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Abstract—Cloud computing is a particularly interesting and
truly complex concept of providing services over networks on
demand. Many simulation tools have previously been created to
simulate the work of the clouds, such as CloudSim. The main
use of these tools is evaluation and testing of architectures
and services before deployment on network centers and hosts
in order to avoid any potential failures or inconveniences.
The benefits of using the pay-per-use clouds may be affected
by underutilization of the already reserved resources, so
the maximization of system utilization while simultaneously
minimizing makespan is of great interest to cloud providers
wishing to reduce costs. To minimize makespan and increase
resource utilization, a hybrid of particle swarm optimization
and simulated annealing is implemented inside of CloudSim
to advance the work of the already implemented simple
broker. The new method maximizes the resource utilization
and minimizes the makespan demonstrating improvements
upwards of 53%.

Keywords-cloud computing, particle swarm optimization,
random inertia weight, task scheduling, makespan, utilization,
CloudSim

I. INTRODUCTION

Cloud computing is a term used to describe the on-
demand, elastic, and scalable services offered over a net-
work. The two main types of clouds are private and public
clouds which are served over private (internal) and public
networks, respectively. Hybrid clouds are also available and
are a combination of the two previous kinds of clouds,
where public clouds are used to increase and supplement
the capabilities of the on-premise private clouds. Cloud
providers provide cloud resources such as network, servers,
storage or applications for users as services where they pay
per resource unit used. Companies like Google, Amazon,
and Microsoft provide convenient public cloud services over
the Internet on a pay-per-use basis.

One of the major focuses of IT professionals has been
reducing costs, reducing data center footprint, and improv-
ing the amount of computational power available via the
cloud. Thus, network resources in cloud computing should
be provided to users while satisfying the aforementioned
characteristics of the cloud. Further, one of the essential
characteristics of the clouds is to give the consumer the
illusion that network capabilities and computing power are
unlimited, and can be requested at any time and in any
quantity as defined by NIST [1].

When considering the cloud, the widely used saying “time
is money” applies. When a user requests cloud resources,
the cloud should be able to serve the user’s request as
soon as possible and in a cost-effective manner. In order
to satisfy the “unlimited” and “elastic” characteristics of the
cloud, consumer requests are often handled by way of the
First-Come-First-Serve (FCFS), where the customer request
should be the driving factor for workload scheduling [2].

In order to reduce the costs of using on-demand cloud
resources, cloud computing systems always attempt to maxi-
mize the utilization value of the available resources. To max-
imize the utilization value, smart and adaptive scheduling
algorithms may be used [3]. Designing smart scheduling al-
gorithms is important to overcome problems and constraints
when delivering cloud services over the network. One of the
more interesting problems arises when many users request
many cloud resources at the same time. Such problems can
be solved by scheduling cloudlets to the available resources
properly or other oversubscription methods. Execution se-
quences can be found after satisfying a set of objectives, like
minimum execution time or minimal cost, or overcoming a
set of constraints, such as bandwidth limitation and location
of network resources. In order to minimize the cost of using
cloud resources, the time of executing all the tasks assigned
to various compute resources should be minimized.

Accordingly, this study presents a solution for improving
the makespan scheduled tasks and the utilization of cloud
resources through the use of a hybrid variant of popular
population-based metaheuristic (PBM) algorithm, the parti-
cle swarm optimization (PSO). This paper is considered as
the first step towards a complete multi-objective optimiza-
tion of the cloud network. The paper also use a proposed
simulated annealing algorithm to enhance the performance
of the binary PSO for scheduling. Using the hybrid meta-
heuristic method was able to enhance the performance of
the simulated cloud in CloudSim tool. The test cases in this
paper was designed using real world workload, HPC2N [4],
and different combinations of cloud resources.

The paper is organized as follows: Section II contains
the necessary background regarding scheduling, clouds, and
PSO algorithm as used in this study. In section III we
discuss the ideas and methods implemented to optimize the
makespan time; the results of the implemented methods are
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examined in section IV, and section V closes the paper.

II. BACKGROUND

This section will present the necessary background for
this study, including coverage of makespan, utilization, and
scheduling, CloudSim, Cloudlet Scheduling in CloudSim,
PSO, and applications of PSO in cloud scheduling.

A. Makespan, utilization and scheduling

When optimizing scheduling in a system such as a cloud,
it is important to consider both makespan and resource
utilization. makespan is the total time the network resources
take to finish executing all the tasks/jobs. And utilization is
the measure of how well the overall capacity of the cloud
is used. In order to increase the utilization of the resources
at a given time, an effective scheduling algorithm should
be used to schedule the tasks among reserved resources.
makespan and Utilization have an inverse relationship, i.e.
increasing utilization will decrease the makespan. In other
words, to achieve higher utilization, tasks should be dis-
tributed efficiently among all the reserved cloud resources.
As we mentioned before, a more efficient distribution of
tasks among the reserved cloud resources will allow us to
decrease the makespan, and since we pay per second on the
cloud costs of reserving the resources will be decreased by
the decrease of the utilization time.

Fig. 1 shows three different resources, with a possibility
of having different computing power and different hosts.
Consider a makespan time of 500 seconds. During the 500
seconds of executing the tasks on the three resources and
according to the current brokering policy, resources R1, R2
and R3 will be utilized during the 500 seconds for around
80%, 66% and 100% respectively.

In order to decrease the makespan of all tasks on the three
resources, to be, for example, 450 seconds, rescheduling may
be effective in this case, where some of the tasks that were
assigned to R3 may be reassigned to either R1 or R2. In
this way, the makespan will decrease, and the utilization of
the resources will increase for the new duration, and again
for the fact that cloud computing is a pay-per-use service,

decreasing the makespan and increasing the utilization will
certainly decrease the cost of using resources.

B. Cloud computing and CloudSim

1) Network Topology: Cloud simulation tools allow users
to test modeled services in a controlled environment with
different workloads and scenarios before deploying them
on real clouds [5]. CloudSim tool [6] starts by creating
a network of nodes as illustrated in Fig. 2. A basic node
consists of data centers, hosts, and cloud brokers. Data
centers (resource providers in CloudSim) are created first
with specifications that define the operating system, memory,
bandwidth, storage, etc. One or more hosts are then created
on each data center with the proper specification of RAM,
storage, bandwidth, processing elements, and the selection
of the scheduling algorithm to schedule virtual machines
inside the host. Processing elements are known as cores or
CPUs, where each processing element is given a defined
processing power measured in millions of instructions per
second (MIPS). Hosts are managed by data centers where
each data center may manage a single or numerous hosts.
The cloud broker, “an entity that creates and maintains
relationships with multiple cloud service providers” [7], is
also created to distribute work among the available data
centers or cloud services. A cloud broker is the middleware
between a user and the cloud service providers.

After creating all of the network nodes of CloudSim,
virtual machines (VM) are created in order to run on the
specified hosts. Characteristics of each VM are defined by
parameters such as processing power in MIPS, RAM in
megabytes, bandwidth, etc. As is illustrated in Fig. 2, a
scheduling algorithm should be chosen to schedule cloudlets
inside the virtual machine too.

The last step in this process is the generation of tasks/jobs
(i.e. cloudlets) either by initializing them through code or
from existing workload traces. Cloudlets are defined based
on specifications that define the task length in millions of
instructions (MI), needed number of processing elements,
and a utilization model that states the cloudlet’s execution
rate through defining the current requested MIPS from the
processing elements.

When generating cloudlets from workload traces, the
workload format should be checked to make sure that
it follows the standard workload format described in [8].
Cloudlets’ length should also be converted to MI instead of
the standard’s execution time in seconds by multiplying the
execution time by the execution rate, where the CloudSim
authors set a default execution rate value of 1 MIPS. For
example, a cloudlet with an execution time of 10 seconds
is converted to 10 MI. After creating network nodes, VMs,
and cloudlets, the list of available VMs and cloudlets are
submitted to cloud brokers.

2) Cloudlet Scheduling: Scheduling in CloudSim is done
at the node level, the authors of the tool have already
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implemented two different scheduling algorithms in two
different levels of the software: the VM level and the host
level as shown in Fig. 2. The provisioning scenarios use
space-shared and time-shared policies for VMs and task
units [6]. Using the space-shared policy allows one VM
or cloudlet to be executed at a given moment of time. On
the contrary, using the time-shared policy allows multiple
cloudlets to multi-task within a VM and will allow VMs to
multi-task and run simultaneously within a host.

By default, VMs will be allocated to the hosts on a FCFS
basis as mentioned before and as specified in [6], to give the
user the illusion of having unlimited resources even though
the Shortest Job First (SJF) policy was found to be faster
than FCFS [9] but it wont for sure be in the advantage of
the cloud user with larger cloudlets. So FCFS is the ideal
policy on the cloud as discussed before. Similarly, cloudlets
will be executed on the corresponding VM on FCFS bases,
after being allocated to the VMs by the broker.

The simple implemented brokering inside CloudSim will
iterate through all cloudlets and assign them to the available
VMs one by one. For example if we have 2 VMs and 3
cloudlets, the broker will assign the first VM to run the first
cloudlet, the second VM to run the second cloudlet, and
then will start again with the first VM by assigning it to run
the third cloudlet. Our method works here to allow assigning
cloudlets to VMs in a different way, according to their MIPS
value to allow some kind of load balancing to decrease the
makespan of the whole workload.

C. Particle Swarm Optimization (PSO)

PSO is a population-based search algorithm inspired by
bird flocking and fish schooling, where each particle learns
from its neighbors and itself during the time it travels in
space. There are two versions of PSO. The original PSO
was first introduced by Kennedy and Eberhart in 1995 and
operates in a continuous space [23]. Later, in 1997 the

discrete, binary version of the algorithm was presented also
by Kennedy and Eberhart to operate on discrete binary
variables [24]. The binary PSO was implemented by [25] to
solve the task assignment problem and by [16] and [26] to
schedule jobs in grid computing. Both of the methods were
successful in finding an optimal solution of the problem.

The PSO algorithm starts by creating a number of par-
ticles to form a swarm that travels in the problem space
searching for an optimum solution. An objective function
should be defined to examine every solution found by
each particle throughout the traveling time. A particle in
this method is considered as a position in D-dimensional
space, where each element can take the binary value of
0 or 1. Additionally, each particle has a D-dimensional
velocity, where each element is in the range [0, 1]. Velocities
are calculated as probabilities that change during the time
particles move in space, where each velocity value changes
from one state to another.

The individuals in this algorithm are a group of particles
that move through a search space with a given velocity. At
each iteration the velocity and position of each particle is
stochastically updated by combining the particle’s current
solution, the particle’s personal best solution or p̂i, and the
global best solution or ĝ over all particles. The required
mathematics are listed in (1) and (2) where ω is the inertial
constant, c1 and c2 represent cognitive and social constants
that are usually ∼ 2, and r1 and r2 are random numbers. In
order to update the velocities and positions of each particle,
(3) and (4) are used to add nonlinearity where pi is the ith

component of particle p and r is a uniform random number.

vi = ωvi + c1r1 · (p̂i − pi) + c2r2 · (ĝ − pi) (1)

pi = pi + vi (2)

s(pi) =
1

1 + exp(−pi)
(3)

pi =

{
0 s(pi) ≤ r

1 Otherwise
(4)

The four previous equations indicate that the velocity of
neighbors and the current velocity of the particle itself will
contribute in deciding the next position of the particle. In
order for a particle to be part of the swarm and be able
to keep up with the other particles during the search of a
solution, each particle adapts to the velocity of the swarm
as a whole by learning from itself and its neighbor particles.

The inertia weight ω in (1) is one of the most important
adjustable parameters in PSO besides the acceleration coef-
ficients and random variables. The inertia weight value can
affect the overall performance of the algorithm in finding
a potential optimal solution in less computing time. Many
techniques are used to choose or modify the value of ω at
runtime, such as The fixed inertia weight (FIW) that use a



constant value, linearly decreasing inertia weight (LDIW)
implemented by [27] and [28] which changes the value
of the inertia weight linearly and per iteration. Also, the
adaptive inertia weight (AIW) and random inertia weight
(RIW) implemented by [27] and [29], where the inertia
weight starts with large value like 0.9 and start decreasing
to 0.1.

D. PSO in cloud Scheduling

Workload scheduling is known to be an NP-Complete
problem, therefore metaheuristics have been used to solve
such problems [10], [11], [12], [13]. The idea behind using
metaheuristics is to increase the performance and decrease
the computational time to get the job done, in our case
metaheuristics are considered the robust solution of finding
the right combinations of resources and tasks to minimize
the computational expenses, cut costs and provide better
services for users. In short, PSO is used to solve the problem
shown in Fig. 1.

Abraham et al. [14] discussed the features of GAs,
Simulated Annealing(SA), and Tabu Search(TS) as three
basic heuristics for grid scheduling. Nevertheless, the most
growing and used algorithms in cloud computing are Ant
Colony(ACO), Particle Swarm Optimization(PSO) and Ge-
netic algorithms(GAs) [15], therefore other algorithms was
not able to grow and compete with them.

According to researchers in [11] and [16], PSO was found
to be better than the GA in most of the cases and better than
TS in some cases. And according to [17], PSO was found to
be faster and more simpler than GA in terms of execution
and implementation. PSO is one of the commonly used
workflow scheduling algorithms in the cloud [18], where it is
mainly used to increase cloud resources utilization which in
return will reduce costs and makespans. Zhang et al. in [19]
implemented a hierarchical swarms in CloudSim for load
balancing and scheduling costs reduction, their method was
successful and PSO showed very good results in comparison
to the best resource selection algorithm(BRS).

The performance of PSO can be improved with the help
of other algorithms or by using an improved version of PSO
[20]. For example a hybrid version of PSO and TS was used
in CloudSim to maximize the utilization and reduce energy
consumption, the method was very successful in reducing
the energy consumption by 67.5%. [21]. Less average task
execution times also were achieved by a mixed scheduling
of PSO and SA than the solution found by the normal PSO,
GA, ACO or SA alone [22].

For all the reasons mentioned before and for the fact
that PSO implementation is very simple in comparison with
other methods, we chose PSO to schedule tasks inside the
used simulation tool. A combination of PSO and simulated
annealing is used to allow particles to explore more of the
problem space and not get stuck in local optima. This paper
propose a method to extend the capabilities of the broker, a

Table I
COMPLETION-TIME TABLE

C1 C2 C3 C4

VM1 4 6 8 10

VM2 2.6 4 5.3 6.6

VM3 1.6 2.4 3.2 4

Table II
EXAMPLE LIST OF CLOUDLETS

Cloudlets MI

C1 200

C2 300

C3 400

C4 500

sum 1400

Table III
EXAMPLE LIST OF CLOUD

RESOURCES

Resources MIPS

VM1 50

VM2 75

VM3 125

sum 250

smarter method than the simple already implemented normal
iterative Round-Robin like resource allocation method inside
CloudSim.

III. IMPLEMENTED METHOD

A. Problem Formulation

Cloud broker assign the cloudlets to the available cloud
resources, simply the virtual machines (VMs). The main
objective of the proposed solution is to achieve the highest
possible utilization of the group of VMs with a minimum
makespan. However, the costs of using the resources and
the positions of VMs across the system are not considered
as parameters in this solution. Additionally, task migration
between resources is not allowed which means that every
cloudlet can run on one VM until it is done executing.

As an example, Table I shows how many seconds each
resource from Table III takes to run each cloudlet from Table
II, by dividing the cloudlet length on the processing power
of the resource. For example, C1 will take 4 seconds to run
on VM1, but it takes 2.6 and 1.6 seconds to run on VM2

and VM3 respectively.
The objective function of the algorithm used in this study

will be to find the shortest time of running the 4 tasks on
the available resources, i.e. to minimize the makespan. So
the best combination of the pairs of cloudlets on virtual
machines should be found. In order to meet the objective
of the algorithm and find an optimum solution, (5) is used
to calculate the fitness value of each PSO particle. The
fitness function in (5) calculates the execution times of all
possible cloudlet combinations on every cloud resource and
then returns the highest execution time as the fitness value
of the particle.

Fitness = Max[EXCVM1
(j1), . . . EXCVMn

(jm)] (5)



1: procedure BINARY PSO(nodesList)
2: CalculateExecTimes(); . as in Table I
3: initSwarm();
4: initGlobalBest();
5: for i← 0→ numberIterations do
6: for j ← 0→ numberParticles do
7: calculateInertiaValue();
8: calculateNewVelocities();
9: calculateNewPositions();

10: calculateFitnessValue();
11: evaluateSolution();
12: updateParticleMemory();
13: updateGlobalBest();
14: end for
15: end for
16: end procedure

Figure 3. Binary PSO Algorithm

Here, EXCVM1(j1) is the execution time of running the
set of cloudlets j1 on VM1. j1 is a normal set, e.g. j1 =
[C1+C2+ ....Cx], where x is the number of cloudlets. Also,
n and m are the number of VMs and number of possible
sets of cloudlets respectively.

B. PSO Algorithm

PSO will initialize a swam of particles where each particle
will have a velocity and positions vector, the complete
algorithm is shown in Fig. 3. Both of the vectors will look
like Table IV, a 3x4 matrix filled with binary binary values
in the case of the positions vector and values in the range
of 0 to 1 for the velocity vector. Furthermore, since no task
migration is allowed, if we want to run C1 on VM2, the
second element in the first column of the positions matrix
will have the value 1, and the rest of the column values will
be 0.

The most optimum solution of the previous example can
be found manually due to the small problem space by
calculating the fitness value of it using (5) as follows:

Fitness =Max[6, 5.4, (1.6 + 4)]

Fitness =6

The fitness value 6 seconds represents the minimum
makespan of running all tasks on all available resources
which is the best combination of cloudlets to resources that
can be found. So Table IV is actually the positions matrix
of the best solution can be found by a particle when solving
the previous example using binary PSO. The table clearly
defines the relationship between VMs and cloudlets, where
C1, C2, C3 and C4 will be running on VM1, VM2 and
VM3 respectively, and each of them will be executed in a
FCFS basis as discussed before. On the other hand, if the

Table IV
CLOUDLET TO RESOURCE MAPPING TABLE

C1 C2 C3 C4

VM1 0 1 0 0

VM2 0 0 1 0

VM3 1 0 0 1

computing power of resources or the length of the cloudlets
were different, a different solution would be found where
different VMs will run different cloudlets.

C. The Inertia Weight

The inertia wight in 3 is calculated using the proposed
RIW method by [30], the method showed an advantage
against the other methods mainly in adjusting the balance
between particle’s local search and global search abilities.

To increase the probability of finding a near-optimal
solution in fewer iterations and computing time RIW use a
simulated annealing mechanism besides the LDIW method.
LDIW was suggested by [31] in 1999, However, it has a
disadvantages mainly caused by the low local search ability
at the iteration beginning. So even if a particle started at a
near point of the global optimization point, the particle will
keep moving fast, where sometimes will push the particle
away from the point. Similarly, if a particle did not find
a close optimal solution and is stuck in one part of the
space, and due to the linearly decrease in the inertia weight,
the global search ability will decrease, which decreases the
chance of finding a better solution. This, in return, makes
the iteration forepart more effective in finding the nearest
optimal solution. The authors of RIW method combined the
linearly decreasing method with a constraint random inertia
weight as thoroughly discussed in [30] to overcome the
problems of the linear method.

IV. SIMULATIONS AND RESULTS

In the PSO implementation, 100 particles were created
where each particle’s fitness is evaluated during 1,000 itera-
tions/movements. Additionally, based on a study by Eberhart
and Shi [32] that compared inertia weights and constriction
factors in particle swarm optimization the values of the
acceleration coefficients, C1 and C2 in (1), were set to
1.49445 that was found to have better influence on the
performance of PSO.

The proposed scheduling method was implemented inside
CloudSim as part of the cloud broker. The cloud simulation
was implemented as follows: (1) One data center was created
with the default characteristics defined by CloudSim authors
as in example 6 provided with the source code, (2) two
different hosts were created on the data center with: 2 GB
ram, 1 TB storage, 10 GB/s bandwidth and time-shared
scheduling algorithm was chosen to schedule VMs on hosts.
The first host has an Intel Core 2 Extreme X6800 processor
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Figure 4. Simulations makespans

that comes with 2 cores (PEs) and gives a cumulative
processing power of 27079 MIPS, as taken from [33]. The
second host has an Intel Core i7 Extreme Edition 3960X
with 6 cores that gives a cumulative processing power of
177730 MIPS. (3) cloud broker that implements PSO was
used, (4) 5 VMs were created, where each has an Intel
Pentium 4 Extreme Edition processor with: 10 GB image
size, 0.5 GB memory, 1 GB/s bandwidth and 1 processing
element that gives 9726 MIPS processing power. Xen virtual
machine monitor [34] was also used for all of them, in
addition to, using the time-shared scheduling to schedule
cloudlets inside the virtual machines, (5) cloudlets were
generated from a standard formatted workload of a high
performance computing center called HPC2N in Sweden
[4]. Each row in the workload represents a cloudlet where
we get the id of the cloudlet from the first column, the
length of the cloudlet from the fourth column (the runtime
value multiplied by the rating which is defined as 1 MI
in CloudSim), and finally the number of the requested
processing elements from the eighth column.

Fig. 4 shows the time elapsed between submission to
completion when executing a group of cloudlets at the same
time on the available cloud resources for 4 times, the first
time using the simple brokering and the rest using the
implemented PSO method. The simulation was developed
for 4 different groups of cloudlets, the 1st, 2nd, 3rd and 4th
group of cloudlets consisted of 20, 50, 100 and 200 cloudlets
respectively. The figure clearly shows that the makespan
was minimized when using PSO in most of the cases. The
optimization values ranged from 46% to 51% improvement
for the 20 cloudlets, 17% to 26% improvement for the 50
cloudlets, 14% to 20% for the 100 cloudlets, and from 11%
minimization to -4% maximization of makespan for the 200
cloudlets.

Fig. 5 shows the decrease of the convergence of the
global fitness value(the value recorded by the VMs) during
the 1,000 iterations of the PSO algorithm. This shows how
decreasing the size of the search space and increasing the
number of iterations will increase the probability of finding
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Figure 5. Fitness Value vs. Iteration

Table V
RESULTS OF RUNNING THE PSO METHOD FOR 100 TIMES

Function 20 Clts 50 Clts 100 Clts 200 Clts

AVG 359.15 737.91 1136.88 1670.50

STDEV 22.67 94.58 130.05 163.21

AVG - STDEV 336.48 643.33 1006.83 1507.29

AVG + STDEV 381.82 832.49 1266.93 1833.71

more optimal solutions. Notably, an improvement to the
solution for the 20 cloudlets problem was found during the
last 100 iterations, with no improvements for approximately
the prior 400 iterations. Such findings demonstrate the
advantage of using RIW to update the inertia weight value
in PSO, which updates the velocity and position of each
particle in a way that increased the probability of finding a
near-optimal solution even in the later iterations.

Furthermore, the Mann-Whitney test was developed for
two different sets, where every value is the makespan of exe-
cuting a workload of 100 cloudlets. The first numeric set was
generated after using the regular CloudSim brokering while
the other set was generated after using the metaheuristic
method. The two distributions were found to be significantly
different with a significance level of p ≤ 0.5. The regular
CloudSim scheduling method was found to have constant
fitness values for the same set of cloudlets, in contrast to
the metaheuristic method, where fitness values were found
to be adaptable and variable along the distribution.

The final test was prepared by running the simulation for
100 times using the PSO method, the average makespans
in seconds and standard deviations were then calculated for
the same 4 groups of cloudlets the results are listed in Table
V. The simple brokering of CloudSim was also tested and
the standard deviations were found to be zero as listed in
Table VI. The standard deviations were zero due to the fact
that the simple broker will always give the same execution
sequences and makespans for the same set of cloudlets and
cloud resources.

Table V clearly shows that the larger the search space
the less reliable the result is, since the result data is widely



Table VI
RESULTS OF RUNNING THE SIMPLE CLOUDSIM BROKERING METHOD

Function 20 Clts 50 Clts 100 Clts 200 Clts

AVG 634.64 902.75 1179.37 1521.06

STDEV 0 0 0 0

spread around the mean. For example, the difference be-
tween the best and worst solution found by PSO for the
200 group of cloudlets was approximately 844 seconds.
The results mean that the worst solution had approximately
34% more seconds than the best PSO solution. For small
populations, like the first three cloudlet groups, the average
makespan improvement ranged approximately from 43% to
4%.

V. CONCLUSION

In this study, PSO was used to assign virtual machines
to run different cloudlets as part of the broker in CloudSim
tool. The results clearly show that PSO was able to minimize
the makespan of the workload, and obviously excels at
optimizing the simulated scheduling results of CloudSim in
a way that will maximize the utilization and minimize the
costs of using the on demand cloud services. At the same
time PSO, like any other metaheuristic method, does not
give any guarantees on finding the most optimal solution.
Consequently, and as shown in Fig. 4, whenever the search
space expands, the chance of finding an optimal solution
becomes harder and harder. However, using the random
inertia weight to give the particles the ability to find better
solutions during late stages of the search was able to enhance
the ability of the PSO method in exploring the problem
space.

In some cases the makespan was minimized for about
51% of the original makespan of executing small group of
cloudlets when using the simple brokering method. The op-
timization tend to decrease with the expansion of the search
space, but still PSO was able to minimize the makespan by
up to 11% for a workload that consists of 200 cloudlets.

In the future, the implementation of a multi-objective
solution could further improve the achieved results. The
method could, for example, take the costs, bandwidth and
locations of data centers into consideration when assigning
tasks to cloud resources.
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