26 58.13 62.34
5 0.90362 0.70728 0.74130 26.0004 27.1168 26.4773 0.8633 0.8154 0.8206 142.43 55.28 70.51

Living Room

2 0.03782 0.12671 0.19542 22.0778 22.9625 23.1843 0.8004 0.7699 0.7804 305.35 118.15 136.04
3 0.07293 0.16729 0.21073 20.2699 22.9952 21.0424 0.8105 0.7811 0.7915 461.55 132.03 130.33
4 0.38791 0.50981 0.49611 24.9426 26.0731 25.5817 0.8422 0.8102 0.8200 604.46 146.21 172.49
5 0.82522 0.92351 0.99218 26.0774 26.4426 26.9936 0.8259 0.8246 0.8216 822.50 165.15 190.22

Mandrill

2 0.26681 0.38199 0.28541 23.1159 24.0052 24.1111 0.8077 0.7745 0.7835 89.37 52.11 54.27
3 0.27916 0.51029 0.39510 21.0002 22.1842 21.2943 0.8322 0.8004 0.8125 114.50 51.58 64.03
4 0.63441 0.73416 0.73170 24.1883 25.2952 24.7160 0.8421 0.7953 0.8386 172.24 59.13 72.44
5 0.83551 0.91282 0.90525 21.2683 22.0673 23.0662 0.8257 0.8104 0.7993 166.39 71.35 69.51

Jet

2 0.43203 0.69100 0.28023 23.9864 24.1578 24.0622 0.8414 0.8011 0.8268 79.03 43.35 41.50
3 0.55871 0.69261 0.63321 21.8552 21.9994 22.0523 0.8528 0.7793 0.8280 82.33 51.29 48.04
4 0.58352 0.83515 0.70527 26.0316 26.1481 26.1963 0.8234 0.7922 0.8003 97.15 74.22 84.52
5 0.62253 0.92614 0.88038 25.3806 26.0437 25.5280 0.8943 0.8317 0.8552 133.07 94.25 77.06

Boat

2 0.00256 0.13872 0.02923 23.7731 24.9962 25.0063 0.8018 0.7935 0.7825 59.35 42.55 51.12
3 0.02361 0.20018 0.06377 20.2579 21.2579 22.0774 0.8280 0.7847 0.7899 63.19 50.32 46.24
4 0.18389 0.41993 0.21950 21.6589 23.1843 24.1116 0.8146 0.8003 0.8002 89.04 62.13 70.13
5 0.20871 0.61923 0.37424 25.0227 26.7428 25.8125 0.8593 0.8331 0.8236 107.23 71.35 81.30

Zebra

2 0.10198 0.41092 0.20850 26.0424 27.3566 26.9431 0.8405 0.7999 0.8332 125.31 48.01 72.52
3 0.18378 0.57708 0.31114 27.1157 27.8841 27.3215 0.8305 0.8110 0.8206 91.26 50.19 42.16
4 0.18992 0.72119 0.50019 25.6428 27.0053 25.9092 0.8288 0.7845 0.8005 124.20 61.34 71.24
5 0.39346 0.90371 0.74930 25.7431 27.1579 26.0853 0.8500 0.8003 0.8367 152.43 73.15 80.26

Snake

2 0.00278 0.21309 0.04859 25.0723 25.1589 26.2786 0.8267 0.7945 0.8025 110.52 59.21 61.25
3 0.07820 0.40192 0.15428 20.6437 20.6318 21.2578 0.8725 0.8264 0.8226 136.11 62.25 82.19
4 0.13891 0.51223 0.28420 24.0628 24.9132 24.3337 0.8259 0.8077 0.8024 131.35 71.39 59.18
5 0.20182 0.98801 0.49110 22.1118 23.0075 22.9524 0.8551 0.8205 0.8366 148.52 83.11 93.40

Fish

2 0.00991 0.34992 0.00163 20.0732 22.7737 21.9966 0.8049 0.7883 0.7832 98.01 44.27 54.17
3 0.01831 0.71027 0.02679 24.0224 24.8512 25.0222 0.8166 0.7935 0.7903 105.39 51.44 67.35
4 0.01926 0.79926 0.03922 22.7874 24.1817 23.1570 0.8552 0.8154 0.8277 129.56 41.35 82.05
5 0.28919 0.90172 0.01749 25.0861 25.1119 25.0063 0.8729 0.8553 0.8260 131.03 77.51 90.18

Star Fish

2 0.02813 0.11162 0.01944 20.0004 22.5775 21.7269 0.8428 0.8032 0.8246 91.43 58.51 45.44
3 0.06321 0.30992 0.03792 20.4882 21.1583 22.0133 0.8333 0.8004 0.8022 116.30 58.03 77.02
4 0.21739 0.70018 0.13270 21.0632 22.2257 24.5721 0.8510 0.7994 0.8365 108.39 44.00 72.45
5 0.51910 0.92732 0.42680 23.1567 25.5004 26.1489 0.8371 0.8177 0.8024 111.59 81.25 69.30

Sailor

2 0.12763 0.93471 0.37703 20.7738 22.1268 21.2311 0.8248 0.8210 0.7937 93.51 46.29 55.03
3 0.28711 0.90182 0.52893 25.9125 25.9984 26.1489 0.8537 0.8422 0.8325 141.38 51.49 50.17
4 0.48291 0.98271 0.72279 23.3532 23.9552 25.1362 0.8440 0.8001 0.8228 127.51 70.14 68.47
5 0.71032 0.99013 0.93321 24.0284 25.0061 24.9958 0.8206 0.7990 0.7993 130.09 65.39 82.37
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For all the test images, the histogram (Figure b) and Otsu
guided BDFA based processed images for 𝑚 = 2, 3, 4, and 5
are presented (Figures (c) to (f)) for all the considered test
images.The quality of image segmentation is better for all the
images when𝑚 = 5 compared to lesser “𝑚” values.

The objective values and optimal threshold values for
Otsu guided BDFA, LFFA, and FA are presented in Table 1.
Theother qualitymeasures such as standard deviation, PSNR,
SSIM, and CPU time are depicted in Table 2. From Table 1, it
is seen that the BDFA offers better objective function values
for most of the test images compared to the LFFA and FA.

6. Conclusion

In this paper, optimal multilevel image thresholding problem
is addressed using Otsu guided firefly algorithms. The pro-
posed histogram based bounded search technique helps in
reducing the computation time. Further, the performances
of the BDFA, LFFA, and FA are evaluated using parameters
such as objective function, standard deviation, PSNR, SSIM,
and search time of CPU. When the assigned threshold level
is two (𝑚 = 2), all the FAs provide approximately similar
threshold values. When “𝑚” increases, the search time taken
by the BDFA regularly increases compared to LFFA and FA.
From the result, it is evident that, for 𝑚 > 3, Brownian
distribution based FA provides better objective function,
PSNR, and SSIM, whereas Lévy flight based FA shows faster
convergence with relatively lower CPU time. To analyze the
permanence of the algorithms, the standard deviations of 20
runs have been presented in Table 1 for Otsu’s between-class
variance. The PSNR and the SSIM presented in Table 2 also
prove the efficiency of the proposed Brownian distribution
guided firefly algorithm. Due to the smaller search step, the
BD guided firefly algorithm’s run time is considerably larger
than Lévy flight guided firefly and the traditional FAs.
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Bézier surface parameterization,” Journal of Applied Mathemat-
ics, vol. 2013, Article ID 237984, 9 pages, 2013.

[47] M. Xu and G. Liu, “A multipopulation firefly algorithm for cor-
related data routing in underwater wireless sensor networks,”
International Journal of Distributed Sensor Networks, vol. 2013,
Article ID 865154, 14 pages, 2013.

[48] Y. Zhang, L. Wu, and S. Wang, “Solving two-dimensional HP
model by firefly algorithm and simplified energy function,”
Mathematical Problems in Engineering, vol. 2013, Article ID
398141, 9 pages, 2013.

[49] N. Sri Madhava Raja, K. Suresh Manic, and V. Rajinikanth,
“Firefly algorithm with various randomization parameters: an
analysis,” in Proceedings of the 4th International Conference on
Swarm, Evolutionary, and Memetic Computing (SEMCCO ’13),
B. K. Panigrahi, P. N. Suganthan, S. Das, and S. S. Dash, Eds.,
vol. 8297 of Lecture Notes in Computer Science, pp. 110–121, 2013.

[50] N. Otsu, “A threshold selection method from gray-level his-
tograms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 9, no. 1, pp. 62–66, 1979.

[51] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi,
“Firefly algorithm with chaos,” Communications in Nonlinear
Science and Numerical Simulation, vol. 18, no. 1, pp. 89–98, 2013.



Modelling and Simulation in Engineering 17

[52] R. Metzler and J. Klafter, “The random walk's guide to anoma-
lous diffusion: a fractional dynamics approach,” Physics Report,
vol. 339, no. 1, pp. 1–77, 2000.

[53] S. G. Nurzaman, Y. Matsumoto, Y. Nakamura, K. Shirai, S.
Koizumi, and H. Ishiguro, “From lévy to brownian: a compu-
tational model based on biological fluctuation,” PLoS ONE, vol.
6, no. 2, Article ID e16168, 2011.

[54] N. Sri Madhava Raja and V. Rajinikanth, “Brownian distribu-
tion guided bacterial foraging algorithm for controller design
problem,” in ICT and Critical Infrastructure: Proceedings of the
48th Annual Convention of Computer Society of India-Vol I, vol.
248 of Advances in Intelligent Systems and Computing, pp. 141–
148, 2014.

[55] http://sipi.usc.edu/database/database.php?volume=misc.
[56] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database

of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological
statistics,” in Proceedings of the 8th International Conference on
Computer Vision, vol. 2, pp. 416–423, July 2001.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


