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a b s t r a c t

An image is often corrupted by different kinds of noise during its acquisition and transmission. Con-
ventional denoising methods can suppress the Gaussian noise effectively, but fail to maintain the quality
of denoised images and may blur edges in an image. To address these short comings, this paper aims to
develop an optimized adaptive thresholding function based framework for edge preserved satellite

Gaussian noise from images without over smoothing edge details. Image denoising using adaptive
thresholding functions selects the suitable threshold values to separate noise from the actual image
without affecting the actual features of the image. In this approach, most widely used nature inspired
optimization algorithms are exploited for learning the parameters of adaptive thresholding function
required for optimum performance. It was found that the proposed adaptive differential evolution
algorithm (JADE) algorithm based denoising approach has superior features and give better performance
in terms of PSNR, MSE, SSIM and FSIM as compared to other methods.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Image denoising is a classical image processing problem. Digital
images are often distorted by the variety of noise. The term noise
in digital image processing is referred to any quantity that deflects
an observed pixel from its original value. The numerous kinds of
noise and artifact in imaging modalities corrupt the images and
reduce the image quality. Such artifacts have considerable impact
on the image appearance and affect the human interpretation as
well as accuracy of the computer assisted methods in various
image processing applications [1]. Moreover, image enhancement,
image segmentation, image classification and quantitative mea-
surement becomes complicated and unpredictable because of
mixture of noise parameters. It is clear that the removal of noise
from the image facilitates the processing. Thus, denoising of
images has become the fundamental step in several practical
applications such as satellite imaging [2]. As a result, in order to
minimize the effect of noise and improve the image quality for
higher level processing, denoising pre-treatment of image signal is
carried out.
handari),
e@gmail.com (A. Kumar),
In practice, most frequent distortions are due to corruption by
additive noise (Gaussian), salt and pepper noise and multiplicative
noise (speckle) with different characteristics. In Gaussian noise,
each pixel of image is changed by a small amount from its original
value. The Gaussian (normal) distribution is a very good model to
represent this type of noise. This is due to central limit theorem,
which states that the sum of different noises tends to approach a
Gaussian distribution. Conventional linear filters remove the
Gaussian noises with detriments for edge and texture details in an
image. To address the problem of edge-preserving, a variety of
modified Gaussian noise removal techniques has been presented
[3–7]. Multiplicative noise is generally more difficult to be
removed from the images than additive noise because the inten-
sity of noise varies with the signal intensity. In salt and pepper
noise, pixels in the image are very different in color or intensity
unlike their surrounding pixels. A noisy pixel does not have any
relation to the color of neighboring pixels. This type of artifact is
caused by sharp and sudden disturbance in the image signal. This
noise affects only a small number of pixels. It contains dark and
white dots [8]. Remote sensing images are an essential source of
information, which are used in several environmental assessment
and monitoring such as climate studies, assessment of forest
resources, examining marine environments agriculture, metrology,
mapping, military, etc [9–11].
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In denoising, traditional spatial filters not only smooth the data
and reduce the noise, but also blur the data to some extent. The
main aim of denoising is to eliminate the noise particles and to
retain the actual image features as much as possible. At present,
many new denoising techniques have been developed and
explored, such as wavelet based approach [12–14], non-local
means algorithm [15–16], Bivariate Shrinkage function [17],
Sparse coding shrinkage [18], Bayesian approach [19–21], principal
component analysis [22], support vector machine [23], Support
vector regression [24–25], compressive sensing theory [26],
Bilateral filtering [27–28], Wavelet shrinkage [29] soft threshold-
ing and hard thresholding.

These techniques can perform image smoothing/denoising and
preserve the useful features and edges to a certain extent. How-
ever, each of these methods has certain limitations in terms of
image quality or computational efficiency. In general, non-local
means [15–16] obtains the denoised image with fine image quality
but it takes relatively high computational cost in the global search
for pixels with similar intensity. On the other hand, wavelet
thresholding based methods and basis pursuit denoising schemes
can effectively suppress the noise because of having sparse
representation in most natural images when they are expressed in
wavelets or a set of basis. However, these techniques are likely to
be affected by the ripple artifacts. Image denoising using bilateral
filter [27–28] produces fine results with advantage of easy
implementation, but it has not yet attained a desirable level of
applicability in terms of image quality [26]. In 2014, Zhang et al.
have proposed an adaptive bilateral filter [30] based framework
for image denoising which is capable of eliminating the universal
noise efficiently, i.e. impulses, Gaussian noise or mixture of the
two types of noises, from the images without over smoothing edge
details.

Images are often affected by another type of noise known as
impulse noise, which replaces the value of certain region of pixel
with random value. This type of noise generally arises because of
transmission error. To deal with such kind of problems, median
filters are designed which can remove the impulse noise to a
certain extent, with some of its enhanced performance and better
feature preserving rate [31–32]. In 2005, Chan et al. [33] proposed
a two-phase scheme for removing salt-and-pepper impulse noise.
In the first phase, an adaptive median filter is used to identify
pixels, which are likely to be contaminated by the noise. In the
second phase, the image is restored using a specialized regular-
ization method that applies only to those selected noise candi-
dates. In case of impulse noise, median filter is found to be most
effective nonlinear filter due to its powerful denoising capability
and fast processing. However, when the noise level is over 50%,
some details and edges are degraded by the filter. In practice,
during transmission and acquisition, mixed noise together with
the Gaussian and impulse noise arise simultaneously. To remove
such kind of noise from noisy image, various efforts have been
made [34–36].

In recent years, wavelet thresholding algorithm is found to be
one of the most favorable approaches for image denoising. Many
filtering techniques have been designed to get better denoised
image such as averaging filter, median filter, Wiener filter, adaptive
filter, etc. In these classical methods, median filter is most fre-
quently used in nonlinear spatial filters to suppress salt and pep-
per noise due to its effective denoising performance. But this fil-
tering approach does not give satisfactory results in case of
Gaussian noise because it generates a blurred and smoothed image
with poor feature localization and incomplete noise suppression.
These artifacts take place in denoised image because median filter
replaces the noisy pixel by a median value in their vicinity without
taking into account the local features such as the presence of
edges. In past few years, a number of efforts have been made to
remove the speckle noise using wavelet transform [37–39].
Recently, some new approach has been presented using wavelet
transform which works in transformed version of the noisy image
and obtain the denoised image in transformed domain [40].

In literature, a wide range of wavelet thresholding approaches
have been presented. Denoising in the wavelet domain may be
stated as thresholding of DWT detailed coefficients of the noisy
image, either hard or soft [41]. Hard or soft thresholding of DWT
coefficients is commonly used to achieve denoising. In hard
thresholding, image is preserved if it is higher than the threshold
value; otherwise it is set to zero, and in soft thresholding, image is
shrunk to zero by an amount of threshold. Because of having the
properties like sparsity and multiscale decomposition in wavelet
transform coefficients; it has attracted a number of researchers to
work in the wavelet domain. These features of the wavelet domain
provide flexibility to represent main energy of signal by few large
coefficients and remaining energy by many small coefficients.
Since, most of the noise powers are present in many small coef-
ficients; therefore, it is essential to modify these coefficients by a
certain rule to achieve the denoised image. To improve this pro-
cess of denoising, researchers have tried to develop a number of
advanced thresholding function.

Nasri and Pour [42] have introduced a new adaptive thresh-
olding function based on wavelet transform based thresholding
neural network (WT-TNN) methodology. The proposed function is
further used in a new subband-adaptive thresholding neural net-
work to improve the efficiency of denoising procedure. They have
reported that the suggested technique outperforms the many well
known other thresholding techniques such as soft, hard, garrote
and other existing thresholding functions in WT-TNN methodol-
ogy. Further, they claimed that the presented scheme eliminates
the noise regardless of its distribution and modeling of the dis-
tribution of image wavelet coefficients. The beauty of this
approach using the new adaptive thresholding function is due to
simultaneous learning of parameters of thresholding function and
threshold value in each sub-band of WT. But the drawback of this
technique is more computational cost. Due to the usage of a
steepest descent gradient technique in WT-TNN approach, com-
putational time is increased considerably. Basically in this
approach, proper initialization of threshold and thresholding
parameters is very difficult to achieve fast convergence of the
learning process in order to obtain the optimum values of these
parameters. Therefore, to overcome the prime limitation of WT-
TNN based denoising methodology, an optimized adaptive
thresholding function based framework for satellite image
denoising using JADE and other optimization techniques have
been presented in this paper. The effective denoised results of the
proposed JADE algorithms based adaptive thresholding approach
is achieved due to the formulation and implementation of opti-
mization algorithms instead of a steepest descent gradient-based
LMS technique, which corresponds to superior performance with
fast convergence. But more importantly, it has been examined that
the proposed optimized adaptive thresholding based denoised
image yields better edge preserving performance at high noise
levels. After successful performance of the new adaptive thresh-
olding function, in 2011, Bhutada et al. presented an edge pre-
served image enhancement technique using adaptive fusion of
images which is denoised by wavelet and curvelet transform [43].
Furthermore, in 2011, wavelet transform-based thresholding
neural network (WT-TNN) methodology has been proposed by
Bhutada et al. to improve the computational cost of denoising
problem. In this approach, they have adaptively selected the
learning step size for tuning the parameter of thresholding func-
tion [44]. Subsequently, in 2012, authors have presented the PSO-
based learning of sub-band adaptive thresholding function for
denoising of Gaussian noise [45]. In these papers, the existing
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approaches do not obtain the thresholding value and the thresh-
olding function simultaneously. None of the presented works
considered remarkably for edge preserving for the Gaussian noise.
Many of the existing techniques need to adopt few priori
assumptions regarding the statistical distribution of subbands of
noise-free wavelet coefficients. Due to that, proposing a scheme to
reduce the noise regardless of its distribution and modeling of the
distribution of the image wavelet coefficients will be very valuable.

From the above discussion, it is clear that the wavelet trans-
form yields better denoising, particularly in homogeneous region,
and adaptive thresholding function based on wavelet transform
gives effective results. However, it was found that the existing
literature does not address the following aspects simultaneously:
(i) the existing techniques do not obtain the thresholding value
and the thresholding function simultaneously, (ii) None of the
existing approaches deals with the Gaussian noise effectively with
edge preserving quality, and (iii) the most important feature of the
proposed methodology is fast computational time to determine
the denoised results using optimized adaptive thresholding func-
tion as compared to a WT-TNN method. On the other hand, the
optimized adaptive thresholding function based proposed
approach overcomes many classical methods and yields superior
results in Gaussian noise reduction cases. In addition, to enhance
the ability of function, three shape tuning parameters have been
introduced which correspond to a comprehensive-thresholding
function that can be adjusted to any desired thresholding function.
This function is utilized in an adaptive way that is motivated by
the Zhang’s Thresholding Neural Network (TNN) schemes [46–47].
In this paper, various optimization algorithms such as differential
evolution (DE), particle swarm optimization (PSO), wind driven
optimization (WDO), firefly algorithm (FA), cuckoo search algo-
rithm (CS) and adaptive differential evolution algorithm (JADE) are
used for learning the parameters of adaptive thresholding function
required for optimum performance.

The rest of the paper is organized as follows. Section 2 gives a brief
introduction of some threshold estimation techniques with formula-
tion of Gaussian noise. Section 3 presents the problem formulation of
adaptive thresholding function. In Section 4, adaptive differential
evolution algorithm and other algorithm based optimized adaptive
thresholding function has been presented for satellite image denois-
ing. Section 5 gives brief formulation of the assessment parameters for
comparison purpose. Section 6 reports the visual, qualitative and
quantitative results of the proposed and existing methodology sup-
ported by peak-signal-to-noise-ratio (PSNR), mean square error (MSE),
structural similarity index measure (SSIM) and feature similarity index
measure (FSIM) with a brief explanation of results. Finally, conclusions
are drawn in Section 7.
2. Wavelet-based thresholding methodology

The generalized and simple way of denoising of an image using
wavelet thresholding (WT) is as follows: At first, WT of a noisy
image is obtained. Then, wavelet coefficient is modified by the
suitable thresholding function. Finally, after modification of
wavelet coefficient, inverse WT is applied to obtain the recon-
structed image. In a wavelet-based thresholding technique,
thresholding function has major effect on the quality of image.
Therefore, many types of thresholding functions were introduced
having the property of hard, soft, semi-soft and garrote. The gar-
rote and semi-soft thresholding functions are an improved way of
thresholding. These thresholding functions have property and
advantage of hard and soft thresholding both.

In this section, the fundamentals of noise suppression in
wavelet domain are given for both types of Gaussian noise.
2.1. Gaussian noise

Assume that the observed data vector x¼ x0; x1;…; xN�1½ �T
which is corrupted by additive Gaussian noise is given by:

xi ¼ viþni i¼ 0;1;2; :::;N�1 ð1Þ
where, vi represents the noise-free wavelet coefficient and ni

stands for the element of (independent and identically dis-
tributed) i.i.d Gaussian noise.

Now, consider that the noise-free data vector V ¼ v0; v1;…;½
vN�1�T in wavelet domain and V̂ ¼ v̂0; v̂1;…;

�
v̂N�1�Tcorresponds to

output of thresholding function in wavelet domain. The aim of
denoising is to estimate function f with minimum mean square
error (MSE), and the MSE risk can be determined by Eq. (2):

f MSE ¼
1
2
Ej j V̂�V j j ¼ 1

2N

XN�1

i ¼ 0

ððv̂i�viÞ2 ð2Þ

where, N is the size of sub-band, vi is the WT coefficients of
noise free image, v̂i is the thresholded WT coefficients of
noisy image.

In thresholding based denoising methods, various attempts
have been made to formulate better thresholding functions. In
Visu Shrink method, the universal threshold is computed based on
noise statistics:

thruniversal ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðnÞ

p
ð3Þ

Here, σ represents the noise standard deviation that defines the
median absolute deviation. A robust median estimator is used
from the finest scale wavelet coefficients:

σ̂ ¼median fxi;j : i; jAHH1g
�� ��� �
0:6745

ð4Þ

where, HH1 is wavelet subband.
After applying the above shrinkage factor to wavelet coeffi-

cients, it has been observed that some details in the image are lost
and sometimes, the reconstructed image becomes blurred due to
its very large and global threshold.

2.2. Hard thresholding

Hard thresholding can be expressed as follows:

DðU; λÞ ¼ U for all jDj4λ
0 otherwise

( )
ð5Þ

Hard threshold is considered a “keep or kill” process and is
more intuitively interesting. It seems to be a natural procedure.
Sometimes, pure noise coefficients may pass the hard threshold
and appear as annoying “blips” in the output image [40].

2.3. Soft thresholding

Soft thresholding can be expressed as:

DðU; λÞ ¼ sgnðUÞ maxð0; Uj j�λÞ ð6Þ
Here, soft threshold shrink coefficients represent the above

threshold in absolute value. The false structures in hard thresh-
olding can be overcome by soft thresholding.
3. Problem formulation of adaptive thresholding function

To improve the effectiveness of thresholding functions; in some
papers, numerous class of thresholding functions has been pre-
sented with several shape tuning parameters. For example, Zhang
functions in Fig. 1 are extension to soft thresholding function



Fig. 1. Zhang thresholding functions with different values of shape tuning factor: (a) Ref. [46] and (b) Ref. [47].

Fig. 2. (a) Behavior of adaptive thresholding function for k¼1 and different values of m and n in the range [2, 10] and (b) behavior of adaptive thresholding function for
n¼m¼2 and k A [0, 1], note that for k-0 the function tends to soft thresholding function [42].
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[46,47], which are defined as:

ηZhangð1998Þðx; thr; kÞ ¼
xþthr� thr

2kþ1 xo�thr
1

ð2kþ1Þthr2kx
2kþ1 jxjrthr

x�thrþ thr
2kþ1 x4thr

8>>><
>>>:

9>>>=
>>>;

ð7Þ

where, k is a positive integer. Note that the limit of ηZhang(x, thr)
when k-11 is just the commonly used soft-thresholding func-
tion ηs(x, thr). Therefore, the similar smoothness property of the
estimate using new thresholding functions can be expressed as.

ηZhangð2001Þðx; thr;λÞ ¼ xþ0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�thrÞ

p 2þλ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþthrÞ

p 2þλ
� �

ð8Þ

where thr is the threshold and λ40 is a user-defined (fixed)
function parameter.
3.1. New nonlinear thresholding function

The new nonlinear thresholding function is formulated in
Eq. (9). The foremost difference of this thresholding function is
found in non-important coefficients. Previous thresholding func-
tions set the coefficients below threshold value to zero, but the
new nonlinear thresholding function tunes the coefficients by a
polynomial function. Due to tuning property, capability of the
thresholding function is increased; since, the coefficients can be
attenuated easily in a manner that are below the threshold value
and close to it to a value less than the far coefficients. In addition,
for important coefficients, the function is garrote-type. Therefore,
it leads to a more powerful function:

ηðx; thrÞ ¼
x�0:5

thr2

x
xj j4thr

0:5
x3

thr2
xj jrthr

8>>><
>>>:

9>>>=
>>>;

ð9Þ

Here, x is noisy WT coefficient and thr is threshold.

3.2. Adaptive thresholding function with three shape tuning
parameters

In Eq. (9), three shape tuning parameters are added to improve
flexibility and ability of new nonlinear thresholding function,
which is formulated in Eq. (10).

ηðx; thr;m;n; kÞ ¼

x�0:5
thrm � k
xm�1 þðk�1Þthr x4thr

0:5
k� jxj n
thrn�1 signðxÞ jxjrthr

xþ0:5
ð� thrÞm � k

xm�1 �ðk�1Þthr xo�thr

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð10Þ

where, parameters n and m are used to calculate the shape of
function for coefficients, which are lower and higher as compared
to absolute threshold value, respectively; whereas k is used to
compute the asymptote of the function. The parameter k deter-
mines the asymptote of the function. By varying parameter k A [0,
1], the thresholding function (η) behavior varies between hard and
soft thresholding as shown in Fig. 2a. The parameter m decides the
shape of thresholding function, which adds more flexibility in its
behavior as shown in Fig. 2b. Here, x is noisy WT coefficient and
thr is threshold.
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4. Different evolutionary techniques for denoising of satellite
images

4.1. Differential Evolution Algorithm (DE)

In recent years, much attention has been paid towards the
application of evolutionary algorithms in various fields of image
processing. The Differential Evolution (DE) Algorithm is proposed
by Storn and Price [48] which is recently emerged as a simple yet
very competitive evolutionary optimizer. The algorithm has
effectively been applied to many multilevel thresholding and
image processing problems, and has received a wider range of
acceptance and popularity [49–50].

The version of DE algorithm employed in this work is known as
the DE/best/l/exp or “DE1”. The DE algorithm starts with the
initialization of population of Np, and an D-dimension vectors with
parameter values, which are randomly and uniformly distributed
between the pre-specified lower initial parameter bound xj,low and
the upper initial parameter bound xj,high:

xj;i;G ¼ xj;lowþrandð0;1ÞU ðxj;high�xj;lowÞ;
j¼ 1;2; :::;D; i¼ 1;2; :::;Np; G¼ 0: ð11Þ

The subscript G is the generation index to which the population
belongs, where index i represents the ith solution of population
index and j indicates the parameter index. There are three main
operators in DE algorithm which are mutation, crossover and
selection.

Mutation: To produce a trial solution, the mutation operator is
applied to generate mutant vector vi for each target vector χi in the
current population. Therefore, initially DE algorithm mutates a
best solution vector from the current population by adding to the
scaled difference of two other vectors from the current population.
A mutant vector is generated according to

Vi;G ¼ Xr1;GþF � ðxr2;G�xr3;GÞ; where; r1; r2; r3Af1;2; :::;Npg ð12Þ

where, i ¼ 1...NP, r1, r2 are randomly selected such that
r1ar2ar3a i, and F is the mutation scale factor such that FA ½01�.

Crossover: once the perturbed individual Vi;G ¼ ðv1;i;G; :::; vn;i;GÞ is
produced, it belongs to crossover operation with target
individualXi;G ¼ ðx1;i;G; :::; xn;i;GÞ, which generates trial solution in
the end Ui;G ¼ ðu1;i;G; :::;un;i;GÞ as follows:

uj;i;G ¼
vj;i;G if rand Cr3 j¼ jj

xj;i;G otherwise

( )
ð13Þ

where, j¼ 1; :::;n; jjAf1; :::;ng is a random parameter's index,
selected once for each i. The crossover rate CrA ½0;1� is set by the
user that is used to control the section of parameters belonging to
mutant vector which contributes to the trial vector.

Selection: at last, a selection scheme is used to improve the
solutions. The selection process in DE algorithm is different from
the other evolutionary algorithms. If the cost function of trial
vector is less or equal to target vector, then trial vector replaces the
target vector in the next generation. Otherwise, target vector
DWT of Image

Noisy Image

Adaptive Thresholdin
η(x, thr, m, n

Optimization Tec
(DE, PSO, WDO, FA, 

Fig. 3. An optimized adaptive thresholding function base
remains in the population for at least one new generation:

Xi;Gþ1 ¼
Ui;G if f ðUi;GÞr f ðXi;GÞ
Xi;G otherwise

( )
ð14Þ

Here, f denotes the cost function. The overall procedures are
repeated until a termination criterion is fulfilled or a pre-
determined generation number is attained.

A complete flowchart routine of the optimized adaptive
thresholding function based methodology, depicting the detailed
steps of overall algorithm for image denoising, is shown in Fig. 3.

4.2. Particle swarm optimization (PSO)

In PSO [51], possible solution and collection of possible solu-
tions (search space) are known as particle position and swarm
correspondingly. The PSO is dominated by two basic updating
equations for particle position i, first is velocity updating equation,
which is formulated as

Viðkþ1Þ ¼w � ViðkÞþc1ϕ1ðPibestðkÞ�PiðkÞÞþc2ϕ2ðGbestðkÞ�PiðkÞÞ
ð15Þ

and second is position updating equation defined by

Piðkþ1Þ ¼ PiðkÞþViðkþ1Þ ð16Þ
where, w represents the inertia weight factor, which varies

linearly from 0 to 1; while c1 and c2 are cognitive and social
acceleration factors respectively, ϕ1 and ϕ2 indicates the uni-
formly distributed random numbers with range 0 to 1. The next
velocity Vi(kþ1) of particle i can be computed by Eq. (15), and the
next position Pi(kþ1) is tracked by Eq. (16).

Fundamentally, particle position Pi indicates one possible
solution of the optimization problem and at each iteration, the
objective function (fitness function) is measured by position vector
Pi(k). The position vector corresponding to best fitness is called
‘pbest’ and the overall best solution of all the particles in popula-
tion is known as ‘gbest’. In this algorithm, the success of finding
global optimum depends exceptionally on the initial value of
control parameters such as w, c1, c2, ϕ1, ϕ2, swarm size (s) and the
maximum iteration number. In [52–53], a detailed description of
PSO is given.

4.3. Wind driven optimization (WDO) technique

WDO is a modern nature inspired global search optimization
technique proposed by Zikri Bayraktar in 2010 [54–55]. It is basi-
cally motivated by the motion of infinitesimally tiny air particle
present in earth's environment. In WDO, using Newton's second
law of motion, trajectory of these particles can be expressed. In
this optimization algorithm, “wind” corresponds to horizontal air
motion in lowest layer of the earth's environment which is also
known as troposphere. In atmosphere, wind blows in an effort to
make equal air pressure. More exclusively, the air is used to move
from high pressure to low pressure at a velocity, which is pro-
portional to the pressure gradient. The beginning step of WDO is
supported by Newton's second law of motion, which is used to
Inverse DWT 

Denoised Image 

g Function 
, k)

hniques
CS & JADE)

d image denoising using nature inspired algorithms.
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determine the accurate results specifically for the analysis of
atmospheric motion.

Now, Newton's Law states that the net force applied on air
parcel causes acceleration a in the direction of net force applied,
and it is mathematically represented as

ρ a!¼
X

F
!

i ð17Þ

where, a is the acceleration vector, ρ is the air density for an
infinitesimal element of volume, and Fi are the individual forces
acting on the air parcel. The equation that relates air pressure to its
density and temperature is given by the ideal gas law:

P ¼ ρRT ð18Þ
where P is the pressure, R is the universal gas constant and T is

the temperature.
This motion of air particle in Eq. (17) is basically affected by the

four major forces that either cause the wind to move in a specific
direction or deflect it from its path. The most observable force
causing air to move is the pressure gradient force (FPG), although
the friction force (FF) simply acts to oppose such motion as
described in Eq. (18). Whereas, the gravitational force (FG) acts as
a vertical force in three-dimensional atmosphere when it is
mapped to N-dimensional space. The Coriolis force (FC) is caused
by the rotation of earth, and deflects the path of wind from one
dimension to another. In WDO, it is implemented as a motion in
one dimension that affects the velocity in another [54].

The physical equations that govern each of these forces are
given below:

F
!

PG ¼ �∇PδV ð19Þ

F
!

G ¼ ρδV g! ð20Þ

F
!

c ¼ �2Ω� u! ð21Þ

F
!

F ¼ �ρα u! ð22Þ
where, ∇P is the pressure gradient, δV represents an infinite-

simal air volume, Ω represents rotation of the earth, g is the
gravitational acceleration constant, α is friction coefficient and u is
velocity vector of the wind. By putting all the above mentioned
forces in Eq. (17), the summation of all four forces can be obtained
by Eq. (23):

ρu
-Δt ¼ ðρδV g

-Þþð�∇PδVÞþð�ραu
-Þþð�2Ω� u

-Þ ð23Þ
If an infinitesimal air parcel is considered which is moving with

wind, then the velocity update equation can be determined by
(31). On the basis of ideal gas law equation from (18), ρ can be
written in terms of pressure, and a unity time step (Δt ¼1) can be
assumed for simplicity. The velocity update equation is:

u!new ¼ ð1�αÞ u!old

� 	
þg � x!old

� 	
þ Pmax

Pold
�1

����
����RTðxmax�xoldÞ


 �

þ �cotherdimold

Pold

" #
ð24Þ

which is the velocity and position updating equation for WDO
respectively. Here, P is the pressure, R is universal gas constant, T is
temperature, c¼�2ΩRT called Coriolis coefficient. In Eq. (24),
updated velocity for the next iteration, unew, depends on the
current iteration velocity (uold), current location of air parcel in
search space (xold), distance from the highest pressure point that
has been found (xmax), maximum pressure (Pmax), pressure at the
current location (Pold), temperature (T), gravitational acceleration
(g), and constants R, α, and c.

In WDO expression (24), the pressure term is analogous to the
fitness of a chromosome in GA terminology. If WDO is compared
with PSO, similar velocity update equations can be realized. After
the velocity of parcel is updated by Eq. (24), the position of air
parcel can be updated by Eq. (25):

x
-

new ¼ x
-

oldþðu-new �ΔtÞ ð25Þ
where, x!new and x!old are the current and new position of air

parcel in search space respectively. In Eq. (25), x!old represents that
the air parcel would continue to move on its previous path with
some opposition that is created due to friction. u!new is an
attractive force that pulls against the center of coordinate system.
Δt indicates the force against position of maximum pressure that
is assumed to be the global best position for the optimization
problem. x!new follows the Coriolis force, which is a deflecting
force. In this manner, WDO offers a simple yet highly effective way
to solve the complex optimization problems. From the above dis-
cussion, it can be concluded that WDO is controlled by RT, c, α, g
and number of iteration. Detailed description of WDO is given in
[55–56].

4.4. Firefly algorithm (FA)

The firefly algorithm is a recently developed swarm-based
approach for optimization, which is inspired by the social beha-
vior of fireflies and the phenomenon of bioluminescent commu-
nication. In this concept, basically the variation of light intensity
and formulation of attractiveness are two essential issues. Yang
[57] has explored the attractiveness of a firefly on the basis of their
brightness, which in turn is associated with the encoded objective
function. The attractiveness is proportional to their brightness.
Moreover, each member xi of the firefly swarm is recognized
through the brightness Ii that can be simply described as an
inverse of a cost function for a minimization problem.

In the firefly algorithm, there are three idealized rules: (i) all
the fireflies are unisex in order that one firefly will be fascinated to
other fireflies despite of their sex; (ii) attractiveness is propor-
tional to their brightness; hence, out of any two flashing fireflies,
the less brighter one will move in the direction of brighter one, if
there is no brighter firefly in comparison with an individual one,
then it will move randomly. Since; firefly attractiveness needs to
choose any monotonically decreasing function of the distance ri,j
¼ d(xj, xi) to the selected j-th firefly, in such a way that the
exponential function is followed as [58]:

ri;j‖xi�xj‖¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc
k ¼ 1

ðxi;k�xj;kÞ2
vuut ð26Þ

β’β0e
� γri;j ð27Þ

in which, β0 represents the attractiveness at ri,j ¼0 and c stands
for light absorption coefficient at the source.

The movement of a firefly i is fascinated to another more
attractive firefly j which is computed by

xi;k’ð1�βÞxi;kþxj;kþui;k ð28Þ

ui;k ¼ α rand1�1
2

� �
ð29Þ

If there is no brighter firefly in comparison with an individual
firefly xi, then it will move randomly according the given criteria:

ximax ;k’ximax ;kþuimax ;k for k¼ 1;2; :::; c ð30Þ

uimax ;k ¼ α rand2�1
2

� �
ð31Þ

where, rand1EU(0, 1) rand2EU(0, 1) indicates the random
values, which are determined from the uniform distribution. (iii)
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Fig. 4. Flowchart of JADE algorithm.

Table 1
Specific values for given parameters used in each algorithm.

Algorithms Parameters Values

DE Number of objectives 1
Number of constraints 0
Number of decision variables 4
Scaling factor 0.5
Crossover probability 0.2
Maximum number of generations 100
Function evaluations bound 150

PSO Swam size 200
No. of iterations 100
Cognitive, social and neighborhood acceleration
(C1, C2, C3)

2, 2, 1

Lower bound lb (Wmin) and Upper bound ub
(Wmax)

1 and 256

Error goal and Max Trial limit 1e-7 and 500
Value of velocity weight at the beginning 0.95
Value of velocity weight at the end of the PSO
iterations

0.4

The fraction of maximum iterations, for which
W is linearly varied

0.7

Maximum velocity step, Constriction factor and
Neighborhood size

1

Value of Global Minima 0
WDO Population size 20

Maximum no. of iteration 100
RT coefficient 2
Gravitational constant (g) 0.2
Constant in the update equation 0.5
Coriolis effect coefficient (c) 0.4
Maximum allowed speed or velocity limit 0.3

FA No. of iterations 100
Alpha, betamin and gamma 0.5, 0.2 and 1
Lower bound Lb [0,0,0.1,0.1]
Upper bound Ub [1000, 1, 20, 4]
Number of dimensional problems 4

CS Number of nests 25
No. of iterations 100
Lower bound Lb and Upper bound Ub 1 and 256
Step size (α) 1
Mutation probability value (pa) 0.25
Scale factor (β) 1.5

JADE No. of iterations 100
Scale parameter and standard deviation 0.1
Lower bound Lb [0,0,0.1,0.1]
Upper bound Ub [1000, 1, 20, 4]
Constant c and p, 0.1 and 0.05
Crossover probability CRi [0, 1]
Independent normal distribution with mean
CRm and Fm

0.5
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The brightness of a firefly is affected or calculated by the landscape
of the fitness function φ(.). In other word, the brightness I of a
firefly at a specific position x can be selected as I(x), which is
proportional to the value of fitness function u(x).
4.5. Cuckoo search (CS) algorithm

In this paper, a new evolutionary optimization algorithm is
used which is inspired by the lifestyle of a bird family called
cuckoo. CS algorithm is a population based elitist search algorithm
[59–60]. In this algorithm, each new solution attempts to search
around the best solution found previously. CS has only two control
parameters. The general structure and problem solving efficiency
of CS technique has been explored in detail in [56]. Cuckoo birds
are most popular because of their attractive voice and fascinating
singing style; moreover, their reproduction policy is also one of the
most aggressive among the birds. Cuckoos can engage indirect
conflict with the host birds. Usually, host birds either throw the
alien eggs from the nest or they leave the nest to make a new nest.

There are three idealized rules in the CS algorithm.

i. Each cuckoo lays one egg at a time and dumps it in a randomly
chosen nest.

ii. The best nests with high quality of eggs will carry over to the
next generation.
iii. The number of available host nest is fixed, and the egg laid by a
cuckoo is discovered by the host bird with a probability of
paA ½0;1�.

Now, in such cases, the host bird either abandons the nest to
build a completely new nest at new location or throws the egg
away. In order to simplify the last assumption, many authors have
assumed that it can be approximated by a probability pa of the n
nest, which are replaced by the latest nests (with random new
solutions). Every egg in a nest stands for one solution and a cuckoo
egg indicates a new solution, which aims to exploits new and
potentially better solutions (cuckoos). Start iteration, generate new
nest by Levy flight but keep the current best. For generating new
solution, xi(tþ1) for cuckoo i, a Lévy flight is performed by the Eq.
(32):

xiðtþ1Þ ¼ xiðtÞþα � Lev́yðλÞ ð32Þ

where, α is the step size (α41) and is related to the size of the
problem. In most cases, α¼1 is used. The product �deals with
entry wise multiplications process. However, Lévy flights provide a
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randomwalk whereas their random step lengths are drawn from a
Lévy distribution for large steps defined by (33):

Lev́yðλÞ ¼ t�λ where 1oλr3 ð33Þ
Lévy function can be changed according to application. Man-

tegna's algorithm is one of the Lévy function. It has an infinite
variance and infinite mean. Lévy flights are more proficient in case
of extensive search space in comparison with Brownian random
walks because variance (σ2) of Levy flights increases at greater rate
than Brownian random walks. Moreover, variance of Levy flights
distribution is expressed as:

σ2ðtÞ � t2�β where 1rβr2 ð34Þ
Which expands at a greater rate than the linear relationship of

Brownian random walks followed by σ2(t)-t. On the basis of
above expression, it can be noticed that the CS algorithm is mainly
controlled by four parameters: number of iterations, number of
host nests (NS), step size (α) and probability (pa).

4.6. Differential Evolution Algorithm (JADE)

JADE is an adaptive version of DE. In 2011, a new differential
evolution (DE) algorithm, JADE, is proposed by Zhang and San-
derson [61] to improve the optimization performance by imple-
menting a new mutation strategy “DE/current-to-pbest” with
optional external archive and updating control parameters in an
adaptive manner. Basically, JADE algorithm includes a new muta-
tion strategy (i.e., DE/current-to-pbest) to be used with standard
DE. This approach implements a randomly chosen individual to
evolve the best solution in the population at that moment.

JADE algorithm differs from DE in 3 aspects. First, JADE can
optionally utilize an archive of parent solutions recently replaced
with more successful offspring. The archive is used in the JADE
mutation process. The second one is a special mutation operator,
which is known as “current-to-pbest”. DE/current-to-pbest, a
mutation vector is generated in the following manner:

vi ¼ xiþFi Uðxpbest�xiÞþFi Uðxr1�ðxr2Þ ð35Þ

where, xi is the parent individual, where xpbest is randomly
selected as one of the top 100 p% individuals in the current
population with p A [0, 1]. xr1 and xr2 are individuals randomly
chosen from the population and from the union of current popu-
lation and archive respectively. Fi is the mutation factor that is
associated with xi and is re-generated at each generation by the
adaptation process.

The third and most important difference is the adaptation of F
and Cr. In classic DE, both factors are usually constant (or sampled
from a static distribution). In JADE, mutation coefficient is pro-
duced with F�N (mc, 0.1) and crossover coefficient with
Cr�Cauchy (mF, 0.1). Here, N (mc, 0.1) is a normal distribution
function with average value of mc and standard deviation value of
0.1, and Cauchy (mF, 0.1) is a cauchy distribution function with local
parameter value of mF and scale parameter value of 0.1. JADE
algorithm solves the real-valued optimization problems much
more successfully than the standard DE algorithm. The detailed
knowledge of JADE algorithm can be found in [61]. In addition, a
generalized flowchart of JADE algorithm is given in Fig. 4.

Based on the above-mentioned rules, the basic steps of JADE
algorithm are summarized as follows:

Step 1 : Select the size of population, n, number of different
solutions. The number of solutions has been taken as 15. Next,
set the stopping criteria as either the fitness value less than
some fixed value or the number of iteration. In this problem, the
fixed number of iteration has been chosen. Set the dimension of
problem. Here, the dimension of problem is four. Also, set the
limiting values for each dimension.
Step 2: Randomly, initialize the solution set by generating
population of size n, in which each are having 4 dimensions.
Step 3: Evaluate fitness for each of the initialized solution. Then
sort it in ascending order on the basis of their fitness values.
Step 4: Start iteration. Compute the crossover probability, CRi,
from a normal distribution with mean, mcr and, Standard
deviation of 0.1. Similarly, compute Mutation Factor, Fi, from a
Cauchy Distribution with location parameter mf and, Scale
parameter 0.1. The parameters, mcr and mf, are updated in each
generation using Arithmetic and Contra-harmonic mean respec-
tively, of CRi and Fi.
Step 5: Next a donor individual, Vi, is created by using the
mutation operator called “Current-to-pbest”,

Vi ¼ XiþFi � Xp
best� Xi

� þFi � Xr1–Xr2ð Þ ð36Þ

where, Xi is the parent individual, Xp
best is an individual ran-

domly chosen from the best 100% individual in current population,
p € (0,1], Xr1 and Xr2 are individuals randomly chosen from the
population and from the union of current population and the
archive, respectively. The Fi is the mutation factor. The individuals
Xp
best, Xr1 and Xr2, and the value of Fi are chosen as a new for each

mutation.
Step 6: After Mutation, Crossover is performed by taking some

solution components from the parent Xi and other components
from the donor Vi , resulting in the creation of an offspring.

Step 7: The offspring ui¼(ui,1,...,ui, 4) is as follows:

ui;j ¼ vi;j if rjrCRi or j¼ ji; rand;

xi;j otherwise; ð37Þ

where, rj is a random number uniformly distributed in [0, 1],
CRi A [0, 1] is the crossover probability representing the average
proportion of components that the offspring gets from its donor,
and ji, rand is the randomly chosen index of the solution compo-
nent surely taken from the donor.

Step 8: The new population so obtained is sorted in ascending
order on the basis of their fitness, and the global best solution is
updated.

Step 9: The above steps are repeated until the stopping criteria
is achieved, thereby giving the best fitness and corresponding best
individual.

4.7. Details steps of the proposed denoising algorithm
Step 1: Take an input image, extract the red, green and blue
pixel matrix and put Gaussian noise of mean zero and some
predetermined variance in each of them.
Step 2: Apply DWT for both input and noisy image matrixes and
obtain coefficients upto level 2, by again taking wavelet trans-
form of the approximation matrix so obtained from level
1 transform.
Step 3: Set the required parameters for the optimization algo-
rithm (JADE) such as number of solutions as 4, number of
generations as 40 etc.
Step 4: Now put these noisy image coefficients (1st and 2nd
level) to the optimizing algorithm (JADE) which includes
adaptive thresholding function. Obtain solutions from the opti-
mization algorithm and after computing it through three shape
adaptive thresholding function, calculate the fitness value for
each solution and for each subband of noisy image.
Step 5: Obtain the best solution by Eq. 10 (thr, k, m, n) through
the optimization algorithm (JADE), and route it to thresholding
function along with noisy coefficients, to obtain the required



Fig. 5. Satellite images, (a1–a8) original satellite images of size 256�256 pixels [62], and (b1–b8) corresponding noisy images with σ¼20 Gaussian noise.
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matrix of coefficients, say Thresholded matrix. In this function
by applying differentiability property to the proposed thresh-
olding function, a nonlinear differentiable function with two
shape tuning parameters k and m is determined. By adjusting k
parameter, a near-optimum function between hard and soft
functions is resulted. Moreover, via tuning parameter m, the
near-optimum thresholding function is adjusted to the optimum
one by applying small changes. In common practice, optimizing
parameter k works similar to a global search and optimizing
parameter m works like local search in finding the best thresh-
olding function.
Step 6: Use these thresholded matrixes and apply inverse DWT
to first obtain the coefficient matrix of level 1, and then with the
help of other matrixes of coefficients of level 1 obtain back the
modified, denoised image.
Step 7: Calculate the required performance parameters such as
PSNR, MSE, SSIM, FSIM and CPU time.

Since the proposed technique contains the optimization algo-
rithms as one of the important constituent of our image denoising
algorithm and we have experimented our technique with each of
them so we have provided the basic introduction of each of the
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meta-heuristic algorithm used, to provide a better understanding
of what each algorithm doing and why our proposed technique is
best suited with JADE Algorithm.

The main Focus of our paper is the study of various optimiza-
tion algorithms for optimizing the parameters lambda; Threshold
value, k; a measure between soft and hard thresholding, m and n;
the exact shape tuning parameters of the thresholding function
Image 1                              Image 2     

Wiener

Median

Bayes

Soft

DE

Fig. 6. Comparison of different classic filters (Weiner, Median, Bayes and Soft Thresh
thresholding function results with σ¼20 Gaussian denoising for test image 1, test imag
giving the freedom to thresholding function to modify the coeffi-
cients adaptively, of the adaptive thresholding function, a mod-
ification of zhang functions, to remove the noise in an image.
For finding the optimum value of the above mentioned coefficients
we have used six most used meta heuristic algorithms and
upon comparing the results we found that JADE gives the best
results.
Image 3 Image 4

old) images, DE, PSO, WDO, FA, CS and proposed JADE algorithm based adaptive
e 2, test image 3 and test image 4.
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5. Assessment parameters and discussion

In this experimental section, different well known image pro-
cessing matrices such as peak signal-to-noise ratio (PSNR) and
mean-squared error (MSE), structural-similarity index (SSIM) and
feature similarity index (FSIM) are used to compare the image
denoising quality. PSNR and MSE depend directly on the image
intensity values, which usually indicate the strength and accuracy
of final reconstructed signal or image. The MSE represents the
cumulative squared error between the denoised and original
image. Lower the value of MSE, lower will be the error. Perfor-
mance of this method is measured in terms of following significant
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parameters:

MSE¼ 1
MN

XM
i ¼ 1

XN
j ¼ 1

½Iði; jÞ� ~Iði; jÞ�2 ð38Þ

PSNR represents the measure of peak error and is expressed in
decibels, which is defined by:

PSNR¼ 10log 10
2552

MSE

 !
ð39Þ
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Fig. 7. Comparison of different classic filters (Weiner, Median, Bayes and Soft Thresho
thresholding function results with σ¼20 Gaussian denoising for test image 5, test imag
where,M, N are the size of image, I is the original image and Ĩ is
the denoised image at a particular noise variance.

On the other hand, SSIM and FSIM are exploited to measure the

similarity among the images computed as a result of denoised

image carried out by the proposed methodology and the original

images. SSIM is an image quality assessment based on the degra-

dation of structural information. The SSIM is used to compare the
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ld) images, DE, PSO, WDO, FA, CS and proposed JADE algorithm based adaptive
e 6, test image 7 and test image 8.
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structures of original and thresholded image [56]. The SSIM index
is calculated as:

SSIMðx; yÞ ¼ ð2μxμyþC1Þð2σxyþC2Þ
ðμ2

xþμ2
yþC1Þðσ2

xþσ2
yþC2

ð40Þ

where, mx and my stands for mean intensity of image of x and y
respectively, σx and σy indicates the standard deviations of x and y
respectively, σxy is the local sample correlation coefficient between
x and y. C1 and C2 are the constants, and are included to avoid
instability when μ2

xþμ2
yare very close to zero. Here, C1¼C2¼0.6.

The SSIM can take values in [�1, 1] range, and a higher value of
SSIM shows better performance. The SSIM metric can be extended
for true color RGB images as following:

SSIM¼
X
c

SSIMðxc; ycÞ ð41Þ



Table 2
PSNR result comparison for various test images and different noise variance (σ) values with classical filtering techniques, different optimization and proposed JADE algorithm
based adaptive thresholding function.

Test images Σ PSNR

Weiner Median Bayes [40] Soft threshold DE PSO WDO FA CS JADE

1 10 32.8338 32.6134 34.9900 33.8485 35.1850 34.8082 35.0222 35.1635 35.2505 36.1797
20 32.1047 31.6973 32.1209 31.2545 32.6954 32.4770 32.7229 32.5651 32.6674 34.2669
30 31.3394 30.9232 31.1701 30.0073 31.4346 31.2635 31.3133 31.3729 31.4176 31.6350

2 10 31.8894 31.2372 33.3907 32.4280 33.7110 34.8082 33.5953 33.6680 33.8497 36.9225
20 31.3523 30.7934 31.4085 30.7795 31.4885 31.5123 31.5741 31.4537 31.6528 32.8589
30 30.8510 30.3403 30.0043 29.7947 30.5831 30.6387 30.7578 30.5747 30.7723 32.3617

3 10 31.9323 31.6623 34.1883 33.4106 34.3716 34.2625 34.1239 34.3780 34.4662 36.6633
20 31.4192 31.0006 31.8989 31.1750 32.0102 31.9557 31.9149 31.9672 31.9949 34.2927
30 30.9632 30.4382 31.0241 29.9807 31.0256 31.0765 31.0649 31.0524 31.0987 32.8392

4 10 31.0291 30.8029 33.2332 32.1517 33.6619 33.5664 33.9853 33.6407 33.7090 37.6411
20 30.6887 30.3497 31.2544 30.7035 31.3869 31.3740 31.3308 31.3286 31.4122 33.2235
30 30.3820 29.9414 30.5580 29.7839 30.5276 30.5094 30.6208 57.0916 30.5647 32.0605

5 10 34.0106 33.5081 35.2673 34.5668 35.7434 35.6335 35.9582 35.6868 35.7644 40.7673
20 32.9737 32.4075 33.1983 31.4882 33.2894 33.1890 33.7130 33.2911 33.3798 34.2579
30 31.8208 31.4734 31.9016 29.9983 32.0490 31.9509 31.9622 31.9271 32.2385 32.4373

6 10 33.2364 32.8662 34.7944 33.9581 34.9366 34.7732 34.7560 34.7689 34.9396 41.8929
20 32.4152 31.8660 32.4986 31.3535 32.5909 32.5174 32.7323 32.4992 32.6164 36.8412
30 31.1510 31.0402 31.4501 30.0083 31.5798 31.4818 31.5490 31.4726 31.5019 34.6800

7 10 33.9070 33.3304 35.4473 34.7232 35.6634 35.5672 35.6976 35.7304 35.8015 44.7822
20 32.9634 32.2816 33.0729 31.5524 33.2217 33.1244 33.1470 33.1805 33.2722 34.4170
30 31.7877 31.4230 31.8820 30.1373 31.9356 31.7458 32.1646 31.9524 32.0173 32.3324

8 10 30.1947 30.1616 33.1014 31.8288 33.4248 33.2258 33.7779 33.3608 33.5097 36.3314
20 29.9271 29.7890 30.9825 30.5035 31.1320 31.0584 31.3459 31.0666 31.1385 33.5781
30 29.7426 29.4832 30.2081 29.6592 30.2662 30.2626 30.2948 30.2600 30.2625 31.4885
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Here, xc, yc correspond to cth channel of the original image and
the denoised image at a particular noise variance; where, c stands
for channel number (i.e., c ¼1, 2, 3 in true color RGB images).

FSIM is used to calculate the feature similarity between input
and the denoised images [56] which is formulated as:

FSIM¼
P

XAΩSLðXÞPCmðXÞP
XAΩPCmðXÞ

ð42Þ

where, Ω represents the entire image, and SL(x) indicates the
similarity between denoised image and original image. The FSIM
metric can be extended for true color RGB images as following:

FSIM¼
X
c

FSIMðxc; ycÞ ð43Þ

The motivation of our proposed techniques comes from the
beauty of Meta heuristic optimization algorithms which can find
the best possible values of the parameters in accordance with a
cost or fitness function. Since for denoising we require a thresh-
olding function which can find an optimum threshold value such
that there is no compromise with the details (edges, boundaries
and other features) of the image and give good denoised results.

The main Focus of our paper is the study of various optimiza-
tion algorithms for optimizing the parameters lambda; Threshold
value, k; a measure between soft and hard thresholding, m and n;
the exact shape tuning parameters of the thresholding function
giving the freedom to thresholding function to modify the coeffi-
cients adaptively, of the adaptive thresholding function, a mod-
ification of zhang functions, to remove the noise in an image. For
finding the optimum value of the above mentioned coefficients we
have used six most used meta heuristic algorithms and upon
comparing the results we found that JADE gives the best results.

JADE is one of the Meta-heuristic optimization algorithms that
optimize the values of shape tuning parameters lambda, k,m and n
respectively. It itself forms an important part of our proposed
denoising technique as the one which is optimizing the above
mentioned values. Since our algorithm is performing denoising in
the frequency domain with the help of an adaptive thresholding
function which along with threshold, modifies the value of the
wavelet coefficients hence denoising the image. The basic idea of
our proposed method is to first transform the image from spatial
domain to frequency domain as the noise mostly reside in the
higher frequency bands along with the detail coefficients (edges,
boundaries and other features). Now when the wavelet coeffi-
cients have been obtained (upto two levels), finding an optimum
coefficient value (Threshold) with a thresholding or shrinkage
function is the next step. Since the image features vary with dif-
ferent images, so noise effects different image differently, so by
using an adaptive thresholding function noise content can be
removed efficiently. Hence we chose an adaptive function, a
modification of Zhang function, which has four variables i.e shape
tuning parameters of which choosing optimum values can modify
coefficients effectively without compromising Image details. Now
for finding these best suited values, we are using various Meta-
heuristic optimization algorithms like JADE Cuckoo Search, Dif-
ferential Evolution etc.
6. Experimental results

To investigate the effectiveness of proposed optimization based
adaptive thresholding approach and the other image denoising
methods, Gaussian noise corrupted images are considered and
compared with the original ones. The wavelet transform used in
all the methods is Db4 at one level of decomposition. To evaluate
Gaussian denoising methods, this noise is added to the different
satellite images with different noise variances such as σ¼10,
σ¼20 and σ¼30. Table 1 represent the parameters used for DE,
PSO, WDO, FA, CS and JADE algorithms.

To analyze the robustness of proposed approach, numerous
satellite images with different features, shown in Fig. 5(a1–a8),
have been used for experimentation whereas Fig. 5(b1–b8) shows
the corresponding noisy images with σ¼10, σ¼20 and σ¼30
Gaussian noise. There are several methods, which have been used
for satellite image denoising. In this paper, various conventional



Table 3
MSE result comparison for various test images and different noise variance (σ) values with classical filtering techniques, different optimization and proposed JADE algorithm
based adaptive thresholding function.

Test images Σ MSE

Weiner Median Bayes [40] Soft threshold DE PSO WDO FA CS JADE

1 10 33.8609 35.6239 20.6101 26.8059 19.7052 21.4909 20.4578 19.8030 19.4100 15.6716
20 40.0506 43.9898 37.7526 48.7117 34.9574 36.7599 34.7366 36.0224 35.1834 24.3441
30 47.7680 52.5722 49.2738 64.9156 46.7322 48.6103 48.0557 47.4017 46.9155 44.6255

2 10 42.0861 48.9059 29.7857 37.1774 27.6682 21.4909 28.4146 27.9434 26.7987 13.2077
20 47.6269 54.1683 47.8987 54.3414 46.1563 45.9032 45.2552 46.5274 44.4423 33.6660
30 53.4535 60.1242 57.5998 68.1730 56.8546 56.1315 54.6130 56.9650 54.4321 37.7498

3 10 41.6730 44.3457 24.7886 29.6495 23.7642 24.3680 25.1584 23.7288 34.4662 14.0201
20 46.8985 51.6437 41.9944 49.6111 40.9318 41.4481 41.8391 41.3389 41.0762 24.1997
30 52.0908 58.7838 52.3658 65.3147 51.3477 51.9302 50.8847 52.2199 51.6664 33.8191

4 10 51.3058 54.0499 30.8861 39.6198 27.9828 28.6045 25.9742 28.1195 27.6806 11.1935
20 55.4898 59.9939 48.7130 55.3007 47.2491 47.3888 47.8623 47.8873 46.9741 30.9549
30 59.5502 65.9081 57.7845 68.3425 57.5861 57.8279 56.3631 57.0916 57.0961 40.4601

5 10 25.8236 28.9913 19.3355 22.7197 17.3277 17.7716 16.4911 17.5549 17.2442 5.44940
20 32.7879 37.3532 31.7335 46.1593 30.4886 31.2016 27.6548 30.4767 29.8604 24.3944
30 41.7828 46.3167 41.7211 65.0505 40.5673 41.4940 41.3863 41.7226 39.8355 39.7515

6 10 30.8628 33.6092 21.5597 26.1381 20.8651 21.6647 21.7507 21.6865 20.8507 4.20530
20 37.2873 42.3138 36.7458 47.6139 35.8092 36.4195 34.6611 36.5811 34.9396 13.4573
30 47.4965 51.1750 46.4584 64.9012 45.1960 46.2265 45.5172 46.3258 46.0139 22.1351

7 10 26.4470 30.2023 18.5503 21.9161 17.6500 18.0448 17.5109 17.3798 17.0974 2.16200
20 32.8656 38.4524 31.3175 45.4819 30.9678 31.6689 31.5045 31.2626 30.6098 23.5171
30 44.1443 46.8579 43.4487 63.0014 41.6405 43.5008 39.5013 41.4802 40.8648 38.0054

8 10 62.1745 62.6497 31.8374 42.6774 29.5528 30.9384 27.2447 29.9919 28.9806 15.1335
20 66.1263 68.2622 51.8592 57.9065 50.1053 50.9608 47.6960 50.8653 50.0298 28.5279
30 68.9953 73.2419 62.9825 70.3327 61.1592 61.2090 62.1719 61.2462 61.2109 46.1561
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classical denoising techniques such as Weiner filter, Median filter,
Bayes shrink and soft threshold methods have been used for
comparison purposes. In order to show the effectiveness of pro-
posed method over other optimization algorithms, five different
robust and well known techniques such as DE, PSO, WDO, FA and
CS are used for comparison. To investigate the effectiveness of
noise suppression; commonly used performance indices like PSNR,
MSE have been used, and to evaluate edge preservation, SSIM and
FSIM has been used.

For Gaussian noise suppression, the proposed optimized
thresholding function based image denoising methodology is
compared with the four classic methods such as Weiner filter,
Median filter, Bayes shrink and soft threshold with Gaussian ran-
dom noise of standard deviation 10, 20 and 30. Then, the proposed
JADE algorithm based method is compared with some other
optimization algorithm DE, PSO, WDO, FA and CS based image
denoising methods with three shape adaptive thresholding
function.

In order to investigate the efficiency of proposed thresholding
function, well known denoising techniques such as Weiner filter,
Median filter, Bayes shrink and soft threshold methods are
exploited. Figs. 6 and 7 show the denoised images with σ¼20
Gaussian noise using classic Weiner filter, Median filter, Bayes
shrink and soft threshold methods besides the proposed JADE and
other optimization algorithm such as DE, PSO, WDO, FA and CS
based denoised images. On the other hand, Tables 2–6 show the
PSNR, MSE, SSIM, FSIM and CPU time results respectively with
σ¼10, σ¼20, σ¼30 Gaussian noise using classic Weiner filter,
Median filter, Bayes shrink and soft threshold methods besides the
proposed JADE and other optimization algorithm such as DE, PSO,
WDO, FA and CS based denoised images.

In this paper, to get better denoised result with superior quality
of features, the proposed thresholding function is used in
subband-adaptive scenario using optimization method. In the
optimization based approaches, only the threshold value is learnt
and shape tuning factors (x, thr, m, n, k) of function are kept fixed.
Figs. 8 and 9 show the corresponding conversion rate with respect
to MSE for each optimization based denosing methods (DE, PSO,
WDO, FA and CS) along with the proposed JADE algorithm based
approach with σ¼20 in the proposed method. Most importantly,
Fig. 10 presents the denoised images for the test image 1 with
σ¼10, σ¼20, σ¼30 Gaussian noise which demonstrate the com-
plete visual comparison of the proposed methodology with Wei-
ner filter, Median filter, Bayes shrink, soft threshold, DE, PSO,
WDO, FA and CS based denoising methods.

The proposed optimized thresholding function has produced
better results in Gaussian noise reduction compared to other
methods. The denoised images of Weiner filter and Median filter
are poorly affected by the over smoothing and blurring with σ¼10,
σ¼20, σ¼30 Gaussian noise; and due to these artifacts, the
available features in the image are lost. In case of Bayes shrink and
soft threshold methods, the denoised results are found to be good
with σ¼10 Gaussian noise; but at high (σ¼20, σ¼30) Gaussian
noise, the final denoised images are distorted. In this paper, to
show the preserved edges and features of the denoised image, two
dedicated fidelity criteria are considered known as SSIM and FSIM.
The SSIM and FSIM are reported in Tables 4 and 5, which indicates
the feature preserving capability of the proposed methodology.
These two assessment parameters demonstrate the drastic
improvement of features, whereas minimum MSE and high PSNR
values indicate the overall quality and strength of the final
denoised images.

Both the quantitative and qualitative results indicate that the
proposed method effectively suppresses Gaussian noise without
smoothing the important image details at higher nose level.
Experiments demonstrates that the new method produces super-
ior results compared to the methods based on the other optimi-
zation and results comparable to other well-known denoising
methods.

The cost function which we have defined is the Mean square
error risk between the original image and the estimated image.
This cost function is very suitable for use for our optimization



Table 5
FSIM result comparison for various test images and different noise variance (σ) values with classical filtering techniques, different optimization and proposed JADE algorithm
based adaptive thresholding function.

Test images σ FSIM

Weiner Median Bayes [40] Soft threshold DE PSO WDO FA CS JADE

1 10 0.8598 0.8427 0.9374 0.9162 0.9568 0.9565 0.9522 0.9556 0.9563 0.9427
20 0.8532 0.8299 0.8916 0.8369 0.9136 0.9151 0.9093 0.9127 0.9155 0.9031
30 0.8403 0.8114 0.8589 0.764 0.8819 0.8826 0.8826 0.8829 0.8829 0.8836

2 10 0.8082 0.7783 0.9229 0.9048 0.9521 0.9565 0.9445 0.9493 0.9526 0.9356
20 0.8098 0.782 0.8616 0.8474 0.8947 0.8943 0.8936 0.8917 0.8954 0.8832
30 0.8099 0.7786 0.8217 0.7884 0.855 0.8576 0.8527 0.8545 0.8567 0.8595

3 10 0.8064 0.7916 0.9312 0.9189 0.9549 0.9542 0.9468 0.9535 0.9537 0.9554
20 0.8073 0.7876 0.8706 0.8618 0.9022 0.9022 0.8989 0.9001 0.9013 0.9028
30 0.808 0.7839 0.8311 0.8026 0.8653 0.8631 0.8617 0.8654 0.8641 0.8673

4 10 0.7857 0.7691 0.9287 0.9104 0.958 0.958 0.9515 0.9573 0.9575 0.9584
20 0.7905 0.7703 0.8701 0.8627 0.9023 0.902 0.902 0.9028 0.9039 0.9045
30 0.7939 0.7709 0.8281 0.8126 0.8653 0.8672 0.8646 0.8646 0.8652 0.8689

5 10 0.8129 0.804 0.9035 0.9048 0.9265 0.9303 0.9175 0.9266 0.9266 0.9267
20 0.826 0.8105 0.8382 0.8155 0.8698 0.8689 0.8689 0.8712 0.8724 0.8762
30 0.824 0.8051 0.7854 0.7288 0.8483 0.8457 0.8443 0.8451 0.8451 0.8457

6 10 0.8321 0.8106 0.9241 0.9122 0.9431 0.945 0.9406 0.9411 0.944 0.9481
20 0.8344 0.8076 0.8688 0.8428 0.8882 0.8899 0.8861 0.8886 0.8879 0.8922
30 0.8284 0.8007 0.8298 0.7716 0.8552 0.8571 0.8566 0.8566 0.8544 0.8568

7 10 0.8607 0.8472 0.929 0.9168 0.9485 0.9496 0.9432 0.9472 0.949 0.9493
20 0.8602 0.8389 0.8803 0.8327 0.9023 0.9037 0.9017 0.9039 0.9025 0.9049
30 0.8505 0.8264 0.8476 0.7533 0.8775 0.8758 0.8772 0.8784 0.8783 0.879

8 10 0.7889 0.7752 0.9412 0.9205 0.9691 0.9698 0.9655 0.9686 0.9695 0.9698
20 0.7902 0.7717 0.887 0.8809 0.9242 0.9257 0.9219 0.925 0.9251 0.9256
30 0.7904 0.7647 0.8496 0.8378 0.8894 0.8936 0.8899 0.889 0.89 0.892

Table 4
SSIM result comparison for various test images and different noise variance (σ) values with classical filtering techniques, different optimization and proposed JADE algorithm
based adaptive thresholding function.

Test images σ SSIM

Weiner Median Bayes [40] Soft threshold DE PSO WDO FA CS JADE

1 10 0.9952 0.9986 0.9988 0.9983 0.9991 0.9991 0.999 0.9991 0.9991 0.9993
20 0.9915 0.9984 0.9925 0.9919 0.9981 0.9981 0.998 0.9981 0.9981 0.9985
30 0.9803 0.9966 0.9851 0.9819 0.9972 0.9971 0.9971 0.9972 0.9972 0.9976

2 10 0.9801 0.9685 0.9948 0.9951 0.9986 0.9991 0.9983 0.9985 0.9986 0.9991
20 0.9635 0.9557 0.9839 0.9913 0.9966 0.9965 0.9965 0.9964 0.9966 0.9969
30 0.9516 0.9388 0.9482 0.9861 0.9949 0.995 0.9949 0.9949 0.995 0.9951

3 10 0.9458 0.9362 0.9939 0.9974 0.9987 0.9986 0.9985 0.9987 0.9987 0.9988
20 0.9351 0.9388 0.9535 0.9937 0.997 0.9969 0.9969 0.9969 0.997 0.9972
30 0.8755 0.9309 0.9303 0.9803 0.9956 0.9955 0.9955 0.9955 0.9955 0.9958

4 10 0.9879 0.9971 0.998 0.9985 0.9985 0.9985 0.9982 0.9985 0.9985 0.9987
20 0.9786 0.9918 0.9943 0.9983 0.9963 0.9962 0.9962 0.9962 0.9963 0.9964
30 0.9686 0.9928 0.9802 0.995 0.9944 0.9944 0.9943 0.9944 0.9955 0.9958

5 10 0.9685 0.8636 0.9503 0.9987 0.999 0.999 0.9989 0.999 0.999 0.9992
20 0.9613 0.8471 0.8408 0.9881 0.9982 0.9981 0.9981 0.9982 0.9982 0.9985
30 0.8546 0.8996 0.7716 0.8825 0.997 0.9975 0.9975 0.8451 0.9976 0.9978

6 10 0.9841 0.9844 0.9957 0.9965 0.9989 0.9988 0.9987 0.9988 0.9989 0.9991
20 0.9781 0.9751 0.9747 0.9941 0.9976 0.9975 0.9975 0.9976 0.9976 0.9978
30 0.9682 0.9743 0.9478 0.9824 0.9966 0.9965 0.9965 0.9965 0.9965 0.9969

7 10 0.9987 0.9982 0.9988 0.999 0.999 0.999 0.9989 0.999 0.9991 0.9992
20 0.998 0.9994 0.9961 0.9988 0.998 0.998 0.998 0.9981 0.9981 0.9982
30 0.9972 0.9952 0.9945 0.9969 0.9972 0.9972 0.9972 0.8784 0.9972 0.9977

8 10 0.9605 0.9511 0.9956 0.9983 0.9985 0.9984 0.9985 0.9984 0.9985 0.9988
20 0.9744 0.9416 0.9832 0.9955 0.9959 0.9959 0.9958 0.9959 0.996 0.996
30 0.9715 0.9449 0.9246 0.9891 0.9937 0.9937 0.9935 0.9936 0.9936 0.9939

A.K. Bhandari et al. / Neurocomputing 174 (2016) 698–721 713
algorithm as there exist a Statistical technique called Stein's
unbiased risk Estimator (SURE) which is an unbiased estimator of
the mean-squared error of a nearly arbitrary, nonlinear biased
estimator.

SUREðhÞ ¼ dσ2þ‖gðxÞ‖2þ2σ2
Xd
i ¼ 1

∂
∂xi

giðxÞ ð44Þ
In Eq. (44), σ2 is the variance and mu is the mean of the noisy
image, d is the number of pixels in an image, gi(x) is the ith com-
ponent of the function g(x) (image) and ‖.‖ is the Euclidean norm.

The importance of SURE is that it is an unbiased estimate of the
mean-squared error (or squared error risk) of h(x) (estimated
denoised image) i.e.

EμfSUREðhÞg ¼MSEðhÞ ð45Þ



Table 6
CPU Time comparison for various test images and different noise variance (σ) values with classical filtering techniques, different optimization and proposed JADE algorithm
based adaptive thresholding function.

Test Images σ CPU TIME

Weiner Median Bayes [40] Soft threshold DE PSO WDO FA CS JADE

1 10 0.692784 0.187907 0.982341 0.607182 899.4933 870.2179 106.2316 916.0361 1206.838 636.5686
20 0.743468 0.17546 0.986429 0.576398 893.3093 927.3882 100.6611 881.3291 1295.6856 886.6048
30 0.764474 0.165952 1.009205 0.57295 903.307 908.5422 82.6689 902.3618 1748.099 926.6066

2 10 0.779874 0.170531 0.996654 0.626243 911.8942 870.2179 116.1871 911.5593 1254.3151 646.5569
20 0.723023 0.179115 1.009097 0.578435 656.208 924.5459 105.0162 619.123 1239.7113 661.2742
30 0.707449 0.179579 0.952206 0.579171 888.7511 637.1325 121.2399 637.7071 1768.4288 943.7039

3 10 0.765562 0.17719 1.008721 0.617951 882.1061 878.7669 128.7295 652.9663 1242.067 659.2825
20 0.70882 0.194342 1.006854 0.585681 886.8923 888.4022 82.23149 863.5765 1738.9881 636.5267
30 0.746033 0.160666 1.000949 0.543674 649.4997 885.9046 118.8511 616.5182 1699.1206 915.8764

4 10 0.697499 0.168277 0.974318 0.579352 926.2485 880.1201 128.8659 678.0716 1243.0733 894.1175
20 0.675285 0.162689 0.963448 0.573525 948.9743 930.2213 109.9766 891.7059 1793.0306 666.8474
30 0.643251 0.162295 0.963824 0.584728 676.1184 897.7797 83.87221 872.2186 1735.983 671.8323

5 10 0.70988 0.17524 0.938624 0.586604 648.0865 835.762 90.64159 661.3702 1661.3812 879.5087
20 0.691129 0.181147 0.920292 0.579681 644.0929 903.7071 103.1967 628.1854 1634.9425 912.1832
30 0.700508 0.166603 0.972729 0.571403 861.5219 927.8554 104.3867 608.7738 1136.3861 649.145

6 10 0.714711 0.169498 0.97456 0.5971 942.3628 884.0189 133.6923 910.4236 1728.7048 901.6794
20 0.702783 0.167182 0.964966 0.600535 932.0979 641.6533 84.82182 937.7443 1687.2844 656.4891
30 0.697243 0.166616 1.001217 0.677412 885.2152 920.6708 126.5071 874.3157 1266.6693 684.9808

7 10 0.687356 0.168775 0.994768 0.62918 641.6394 620.6255 110.1259 667.7944 1183.1514 638.441
20 0.687856 0.159701 0.967738 0.609024 870.3114 904.4827 122.5203 614.8468 1142.9044 681.2647
30 0.684347 0.174034 0.993865 0.60384 614.373 604.2582 100.7066 630.6488 1214.0186 859.3658

8 10 0.712688 0.163881 0.975456 0.610312 892.1928 882.5932 111.7647 672.6176 1195.6923 659.344
20 0.724784 0.172328 0.976588 0.575127 903.7654 905.51 82.84719 882.1714 1670.355 680.4376
30 0.699146 0.16818 0.96338 0.572535 673.417 903.3006 121.4759 894.2541 1158.3873 952.9065
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With

MSEðhÞ ¼ Eμ‖hðxÞ�μ‖2 ð46Þ
Thus, minimizing SURE can act as a surrogate for minimizing

the MSE. So, instead of using SURE risk estimator researchers are
directly using mean square error to show the superiority of their
techniques. Also, using SURE itself is a different area of Statistical
research and our main focus of this paper is to show the effec-
tiveness of our proposed denoising algorithm with the help of
Meta-heuristic optimization Algorithm JADE. Our paper also acts
as a study of various evolutionary Algorithms for the optimum use
of a four parameter shrinkage Function. It's important to keep in
mind that SURE is not a surrogate for MSE. What is meant is that
minimizing SURE is a surrogate for minimizing MSE. When
choosing a statistical estimator, we often want the one that will
minimize MSE, but we cannot compute MSE without knowing the
true parameters. SURE gives us an unbiased estimate of what this
MSE is without needing to know the true parameters. Also find
below the research papers that have used MSE risk as cost func-
tion. Sir, please add references of papers using MSE as cost
function.

While the learning method that you proposed with the use of
first forming a data set of required parameters with the help of a
learning system (like Neural nets, Support vector Machine etc. )
with N fold evaluation would itself require the training data to be
created by repetitive run of our proposed technique with optimi-
zation algorithm(JADE) and then obtaining the parameters which
would constitute the training data for a machine learning system.
But the issue with this model is that the training data we obtained
is only valid for a particular image as our shrinkage function is
adaptive and for every run of our proposed algorithm, the training
data (parameters of shrinkage function) are obtained in accor-
dance with that particular noisy image. Hence, your suggestion is
very much helpful for a shrinkage function which is universal so
that by training a learning model with an appropriate training data
(N groups of parameters of universal function) with N-1 groups for
training and one disjoint group for cross-validating or/and testing
would give us optimized weights(neural nets)/thetas so that any
noisy image that is passed through the leaning model will reduce
the noise effectively thereby preserving the important details as
boundaries, edges and other image features.

6.1. Optimization technique

The main aim of the proposed methodology is to preserve
the available features and edges in the denoised results.
Therefore, the optimization techniques are employed to get
minimum MSE as an objective function for computing the best
thresholded parameters (x, thr, m, n, k) of the adaptive
thresholding function. For this purpose, the present paper
proposes to utilize relatively recent category of Swarm and
evolutionary algorithms (DE, PSO, WDO, FA, CS and JADE),
where JADE algorithm based result was found to be superior to
other optimization based methods. As an algorithm, the main
strength of JADE algorithm is its fast convergence and easy
implementation.

6.2. Subband-adaptive method

After investigating the superiority of proposed optimization
based adaptive thresholding function, results of utilizing the
function in optimization manner show that this method has pro-
duced better smooth images with highly preserved edges and
features which reveals that the proposed method can be used as
an efficient denoising method in Gaussian noise reduction.

6.3. Threshold learning

Threshold learning is a conventional method of image denoising
and applying this method in an optimized adaptive thresholding
function yields it as a more effective approach in image denoising.

6.4. Shape parameter learning

The three shape learning objective functions can be called as
improved Visu Shrink; in which the proposed optimization based



Image 1     Image 2 Image 3 Image 4

DE -MSE

PSO -MSE

WDO -MSE

FA -MSE

CS -MSE

JADE -MSE

Fig. 8. Comparative performance of the MSE convergence rate for DE, PSO, WDO, FA, CS algorithms and proposed JADE algorithm based adaptive thresholding function
results with σ¼20 Gaussian denoising for test image 1, test image 2, test image 3 and test image 4.
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Image 5                   Image 6                         Image 7 Image 8

DE-MSE

PSO -MSE

WDO -MSE

FA -MSE

CS -MSE

JADE -MSE

Fig. 9. Comparative performance of the MSE convergence rate for DE, PSO, WDO, FA, CS algorithms and proposed JADE algorithm based adaptive thresholding function
results with σ¼20 Gaussian denoising for test image 5, test image 6, test image 7 and test image 8.

A.K. Bhandari et al. / Neurocomputing 174 (2016) 698–721716



σ =10                             σ =20                                σ=30

Noisy

Wiener

Median

Bayes

Fig. 10. Comparison of different classic filters (Weiner, Median, Bayes and Soft Threshold) images, DE, PSO, WDO, FA, CS and proposed JADE algorithm based adaptive
thresholding function results with σ¼10, σ¼20 and σ¼30 Gaussian denoising for test image 1.
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approach depends on learning the parameter k in the fixed Visu
Shrink threshold values that is used to produce powerful results.
Here, the role of optimization technique is very important because
it produces the optimized (best) values of the three shape learning
parameters which are responsible to suppress noise from the image.
7. Conclusion

In this paper, an exhaustive study for satellite image denoising
has been presented. A remarkable point is that Gaussian noise
reduction at higher noise variance for edge preserve subjects is
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Fig. 10. (continued)
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considered together in this paper. In this study, different classic
(Weiner, Median, Bayes and Soft Threshold) methods and well
known optimization (DE, PSO, WDO, FA, CS and JADE) algorithms
have been employed to optimize the three shape adaptive
thresholding function to compute the feature preserve denoised
image. When the noise variance is less, the classic methods give
satisfactory results; but at high noise variance level, these methods
are failed to provide better denoised output. Therefore, in this
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paper, feature preserved satellite image denoising using optimized
adaptive thresholding function based on adaptive differential evo-
lution algorithms has been proposed. A remarkable point is that this
method is highly effective where edge preservation is the basic
need such as in case of satellite imaging application. It was found
that the proposed JADE algorithm based denoising approach has
superior features and give better performance in terms of PSNR,
MSE, SSIM and FSIM as compared to other methods. The experi-
mental results show that the performance of JADE based denoising
approach is obviously better than the other algorithms with the
increase of Gaussian noise variance. This makes it an efficient
method in satellite image denoising applications. Especially, the
proposed method can preserve the edges very well while removing
the high noise levels. The denoised results of JADE with adaptive
thresholding function are promising and prompt further research
for applying these concepts to complex and real-time image ana-
lysis problems such as object classification, automatic target
recognition and color image processing. Utilizing other objective
functions with JADE algorithm or apply some new optimization
techniques can be another topic for future work and may improve
the efficiency of the method.
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