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Abstract

The Nelder–Mead algorithm, a longstanding direct search method for unconstrained
optimization published in 1965, is designed to minimize a scalar-valued function f of
n real variables using only function values, without any derivative information. Each
Nelder–Mead iteration is associated with a nondegenerate simplex defined by n+ 1 ver-
tices and their function values; a typical iteration produces a new simplex by replacing
the worst vertex by a new point. Despite the method’s widespread use, theoretical results
have been limited: for strictly convex objective functions of one variable with bounded
level sets, the algorithm always converges to the minimizer; for such functions of two
variables, the diameter of the simplex converges to zero, but examples constructed by
McKinnon show that the algorithm may converge to a nonminimizing point.

This paper considers the restricted Nelder–Mead algorithm, a variant that does not
allow expansion steps. In two dimensions we show that, for any nondegenerate starting
simplex and any twice-continuously differentiable function with positive definite Hessian
and bounded level sets, the algorithm always converges to the minimizer. The proof
is based on treating the method as a discrete dynamical system, and relies on several
techniques that are non-standard in convergence proofs for unconstrained optimization.

1 Introduction

Since the mid-1980s, interest has steadily grown in derivative-free methods (also called non-derivative
methods) for solving optimization problems, unconstrained and constrained. Derivative-free methods
that adaptively construct a local model of relevant nonlinear functions are often described as “model-
based”, and derivative-free methods that do not explicitly involve such a model tend to be called
“direct search” methods. See [5] for a recent survey of derivative-free methods; discussions focusing
on direct search methods include, for example, [31, 12, 16, 14, 22].

The Nelder–Mead (NM) simplex method [20] is a direct search method. Each iteration of the
NM method begins with a nondegenerate simplex (a geometric figure in n dimensions of nonzero
volume that is the convex hull of n + 1 vertices), defined by its vertices and the associated values
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2 1 INTRODUCTION

of f . One or more trial points are computed, along with their function values, and the iteration
produces a new (different) simplex such that the function values at its vertices typically satisfy a
descent condition compared to the previous simplex.

The NM method is appealingly simple to describe (see Figure 2), and has been widely used (along
with numerous variants) for more than 45 years, in many scientific and engineering applications.
But little mathematical analysis of any kind of the method’s performance has appeared, with a few
exceptions such as [30, 10] (from more than 20 years ago) and (more recently) [9]. As we discuss in
more detail below, obtaining even limited convergence proofs for the original method has turned out
to be far from simple. The shortage of theory, plus the discovery of low-dimensional counterexamples
(see (1.1)) have made the NM method an outlier among modern direct search methods, which are
deliberately based on a rigorous mathematical foundation. (See, for example, [6, 2, 14, 1], as well as
more recent publications about direct search methods for constrained problems.) Nevertheless the
NM method retains importance because of its continued use and availability in computer packages
(see [23, 17, 7]) and its apparent usefulness in some situations.

In an effort to develop positive theory about the original NM algorithm, an analysis of its
convergence behavior was initiated in [15] in 1998, along with resolution of ambiguities in [20] about
whether function comparisons involve “greater than” or “greater than or equal” tests.1 In what
follows we use the term Nelder-Mead algorithm to refer generically to one of the precisely specified
procedures in [15]; these contain a number of adjustable parameters (coefficients), and the standard
coefficients represent an often-used choice. For strictly convex objective functions with bounded
level sets, [15] showed convergence of the most general form of the NM algorithm to the minimizer
in one dimension. For the NM algorithm with standard coefficients in dimension two, where the
simplex is a triangle, it was shown that the function values at the simplex vertices converge to a
limiting value, and furthermore that the diameter of the simplices converges to zero. But it was not
shown that the simplices always converge to a limiting point, and up to now this question remains
unresolved.

Taking the opposite perspective, McKinnon [18] devised a family of two-dimensional counterex-
amples consisting of strictly convex functions with bounded level sets and a specified initial simplex,
for which the NM simplices converge to a nonminimizing point. In the smoothest McKinnon exam-
ple, the objective function is

(1.1) fm(x, y) =

{
2400|x|3 + y + y2 if x ≤ 0
6x3 + y + y2 if x ≥ 0,

when the vertices of the starting simplex are (0, 0), (1, 1) and ((1 +
√

33)/8, (1 −
√

33)/8)). Note
that fm is twice-continuously differentiable and that its Hessian is positive definite except at the
origin, where it is singular. As shown in Figure 1, the NM algorithm converges to the origin (one of
the initial vertices) rather than to the minimizer (0,− 1

2 ), performing an infinite sequence of inside
contractions (see Section 2) in which the best vertex of the initial triangle is never replaced.

Functions proposed by various authors on which the NM algorithm fails to converge to a mini-
mizer are surveyed in [18], but counterexamples in the McKinnon family illustrated by (1.1) consti-
tute the “nicest” functions for which the NM algorithm converges to a non-stationary point.

An algorithmic flaw that has been observed is that the iterations “stagnate” or “stall”, often
because the simplex becomes increasingly close to degenerate (as depicted in Figure 1). Previously
proposed corrective strategies include: placing more restrictions on moves that decrease the size of
the simplex; imposing a “sufficient decrease” condition (stronger than simple decrease) for accepting
a new vertex; and resetting the simplex to one that is “nice”. See, for example, [25, 30, 29, 11, 24,
19, 5], a small selection of the many papers that include convergence results for modifications of
Nelder–Mead.

Our object in this paper is to fill in additional theory for the NM algorithm in the two-dimensional
case, which remains of interest in its own right. As noted by McKinnon [18, page 148], it is not even
known whether the NM algorithm converges for the prototypically nice function f(x, y) = x2 + y2.

1Resolution of these ambiguities can have a noticeable effect on the performance of the algorithm; see [8].
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Figure 1: The NM algorithm’s failure on the McKinnon counterexample (1.1).

Here we answer this question affirmatively for a simplified variant of the NM algorithm, where the
simplification reduces the number of allowable moves rather than attempting to “fix” the method.
In the original NM algorithm (see Section 2), the allowable moves are reflection, expansion, outside
contraction, inside contraction, and shrink; an expansion doubles the volume of an NM simplex,
while all other moves either leave the volume the same or decrease it. An expansion is tried only
after the reflection point produces a strict improvement in the best value of f ; the motivation is to
allow a longer step along an apparently promising direction. The restricted Nelder–Mead (RNM)
algorithm defined in Section 2 does not allow expansion steps. Thus we are in effect considering a
“small step” NM algorithm.

Our analysis applies to the following class of functions:

Definition 1.1. Let F denote the class of twice-continuously differentiable functions f : R
2 → R

with bounded level sets and everywhere positive definite Hessian.

The class F is a subclass of those considered in [15], where there is no requirement of differen-
tiability.

The contribution of this paper is to prove convergence of the restricted Nelder-Mead algorithm
for functions in F :

Theorem 1.2. (appears again as Theorem 3.17) If the RNM algorithm is applied to a func-
tion f ∈ F , starting from any nondegenerate triangle, then the algorithm converges to the unique
minimizer of f .

Remark 1.3. Theorem 1.2 immediately implies a generalization to a larger class of functions. Namely,
if f ∈ F , and g : R → R is a strictly increasing function, then the RNM algorithm applied to f̃ := g◦f
converges, because the RNM steps for f̃ are identical to those for f .

Remark 1.4. Because the NM iterations in the McKinnon examples include no expansion steps, the
RNM algorithm also will fail to converge to a minimizer on these examples. It follows that, in order
to obtain a positive convergence result, additional assumptions on the function over those in [15]
must be imposed. In particular, the positive-definiteness condition on the Hessian in Theorem 1.2
rules out the smoothest McKinnon example (1.1), in which the Hessian is singular at the origin (the
nonminimizing initial vertex to which the NM algorithm converges).

An interesting general property of the Nelder–Mead algorithm is the constantly changing shape
of the simplex as the algorithm progresses. Understanding the varying geometry of the simplex
seems crucial to explaining how the algorithm behaves. Our proof of Theorem 1.2 analyzes the
RNM algorithm as a discrete dynamical system, in which the shapes of the relevant simplices (with
a proper scaling) form a phase-space for the algorithm’s behavior. The imposed hypothesis on the
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Hessian, which is stronger than strict convexity, allows a crucial connection to be made between a
(rescaled) local geometry and the vertex function values. We analyze the algorithm’s behavior in a
transformed coordinate system that corrects for this rescaling.

The proof of Theorem 1.2 establishes convergence by contradiction, by showing that the algorithm
can find no way not to converge. We make, in effect, a “Sherlock Holmes” argument: Once you have
eliminated the impossible, whatever remains, however improbable, must be the truth.2 We show
that, in order not to converge to the minimizer, the triangles would need to flatten out according
to a particular geometric scaling, but there is no set of RNM steps permitting this flattening to
happen. This result is confirmed through an auxiliary potential function measuring the deviation
from scaling. One can almost say that the RNM algorithm converges in spite of itself.

2 The restricted Nelder–Mead algorithm

Let f : R
n → R be a function to be minimized, and let p1, . . . ,pn+1 be the vertices of a nondegenerate

simplex in R
n. One iteration of the RNM algorithm (with standard coefficients) replaces the simplex

by a new one according to the following procedure.

One iteration of the standard RNM algorithm.

1. Order. Order and label the n + 1 vertices to satisfy f(p1) ≤ f(p2) ≤ · · · ≤ f(pn+1), using
appropriate tie-breaking rules such as those in [15].

2. Reflect. Calculate p̄ =
∑n

i=1 pi/n, the average of the n best points (omitting pn+1). Compute
the reflection point pr, defined as pr = 2p̄−pn+1, and evaluate f r = f(pr). If f r < fn, accept
the reflected point pr and terminate the iteration.

3. Contract. If f r ≥ fn, perform a contraction between p̄ and the better of pn+1 and pr.

a. Outside contract. If fn ≤ f r < fn+1 (i.e., pr is strictly better than pn+1), perform an
outside contraction: calculate the outside contraction point pout = 1

2 (p̄ + pr), and evaluate
fout = f(pout). If fout ≤ f r, accept pout and terminate the iteration; otherwise, go to Step 4
(perform a shrink).

b. Inside contract. If f r ≥ fn+1, perform an inside contraction: calculate the inside
contraction point pin = 1

2 (p̄+pn+1), and evaluate f in = f(pin). If f in < fn+1, accept pin and
terminate the iteration; otherwise, go to Step 4 (perform a shrink).

4. Perform a shrink step. Evaluate f at the n points vi = 1
2 (p1 + pi), i = 2, . . . , n+ 1. The

(unordered) vertices of the simplex at the next iteration consist of p1, v2, . . . , vn+1.

The result of an RNM iteration is either: (1) a single new vertex—the accepted point—that replaces
the worst vertex pn+1 in the set of vertices for the next iteration; or (2) if a shrink is performed, a
set of n new points that, together with p1, form the simplex at the next iteration.

Starting from a given nondegenerate simplex, let p
(k)
1 , . . . , p

(k)
n+1 be the vertices at the start

of the kth iteration. Let z ∈ R
n be a point. We say that the RNM algorithm converges to z if

limk→∞ p
(k)
i = z for every i ∈ {1, . . . , n+ 1}.

Remark 2.1. In two dimensions, a reflect step performs a 180◦ rotation of the triangle around p̄,
so the resulting triangle is congruent to the original one. But in higher dimensions, the reflected
simplex is not congruent to the original.

Remark 2.2. Shrink steps are irrelevant in this paper because we are concerned only with strictly
convex objective functions, for which shrinks cannot occur (Lemma 3.5 of [15]). It follows that, at
each NM iteration, the function value at the new vertex is strictly less than the worst function value
at the previous iteration.

2A. Conan Doyle, “The Sign of the Four”, Lippincott’s Monthly Magazine, February 1890.
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Figure 2: The five possible moves in the original NM algorithm are shown. The original simplex is sur-
rounded by a dashed line, and its worst vertex is labeled p3. The point p̄ is the average of the two best
vertices. The shaded figures are NM simplices following reflection, expansion, outside contraction, inside
contraction, and shrink, respectively. (In the “shrink” figure, the best vertex is labeled p1.) The “expansion”
step is omitted in the RNM algorithm.

Remark 2.3. The original Nelder–Mead algorithm differs from the above in Step 2. Namely, if pr is
better than all n+ 1 of the vertices, the original NM algorithm tries evaluating f at the expansion
point pe := p̄ + χ(p̄ − pn+1) for a fixed expansion coefficient χ > 1, and the worst vertex pn+1 is
then replaced by the better of pe and pr. In fact, Nelder and Mead proposed a family of algorithms,
depending on coefficients for reflection, contraction, and shrinkage in addition to expansion. A
complete, precise definition of an NM iteration is given in [15], along with a set of tie-breaking rules.
Instances of the moves in the original NM algorithm are shown in Figure 2.

Remark 2.4. One feature of the RNM algorithm that makes it easier to analyze than the original
algorithm is that the volume of the simplex is non-increasing at each step. The volume thus serves
as a Lyapunov function.3

We henceforth consider the RNM algorithm in dimension two, for which it is known that the
simplex diameter converges to zero.

Lemma 2.5. Suppose that the RNM algorithm is applied to a strictly convex 2-variable function
with bounded level sets. Then for any nondegenerate initial simplex, the diameters of the RNM
simplices (triangles) produced by the algorithm converge to 0.

Proof. The proof given in [15, Lemma 5.2] for the original NM algorithm applies even when expansion
steps are disabled.

3 Convergence

3.1 The big picture

Because the logic of the convergence proof is complicated, we begin with an overview of the argument.
Each f ∈ F is strictly convex, so by Lemma 2.5 we know that the evolution of any triangle under
the RNM algorithm has the diameter of the triangle converging to zero. (We do not yet know that
the triangles converge to a limit point.) The convergence proof proceeds by contradiction, making
an initial hypothesis (Hypothesis 1 in Section 3.4) that the (unique) minimizer of f is not a limit
point of the RNM triangles. Under this condition, all three RNM vertices must approach a level set

3See Definition 1.3.4 in [27, page 23].
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corresponding to a function value strictly higher than the optimal value. By our assumptions on f ,
this level set is a strictly convex closed curve with a continuously differentiable tangent vector.

The RNM triangle must become small as it approaches this bounding level set. Therefore, from
the viewpoint of the triangle, blown up to have (say) unit diameter, the level set flattens out to a
straight line. The heuristic underlying our argument is that, in order for this to happen, the triangle
must itself have its shape flatten out, with its width in the level set direction (nearly horizontal, as
seen from the triangle) being roughly the square root of its height in the perpendicular direction. In
particular, its width becomes proportionally much larger than its height. A local coordinate frame
(Section 3.3) is defined in order to describe this phenomenon.

At the start of iteration k, we measure area and width in a local coordinate frame, and define a
quantity called “flatness” by Γk := areak/width3

k. If a reflection is taken during iteration k and the
same coordinate frame is retained, the area and width of the RNM triangle at iteration k+1 remain
the same, so Γk+1 = Γk. Hence, in order for the diameter to converge to zero (Lemma 2.5), there
must be infinitely many contraction steps. We show that, at a sufficiently advanced iteration k of
the RNM algorithm, a necessary condition for a contraction to occur is that Γk ≤ 10; we also show
that the value of Γ eventually unavoidably increases as the algorithm proceeds. A contradiction thus
arises because no combination of the permitted reflection and contraction steps allows the needed
square root rate of decrease.

The argument is complicated because the local coordinate frame changes at every step. Near the
end of the proof (in Proposition 3.15), we analyze sequences of no more than 14 steps, beginning
with a contraction, in an advanced phase of the algorithm. Using a coordinate frame defined by
a vertex of the first triangle in the sequence, we show that switching to a new coordinate system
defined via the final triangle in the sequence makes only a small change in the flatness. This allows
us to show that the flatness is inflated by a factor of at least 1.01 after at most 14 steps, which
eventually means that a contraction cannot be taken. Since the triangle cannot reflect forever, our
contradiction hypothesis must have been false; i.e., the method must converge.

3.2 Notation

Points in two dimensions are denoted by boldface lower-case letters, but a generic point is often
called p, which is treated as a column vector and written as p = (x, y)T . We shall also often use
an affinely transformed coordinate system with generic point denoted by p̃ = (x̃, ỹ)T . To stress the
(x, y) coordinates of a specific point, say b, we write b = (bx, by)T .

For future reference, we explicitly give the formulas for the reflection and contraction points in
two dimensions:

pr = p1 + p2 − p3 (2-d reflection);(3.1)

pout = 3
4 (p1 + p2) − 1

2p3 (2-d outside contraction);(3.2)

pin = 1
4 (p1 + p2) + 1

2p3 (2-d inside contraction).(3.3)

Given the three vertices of a triangle, the reflection and contraction points depend only on which
(one) vertex is labeled as “worst”.

3.3 A changing local coordinate system

The type of move at each RNM iteration is governed by a discrete decision, based on comparing
values of f . Heuristically, for a very small triangle near a point b, the result of the comparison
is usually unchanged if we replace f by its degree-2 Taylor polynomial centered at b. If b is a
nonminimizing point, then we can simplify the function further by making an affine transformation
into a new coordinate system p̃ = (x̃, ỹ) (depending on b) in which the Taylor polynomial has the
form

constant + ỹ + 1
2 x̃

2.

This motivates the following lemma, which is a version of Taylor’s theorem.



3.3 A changing local coordinate system 7

Lemma 3.1. (Definition of local coordinate frame.) Let f ∈ F . Given a point b and a
nonsingular 2 × 2 matrix M , we may define an affine transformation

(3.4) p̃ = M−1(p − b)

(with inverse map p = M p̃ + b).

(i) For each point b that is not the minimizer of f , there exists a unique M with detM > 0
such that when the function f of p = (x, y)T is re-expressed in the new coordinate system
p̃ = (x̃, ỹ)T above, the result has the form

(3.5) f(p) = f(b) + ỹ + 1
2 x̃

2 + r(x̃, ỹ),

where r is an error term satisfying

(3.6) r(x̃, ỹ) = 1
2αỹ

2 + o(max(|x̃|2, |ỹ|2)),
as (x̃, ỹ) → 0 (i.e., as (x, y)T → b), for some α > 0.

(ii) The function r in (i) satisfies dr/dx̃ = o(max(|x̃|, |ỹ|)) and dr/dỹ = o(|x̃|)+O(|ỹ|), and the rate
at which the o(·) terms approach zero and the bounds implied by O(·) can be made uniform
for b in any compact set not containing the minimizer of f .

(iii) As b varies over a compact set not containing the minimizer of f , the matrices M and M−1

are bounded in norm and uniformly continuous.

Proof. Let g = ∇f(b) and H = ∇2f(b) denote, respectively, the gradient and Hessian matrix of
f at b. Since f is strictly convex, its gradient can vanish only at the unique minimizer, so g 6= 0.
Because f is twice-continuously differentiable, we can expand it in Taylor series around b:

f(p) = f(b) + gT (p − b) + 1
2 (p − b)TH(p − b) + o(‖p − b‖2)(3.7)

= f(b) + gTM p̃ + 1
2 p̃

TMTHM p̃ + o(‖p − b‖2).(3.8)

The Taylor expansion (3.8) has the desired form if

gTM = (0 1) and MTHM =

(
1 0

0 α

)
.

for some α > 0. In terms of the columns m1 and m2 of M , these conditions say

gT m1 = 0, gT m2 = 1, mT
1Hm1 = 1, mT

1Hm2 = 0,

and then we may set α := mT
2Hm2, which will be positive since H is positive definite and since the

conditions above force m2 to be nonzero.
Since g 6= 0, the condition gT m1 = 0 says that m1 is a multiple of the vector ĝ obtained by

rotating g by 90◦ clockwise: m1 = ξ1ĝ for some ξ1. The condition mT
1Hm1 = 1 implies that

m1 6= 0. The condition mT
1Hm2 = 0 says that Hm2 is a multiple of g. Since H is positive definite,

H is nonsingular, so the equation Hw = g has the unique solution w = H−1g, and then m2 = ξ2w
for some ξ2. The normalizations gTm2 = 1 and mT

1Hm1 = 1 are equivalent to

(3.9) ξ2 =
1

gT w
=

1

wTHw
and ξ21 =

1

ĝ
TH ĝ

;

the denominators are positive since H is positive definite and w and ĝ are nonzero. These conditions
determine M uniquely up to the choice of sign of its first column, i.e., the sign of ξ1, but we have
not yet imposed the condition detM > 0. We claim that it is the positive choice of ξ1 that makes
detM > 0: since m1 and m2 are then positive multiples of ĝ and w, respectively, the condition
detM > 0 is equivalent to gT w > 0, or equivalently, wTHT w > 0, which is true since the matrix
HT = H is positive definite. This proves (i).

Since f is twice-continuously differentiable, g and H vary continuously as b varies within a
compact set not containing the minimizer of f . Hence M and M−1 vary continuously as well. This
proves (ii) and (iii).
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Remark 3.2. If H is positive semidefinite and singular, then the equation Hw = g continues to
have a solution provided that g ∈ range(H), as in the McKinnon example (1.1). But in this case,
H ĝ = 0, so Hm1 = 0, which contradicts mT

1Hm1 = 1, and no matrix M exists.

Remark 3.3. As b approaches the minimizer of f , we have g → 0, and the formulas obtained in the
proof of Lemma 3.1 show that m1 remains bounded while m2 and the value of α “blow up”, so M
becomes unbounded in norm with an increasing condition number.

The local coordinate frame defined in Lemma 3.1 depends on the base point b, the gradient
vector g, and the Hessian matrix H . In the rest of this section, we use F(b) (with a nonminimizing
point b as argument) to denote the local coordinate frame with base point b. In the context of a
sequence of RNM iterations, Fk (or F(∆k), with a subscripted RNM triangle as argument) will mean
the coordinate frame defined with a specified base point in RNM triangle ∆k.

3.3.1 Width, height, area, and flatness.

This section collects some results about transformed RNM triangles.

Definition 3.4. (Width, height, and flatness.) Let f ∈ F , and let ∆ denote a nondegenerate
triangle that lies in a compact set Q not containing the minimizer of f . Assume that we are given
a base point b in Q, along with the coordinate frame defined at b as in Lemma 3.1.

� The (transformed) width of ∆, denoted by w̃(∆), is the maximum absolute value of the dif-
ference in x̃-coordinates of two vertices of ∆;

� The (transformed) height, denoted by h̃(∆), is the maximum absolute value of the difference
of ỹ-coordinates of two vertices of ∆;

� The flatness of ∆, denoted by Γ(∆), is

(3.10) Γ(∆) :=
Ã(∆)

w̃(∆)3
,

where Ã(∆) is the (positive) area of ∆ measured in the transformed coordinates.

The argument ∆ may be omitted when it is obvious.

Lemma 3.5. (Effects of a reflection) The (transformed) height and width of an RNM triangle
are the same as those of its reflection, if the same base point is used to define the local coordinate
frame for both triangles.

Proof. The new triangle is a 180◦ rotation of the old triangle.

The next lemma bounds the change in three quantities arising from small changes in the base
point used for the local coordinate frames. In (iii), we need a hypothesis on the width and height
since for a tall thin triangle, a slight rotation can affect its flatness dramatically.

Lemma 3.6. (Consequences of close base points.) Assume that f ∈ F and that Q is a
compact set that does not contain the minimizer of f . Let b1 and b2 denote two points in Q, and ∆
denote an RNM triangle contained in Q. For i ∈ {1, 2}, let w̃i, h̃i, and Γi be the transformed width,
height, and flatness of ∆ measured in the local coordinate frame F(bi) associated with bi, and let
Mi be the matrix of Lemma 3.1 associated with F(bi).

(i) Given ε > 0, there exists δ > 0 (independent of b1 and b2) such that if ‖b2 − b1‖ < δ, then

‖M2M
−1
1 − I‖ < ε.

(ii) Given ε > 0, there exists δ > 0 (independent of b1, b2, and ∆) such that if ‖b1 − b2‖ < δ, then

(3.11) (1 − ε)Ã1 < Ã2 < (1 + ε)Ã1.
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(iii) Given C, ε > 0, there is δ > 0 (independent of b1, b2, and ∆) such that if ‖b1 − b2‖ < δ and

w̃1 > Ch̃1, then

(3.12) (1 − ε)Γ1 < Γ2 < (1 + ε)Γ1.

Proof.

(i) We have

‖M2M
−1
1 − I‖ = ‖M2(M

−1
1 −M−1

2 )‖ ≤ ‖M2‖ ‖M−1
1 −M−1

2 ‖.
By Lemma 3.1(iii), the first factor ‖M2‖ is uniformly bounded, and M−1 is uniformly con-
tinuous as a function of b ∈ Q, so the second factor ‖M−1

1 −M−1
2 ‖ can be made as small as

desired by requiring ‖b2 − b1‖ to be small.

(ii) Letting p̃2 and p̃1 denote the transformed versions of a point p in Q using F(b1) and F(b2),
we have

(3.13) p̃2 = M−1
2 M1p̃1 +M−1

2 (b1 − b2),

so that p̃2 and p̃1 are related by an affine transformation with matrix M−1
2 M1. When an affine

transformation with nonsingular matrix B is applied to the vertices of a triangle, the area of
the transformed triangle is equal to the area of the original triangle multiplied by | det(B)| [13,
page 144]. Applying this result to ∆ gives

(3.14) Ã2 = Ã1 | det(M−1
2 M1)|.

Since | detB| is a continuous function of B, the result follows from (i).

(iii) Because of (ii), it suffices to prove the analogous inequalities for width instead of flatness.
Fixing two vertices of ∆, we let vi denote the vector from one to the other measured in F(bi),

and let x(vi) denote the corresponding x-component. Then |vi| ≤ w̃1 + h̃1 = O(w̃1), since

w̃1 > Ch̃1. By (3.13), v2 = M−1
2 M1v1, so

|x(v2) − x(v1)| ≤ |v2 − v1| = |(M−1
2 M1 − I)v1| = O(‖M−1

2 M1 − I‖ · |w̃1|).
This bounds the change in x-component of each vector of the triangle in passing from F(b1) to
F(b2), and it follows that

|w̃2 − w̃1| = O(‖M−1
2 M1 − I‖ · |w̃1|).

Finally, by (i), ‖M−1
2 M1 − I‖ can be made arbitrarily small.

3.4 The contradiction hypothesis and the limiting level set

Our proof of Theorem 1.2 is by contradiction. Therefore we assume the following hypothesis for the
rest of Section 3 and hope to obtain a contradiction.

Hypothesis 1. Assume that the RNM algorithm is applied to f ∈ F and a nondegenerate initial
triangle, and that it does not converge to the minimizer of f .

We begin with a few easy consequences of Hypothesis 1. Let ∆k be the RNM triangle at the
start of the kth iteration. Let ∆̃k be that triangle in the coordinate frame determined by any one of
its vertices, and define its width w̃k, height h̃k, and flatness Γk as in Definition 3.4.

Lemma 3.7. Assume Hypothesis 1. Then:

(a) The diameter of ∆k tends to 0.

(b) The RNM triangles have at least one limit point p†.

(c) The function values at the vertices of ∆k are greater than or equal to f(p†), and they tend to
f(p†).
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(d) If Q is a neighborhood of the level set of p†, then all the action of the algorithm is eventually
inside Q.

(e) We may choose Q to be a compact neighborhood not containing the minimizer of f ; then there
is a positive lower bound on the smallest eigenvalue of the Hessian in Q.

(f) The diameter of ∆̃k tends to zero.

(g) We have w̃k → 0 and h̃k → 0.

Proof.

(a) This follows from Lemma 2.5, even without Hypothesis 1.

(b) Lemma 3.3 of [15] states that the best, next-worst, and worst function values in each successive
triangle cannot increase, and that at least one of them must strictly decrease at each iteration.
Because level sets are bounded, compactness guarantees that there is a limit point p†.

(c) This follows from the monotonic decrease in function values, the shrinking of the diameter to
zero, and the continuity of f .

(d) Since the level sets are compact, there is a compact neighborhood I of f(p†) such that f−1(I)
is a compact set contained in the interior of Q. By (c), the triangles are eventually contained in
f−1(I). By (a), eventually even the rejected points tested in each iteration lie within f−1(I).

(e) The first statement follows since the minimizer is not on the level set of p†. The second statement
follows from uniform continuity of the Hessian.

(f) By Lemma 3.1(iii), the distortion of the triangles is uniformly bounded.

(g) This follows from (f).

For the rest of Section 3, we may assume that all our RNM triangles and test points lie in a
compact set Q not containing the minimizer, as in Lemma 3.7(e). In particular, the implied bounds
in Lemma 3.1 are uniform.

3.5 Flattening of the RNM triangles

Under Hypothesis 1, we now show that the transformed RNM triangles “flatten out” in the sense
that the height becomes arbitrarily small relative to the width. The proof is again a proof by
contradiction, showing that, unless the triangles flatten out, there must be a sequence of consecutive
reflections in which the value of f at the reflection point is eventually less than f(p†), contradicting
Lemma 3.7(c).

Lemma 3.8. (Flattening of RNM triangles.) Assume Hypothesis 1. Then limk→∞ h̃k/w̃k = 0.

Proof. Assume that the result of the lemma does not hold. In other words, within the rest of this
proof, the following hypothesis is assumed:

Hypothesis 2. There exists ρ > 0 such that for arbitrarily large k we have h̃k/w̃k > ρ.

We may assume also that p† is a limit point of the triangles ∆k for which h̃k/w̃k > ρ.
Given ε > 0, we define a downward-pointing sector of points (x̃, ỹ) satisfying ỹ ≤ ε − ρ|x̃|/10,

and a truncated sector of points in the downward sector that also satisfy ỹ ≥ −ε: see Figure 3.
We now show that there exists ε > 0 (depending on f and ρ) such that, for any sufficiently

advanced iteration k0 for which h̃k0
/w̃k0

> ρ,
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(0, ε)

ỹ = −ε

ỹ = ε− (ρ/10)x̃ỹ = ε+ (ρ/10)x̃

ỹ = 0

x̃ = 0

Figure 3: The downward-pointing sector lies between the two finely dashed lines. The truncated sector

consists of the shaded area, for ρ = 8 and ε = 0.5.

(a) ∆̃k0
is contained in the truncated sector.

(b) If ∆̃ is any RNM triangle in the coordinates (x̃, ỹ) of Fk0
such that ∆̃ is contained in the

truncated sector and has (transformed) width w̃ and height h̃ satisfying h̃/w̃ > ρ, then

(i) One RNM iteration reflects ∆̃ to a new triangle ∆̃′. (And ∆̃′ has the same width and

height as ∆̃, by Lemma 3.5.)

(ii) The ỹ-coordinate of the centroid of ∆̃′ is at least 88h̃/300 below that of ∆̃.

(iii) ∆̃′ is contained in the downward-pointing sector.

(iv) If ∆̃′ is not contained in the truncated sector, then the function value at the new vertex is
less than f(p†).

Starting from (a), applying (b) repeatedly shows that the triangle in the (x̃, ỹ) coordinates reflects
downward until it exits the truncated sector through the bottom, at which point the function value
at the exiting vertex is less than f(p†), which contradicts Lemma 3.7(c). Thus it remains to prove
(a) and (b).

Proof of (a).

By definition of Fk0
, the point (0, 0) is a vertex of ∆̃k0

. For any given ε > 0, if k0 is sufficiently

large, then Lemma 3.7(f) shows that the diameter of ∆̃k0
is less than the distance from (0, 0) to the

boundary of the truncated sector, so ∆̃k0
is entirely contained in the truncated sector.

Proof of (b).

Suppose that ∆̃ is contained in the truncated sector and satisfies h̃/w̃ > ρ. Its vertices p̃i =
(x̃i, ỹi) are the transforms of vertices pi of some ∆. We will use the notation fi = f(pi) for any
subscript i, and use similar abbreviations for other functions and coordinates.

We show first that the difference in f values at any two vertices pi and pj is within 3h̃/100 of
the differences of their ỹ-coordinates. Using (3.5), we find that

(3.15) fi − fj = ỹi − ỹj + 1
2 (x̃2

i − x̃2
j ) + ri − rj .

The quantity |x̃2
i − x̃2

j | is bounded by 2w̃|x̃i|+ w̃2. If ε < ρ2/4000, then |x̃| < ρ/200 for any point in
the truncated sector. By Lemma (3.7)(f), if k0 is large enough, then w̃ < ρ/100. It follows that

(3.16) w̃|x̃| < w̃ρ

200
<

h̃

200
and w̃2 <

ρw̃

100
<

h̃

100
,

so |x̃2
i − x̃2

j | < h̃/50. On the other hand, ri − rj is the line integral of (dr/dx̃, dr/dỹ) over a path

of length at most w̃ + h̃ = O(h̃). Since dr/dx̃ and dr/dỹ are O(max(|x̃|, |ỹ|)), the derivatives can
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be made arbitrarily small on the truncated sector by choosing ε small enough, and we may assume
that |ri − rj | < h̃/100. Now (3.15) yields

(3.17) fi − fj = ỹi − ỹj + ζ, with |ζ| < 3h̃

100
.

(i) Let pbest,pnext,pworst be the vertices of ∆ ordered so that fbest ≤ fnext ≤ fworst. Let
plow,pmid,phigh be the same vertices ordered so that ỹlow ≤ ỹmid ≤ ỹhigh. Recall that the
reflection point pr = pbest + pnext − pworst is accepted only if f r < fnext. Equation (3.17)

implies that ỹbest, ỹnext, ỹworst are within 3h̃/100 of ỹlow, ỹmid, ỹhigh, respectively. Hence the
difference

ỹnext − ỹr = ỹworst − ỹbest

is within 6h̃/100 of ỹhigh − ỹlow = h̃. Applying (3.17) to the reflected triangle shows that
fnext > f r, and the reflection point is accepted.

(ii) The reflection decreases the ỹ coordinate of the reflected vertex by

ỹworst − ỹr = 2ỹworst − ỹbest − ỹnext,

which is within 4(3h̃/100) of

2ỹhigh − ỹlow − ỹmid ≥ ỹhigh − ỹlow = h̃.

Consequently, ỹworst − ỹr ≥ 88h̃/100, and the centroid drops by at least 88h̃/300.

(iii) Furthermore, x̃r differs from x̃worst by no more than 2w̃, i.e., |x̃r| ≤ |x̃worst|+ 2w̃. Since pworst

lies in the truncated sector and ρw̃ < h̃, it follows that

ỹr +
ρ

10
|x̃r| ≤ ỹworst −

88h̃

100
+

ρ

10
(|x̃worst| + 2w̃) < ỹworst −

88h̃

100
+

ρ

10
|x̃worst| +

2h̃

10

< ỹworst +
ρ

10
|x̃worst| < ε.

Thus, using the local coordinate frame Fk0
, the reflection point pr lies in the downward-pointing

sector, and also lies in the truncated sector as long as ỹr ≥ −ε.

(iv) Let b denote the base point of Fk0
, so b̃ = (0, 0). For p̃ on the bottom edge of the truncated

sector, we have ỹ = −ε and x̃ = O(ε) as ε→ 0 (similar triangles). Relation (3.5) then implies

(3.18) f(p) = f(b) − ε+O(ε2).

Fixing ε to be small enough that f(p) − f(b) < 0 everywhere on the bottom edge, we can

also fix a neighborhood U of the bottom edge and a neighborhood V of b̃ = (0, 0) such that

f(p) < f(b′) holds whenever p̃ ∈ U and b̃
′ ∈ V .

If ∆̃′ is not in the truncated sector, its new vertex p̃r is within w̃ + h̃ of the bottom edge. If
k0 is sufficiently large to make w̃ + h̃ small enough, it follows that p̃r ∈ U .

By choice of p† (defined immediately following Hypothesis 2), k0 can be taken large enough
that p† is arbitrarily close to b in untransformed coordinates. By Lemma 3.1(iii), the matrix
defining the local coordinate transformation is bounded and nonsingular. Hence we can make
p̃
† arbitrarily close to (0, 0) in transformed coordinates, and in particular we can guarantee

that p̃
† lies in V .

Thus f(pr) < f(p†).

Remark 3.9. An important consequence of Lemma 3.8 is that w̃ > h̃ for ∆k measured in a coordinate
frame associated to any one of its vertices, so that Lemma 3.6(iii) can be applied with C = 1.
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3.6 The distance travelled during a sequence of reflections

We now show that a sequence of valid reflections, starting from a sufficiently advanced iteration,
does not move the triangle far. This result limits the possible change in flatness caused by moving
the base point of the local coordinate system from the first to last triangle in the series of reflections.

Lemma 3.10. Assume Hypothesis 1. Given κ > 0, the following is true for any sufficiently large k0

and any k ≥ k0: if all steps taken by the RNM algorithm from ∆k0
to ∆k are reflections, then the

distance between the transformed centroids of ∆k0
and ∆k is less than κ (where we use a coordinate

frame whose base point is a vertex of ∆k0
).

Proof. We work in the coordinates (x̃, ỹ) of Fk0
. It suffices to show that for sufficiently small

positive ε < κ/2, if k0 is sufficiently large and ∆̃ is a later RNM triangle with centroid in the box

{|x̃| ≤ ε, |ỹ| ≤ ε}, then the next move does not reflect ∆̃ so that its centroid exits the box. More
precisely, for suitable ε and k0, the idea is to prove:

(a) The centroid cannot escape out the top of the box (i.e., the ỹ-coodinate cannot increase beyond
ε) because the function value of the reflection point would exceed the function values of ∆k0

(i.e., the function values near the center of the box).

(b) The centroid cannot escape out the bottom because the function value there would be less than
the limiting value f(p†).

(c) The centroid cannot escape out either side, because the triangle ∆̃ will be flat enough that the
function values there are controlled mainly by the x̃-coordinates, which force the triangle to
reflect inward towards the line x̃ = 0.

The conditions on ε and k0 will be specified in the course of the proof.

Proof of (a).
We copy the argument used in proving (b)(iv) of Lemma 3.8. Let b be the base point used to

define Fk0
. For p along the top edge of the box, by definition ỹ = ε. Thus the same argument that

proved (3.18) shows that

f(p) = f(b) + ε+O(ε2),

and that if ε is sufficiently small, then there are neighborhoods U of the top edge and V of (0, 0)

such that f(p) > f(b′) holds whenever p̃ ∈ U and b̃
′ ∈ V . If k0 is sufficiently large, and ∆̃ is the

later triangle whose centroid is about to exit the box through the top, then by Lemma (3.7)(f), ∆̃k0

and ∆̃ are small enough that ∆̃k0
⊂ V and ∆̃ ⊂ U , so the function values at vertices of ∆ are greater

than those for ∆k0
, which is impossible since function values at vertices of successive RNM triangles

are non-increasing.

Proof of (b).
This case is even closer to the proof of (b)(iv) in Lemma 3.8. That argument shows that if ε is

sufficiently small and k0 is sufficiently large, then the function values at the vertices of a triangle
∆ whose transformed centroid is about to exit through the bottom are strictly less than the value
f(p†) (which is made arbitrarily close to f(b) by taking k0 large). This contradicts Lemma 3.7(c).

Proof of (c).

By symmetry, suppose that ∆̃ reflects so that its centroid exits the box through the right side.
By Lemma 3.7(g) and Lemma 3.8, we may take k0 large enough that

(3.19) w̃k0
< 0.01ε and h̃k0

< 0.01εw̃k0
.

The width w̃ and height h̃ of ∆̃ are the same as that of ∆̃k0
. So all vertices of ∆̃ satisfy 0.99ε < x̃ <

1.01ε and −1.01ε < ỹ < 1.01ε. Let ṽ = (x̃, ỹ) and ṽ
′ = (x̃+ δx, ỹ + δy) be two such vertices.
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We claim that if δx > w̃/10, then f(v′) > f(v). By (3.5),

f(v′) − f(v) = x̃δx + 1
2δ

2
x + δy + (r(x̃ + δx, ỹ + δy) − r(x̃, ỹ))

≥ (0.99ε)(w̃/10) + 0 − h̃− (o(ε)w̃ +O(ε)h̃) (by integrating Lemma 3.1(ii))

≥ 0.099εw̃+ 0 − h̃− 0.001εw̃− h̃ (if ε is sufficiently small)

= 0.098εw̃− 2h̃

> 0 (by the second inequality in (3.19)).

Now we can mimic part of the proof of (b) in Lemma 3.8, but in the horizontal rather than the
vertical direction. Let x̃

best
, x̃

next
, x̃

worst
be the x̃-coordinates of the vertices ordered by increasing

function value, and let x̃
left
, x̃

mid
, x̃

right
be the same x̃-coordinates in increasing order. The previ-

ous paragraph shows that x̃
best

, x̃
next

, x̃
worst

are within w̃/10 of x̃
left
, x̃

mid
, x̃

right
, respectively. The

reflection decreases the x̃ coordinate of the reflected vertex by

x̃worst − x̃r = 2x̃worst − x̃best − x̃next,

which is within 4(w̃/10) of

2x̃right − x̃left − x̃mid ≥ x̃right − x̃left = w̃,

so the x̃ coordinate of the centroid decreases instead of increasing beyond ε as hypothesized.

3.7 Conditions at an advanced contraction

Assuming Hypothesis 1, we next show that, whenever a contraction step is taken at a sufficiently
advanced iteration k, we have h̃k = O(w̃2

k). We stress the assumption that the base of the local
coordinate frame at iteration k lies inside ∆k.

Lemma 3.11. Assume Hypothesis 1. If k is sufficiently large and a contraction step is taken at
iteration k (meaning that the reflection point was not accepted), then the transformed height h̃ and

width w̃ of ∆k in a coordinate frame with base point inside ∆k must satisfy h̃ ≤ 10w̃2.

Proof. Given a base point of the local coordinate frame in ∆k, Lemma 3.1 shows that the difference
in values of f at any two points p and v is

(3.20) f(p) − f(v) = ỹp − ỹv + 1
2 (x̃2

p
− x̃2

v
) + r(x̃p, ỹp) − r(x̃v , ỹv).

For i ∈ {1, 2, 3}, let pi be the ith vertex of ∆k, and let p̃i be its transform in the local coordinate
frame. We assume throughout the proof that p3 is the worst vertex. Let pr := p1 + p2 − p3 be the
reflect point, and let p̃r be its transform.

The origin of the coordinate frame is inside ∆k, so |x̃i| ≤ w̃ for i = 1, 2, 3. The RNM triangles
are flattening out (Lemma 3.8), and the flatness does not change very much when measured using

the coordinate frame with a nearby base point (Lemma 3.6(iii)). Hence, if k is large enough, h̃ ≤ w̃,
so |ỹi| ≤ w̃ for i = 1, 2, 3. Since p3 is the worst vertex, f(p3) − f(p1) ≥ 0. Substituting (3.20) and
rearranging yields

(3.21) ỹ3 − ỹ1 ≥ 1
2 (x̃2

1 − x̃2
3) + r(x̃1, ỹ1) − r(x̃3, ỹ3).

Because |x̃i| ≤ w̃ and |x̃j | ≤ w̃, we obtain |x̃2
i − x̃2

j | ≤ w̃2, so the inequality (3.21) implies

(3.22) ỹ3 − ỹ1 ≥ − 1
2 w̃

2 + r(x̃1, ỹ1) − r(x̃3, ỹ3).

Next we use the definition of the reflection point to obtain bounds in the other direction. A
contraction occurs only when the reflection point is not accepted (see Step 3 of Algorithm RNM in
Section 2), which implies that f(pr) − f(p2) ≥ 0. Substituting (3.20) and rearranging yields

(3.23) ỹr − ỹ2 ≥ 1
2 (x̃2

2 − x̃2
r ) + r(x̃2, ỹ2) − r(x̃r, ỹr).
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By definition of pr, we have ỹr − ỹ2 = ỹ1 − ỹ3. Substituting into the left-hand side of (3.23) yields

(3.24) ỹ1 − ỹ3 ≥ 1
2 (x̃2

2 − x̃2
r ) + r(x̃2, ỹ2) − r(x̃r, ỹr).

We have |x̃2| ≤ w̃ and |x̃r − x̃2| = |x̃1 − x̃3| ≤ w̃, so

|x̃2
2 − x̃2

r | = |x̃2 + x̃r| · |x̃2 − x̃r| ≤ 3w̃2,

and substituting into (3.24) yields

(3.25) ỹ1 − ỹ3 ≥ − 3
2 w̃

2 + r(x̃2, ỹ2) − r(x̃r, ỹr).

If k is sufficiently large, we know from Lemmas 2.5 and 3.1 that, in the smallest box containing
a transformed advanced RNM triangle and its reflection point, |dr/dx̃| ≤ w̃ and |dr/dỹ| ≤ 1

2 .
Consequently,

|r(x̃1, ỹ1) − r(x̃3, ỹ3)| ≤ w̃|x̃1 − x̃3| + 1
2 |ỹ1 − ỹ3| ≤ w̃2 + 1

2 |ỹ1 − ỹ3|(3.26)

|r(x̃2, ỹ2) − r(x̃r, ỹr)| ≤ w̃|x̃1 − x̃3| + 1
2 |ỹ1 − ỹ3| ≤ w̃2 + 1

2 |ỹ1 − ỹ3|.
Substituting the equations (3.26) into (3.22) and (3.25), respectively, we obtain

(3.27) ỹ3 − ỹ1 ≥ − 3
2 w̃

2 − 1
2 |ỹ1 − ỹ3| and ỹ1 − ỹ3 ≥ − 5

2 w̃
2 − 1

2 |ỹ1 − ỹ3|.
These imply ỹ3 − ỹ1 ≥ −3w̃2 and ỹ1 − ỹ3 ≥ −5w̃2, so |ỹ1 − ỹ3| ≤ 5w̃2. Our numbering of p1 and p2

was arbitrary, so |ỹ2 − ỹ3| ≤ 5w̃2 too. These two inequalities imply h̃ ≤ 10w̃2.

Remark 3.12. The lemma just proved applies to an RNM triangle not at an arbitrary iteration, but
only at a sufficiently advanced iteration k. Even for large k, the condition h̃ ≤ 10w̃2 is necessary
but not sufficient to characterize an RNM triangle for which a contraction occurs.

Figures 4 and 5 illustrate two cases for the function 1
2 x̃

2 + ỹ + 1
2 ỹ

2. The worst vertex is at the

origin in each figure. In Figure 4, we have h̃ = 1.2 × 10−6 and w̃ = 2 × 10−4, so h̃/w̃2 = 30; as
Lemma 3.11 would predict at an advanced iteration, the triangle reflects instead of contracting. In
Figure 5, by contrast, h̃ = 3 × 10−8 and w̃ = 2 × 10−4, so h̃/w̃2 = 3

4 and an outside contraction is
taken. The vertical scale in each figure is greatly compressed compared to the horizontal, and the
vertical scale in Figure 4 differs from that in Figure 5 by two orders of magnitude.

0 1 2 3

x 10
−4

−2.5

−2

−1.5

−1

−0.5

0
x 10

−6

Figure 4: The contours of ey + 1

2
ex2 + 1

2
ey2 are shown along with an RNM triangle with eh/ ew2 = 30. The

reflection is accepted.

Lemma 3.13. Under the assumptions of Lemma 3.11, if k is sufficiently large and a contraction
step is taken at iteration k, then Γk ≤ 10, where Γk is the flatness of ∆̃k as in Definition 3.4.

Proof. Let w̃, h̃, Ã be the width, height, and area of ∆k with respect to the coordinate frame
associated by Lemma 3.1 to a vertex of ∆k. If k is sufficiently large, then Lemma 3.11 implies
h̃ ≤ 10w̃2. Hence

Γk =
Ã

w̃3
≤ h̃w̃

w̃3
≤ (10w̃2)w̃

w̃3
= 10.
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Figure 5: The contours of ey + 1

2
ex2 + 1

2
ey2, are shown along with an RNM triangle with eh/ ew2 = 3

4
. The

reflection step is not accepted, and an outside contraction is performed. Note the difference, by four orders

of magnitude, between the horizontal and vertical scales.

3.8 Eliminating the impossible: increasing flatness is unavoidable

The final piece of the proof of Theorem 1.2 will show that, for sufficiently advanced iterations, the
flatness of the RNM triangles must increase by a factor of at least 1.001 within a specified number of
iterations following a contraction. To obtain this result, we begin by characterizing the structure of
RNM vertices at sufficiently advanced iterations following a contraction, and then defining a related
but simpler triangle.

3.8.1 A simpler triangle.

Assume that (i) there is a limit point p† of the RNM triangles that is not the minimizer of f , (ii) k0

is sufficiently large, and (iii) iteration k0 is a contraction. For the RNM triangle ∆k0
, let F1 denote

the coordinate frame whose base point is the vertex of ∆k0
with the worst value of f :

(3.28) base(F1) = (pworst)k0
.

This first coordinate frame is used to identify p̃left and p̃right, the transformed vertices of ∆k0
with

leftmost and rightmost x̃ coordinates.
A second coordinate frame, F2, is defined next whose base point (measured in frame F1) is the

midpoint of [p̃left, p̃right]:

(3.29) base(F2) = 1
2 (p̃left + p̃right).

Unless otherwise specified, the coordinate frame F2 is used throughout the remainder of this proof.
The base points of F1 and F2 will be arbitrarily close if k0 is sufficiently large.

We assume that k0 is sufficiently large so that the RNM triangles have become tiny in diameter
and flattened out (Lemma 3.8). The reason for defining F2 is that we can choose a small η > 0 such
that the transformed three vertices of ∆k0

, measured in coordinate frame F2, may be expressed as

(3.30) a0 =

(
−η

−uη2

)
, b0 =

(
sη

tη2

)
, and c0 =

(
η

uη2

)
,

where vertex a0 corresponds to pleft and vertex c0 to pright.
Without loss of generality the value of s in (3.30) can be taken as nonnegative. The vertices a0

and c0 were leftmost and rightmost when measured in F1; by Lemma 3.6(i), the s in (3.30) cannot
be too much larger than 1. We assume that k0 is large enough so that 0 ≤ s ≤ 1.00001.

Because of the form of the vertices in (3.30) and the bounds on s, the transformed width w̃
of ∆k0

(measured using coordinate frame F2) can be no larger than 2.00001η. Iteration k0 is, by
assumption, a contraction, so it follows from Lemma 3.11 that the transformed height of ∆k0

satisfies
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h̃ ≤ 10w̃2, and hence h̃ ≤ 40.0005η2. Since h̃ is equal to the larger of 2|u|η2 or (|u|+ |t|)η2, it follows
that |u| ≤ 40.0005 and |t| ≤ 40.0005 in (3.30).

If ∆ and ∆′ are any two consecutive RNM triangles in which the same coordinate frame is used,
the new vertex of ∆′ is a linear combination of the vertices of ∆, with rational coefficients defined
by the choice of worst vertex and the nature of the move. (See (3.1)–(3.3).) Furthermore, the values

of w̃ and h̃ in ∆ and ∆′ remain the same or decrease, and, if v is any vertex of ∆ and v′ is any
vertex of ∆′, then |x̃v′ − x̃v | ≤ 2w̃ and |ỹv′ − ỹv| ≤ 2h̃. Thus, after ` ≥ 0 moves, we reach a triangle
∆k0+` for which each transformed vertex ṽ has the form

(3.31) ṽ =

(
λη

µη2

)
, where |λ| ≤ 1.00001 + 4.00002` and |µ| ≤ 40.0005(1 + 2`).

3.8.2 Rescaled inequalities associated with RNM moves.

The next step is to make a rescaling of coordinates to define a triangle ∆` that is related to ∆̃k0+`

by the diagonal affine transformation diag(η, η2). Let p̃ = (λη, µη2) be a point in ∆̃k0+` measured
in F2. Then

(3.32) p̃ =

(
λη

µη2

)
corresponds to P =

(
λ

µ

)
(a point in ∆`),

where λ and µ satisfy the bounds (3.31). The flatness of ∆`, defined as area(∆`)/(width(∆`))
3, is

equal to the flatness of ∆k0+` measured in coordinate frame F2.
Assume now that ` ≤ 20; the reason for this limit on ` will emerge later in Proposition 3.15.

For vertex i of ∆k0+`, equation (3.31) shows that the coefficients in its transformed coordinates
satisfy |λi| < 82 and |µi| < 3000. By (3.5), (3.6), and (3.31), once k0 is large enough to make o(η2)
sufficiently small, the difference in f values between vertices i and j is

f(vi) − f(vj) = η2[( 1
2λ

2
i + µi) − ( 1

2λ
2
j + µj)] + r(ηµi, η

2λi) − r(ηµj , η
2λ2

j )

= η2[( 1
2λ

2
i + µi) − ( 1

2λ
2
j + µj)] + o(η2).(3.33)

Let ψ denote the simple quadratic function

(3.34) ψ(λ, µ) := 1
2λ

2 + µ.

Then (3.33) shows that, if k0 is large enough, the following relationships hold between f at vertices
of ∆k0+` and ψ at vertices of ∆`:

(3.35) f(vi) ≥ f(vj) implies ψ(λi, µi) > ψ(λj , µj) − 10−6,

where 10−6 is not magical, but simply a number small enough so our subsequent results follow.

Example 3.14. For illustration, let ` = 0. Based on (3.30), the vertices of ∆0 are given by

(3.36) A0 =

(
−1

−u

)
, B0 =

(
s

t

)
, and C0 =

(
1

u

)
,

and suppose that a0 is the worst transformed vertex of ∆k0
, i.e. that

f(a0) ≥ f(b0) and f(a0) ≥ f(c0).

Application of (3.35) gives ψ(−1,−u) > ψ(s, t) − 10−6 and ψ(−1,−u) > ψ(1, u) − 10−6, i.e.
1
2 − u > 1

2s
2 + t− 10−6 and 10−6 > 2u (a simplification of 1

2 − u > 1
2 + u− 10−6).

In this way, inequalities characterizing the transformed vertices (3.31) of ∆k0+` when applying
the RNM algorithm with function f can be derived in terms of vertices of the simpler triangle ∆`

when applying the RNM algorithm to the function ψ(λ, µ), except that both possible outcomes of
a comparison must be allowed if the two values of ψ are within 10−6. The importance of (3.35) is
that, for ` ≤ 20, a possible sequence of RNM moves specifying the move type and worst vertex leads
to a set of algebraic inequalities in s, t, and u.
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3.9 Flatness must increase after no more than 14 steps

In the remainder of this section, we consider the transformed width, area, and flatness of a sequence
of RNM triangles, ∆k0

, . . . , ∆k0+`, defined using a coordinate frame whose base point is in ∆k0
.

Accordingly, notation is needed that separately identifies the RNM triangle being measured and the

relevant coordinate frame. The value Γ
(1)
k will denote the flatness of RNM triangle ∆k measured in

F1 of (3.28), and Γ
(2)
k will denote the flatness of ∆k measured in F2 (3.29), with similar notation

for w̃ and Ã. Since the base points of coordinate frames F1 and F2 are in ∆k0
, an essential point is

that, when k > k0, the triangle containing the base point of the coordinate frame is different from
the triangle being measured.

The result in the following proposition was found using symbolic computation software.

Proposition 3.15. Assume Hypothesis 1. If k0 is sufficiently large and a contraction step is taken

at iteration k0, then there exists ` with 1 ≤ ` ≤ 14 such that Γ
(2)
k0+` > 1.01 Γ

(2)
k0

.

Before giving the proof, we sketch the basic idea. As just described in Section 3.8.2, we are
in a situation where two properties apply: (1) the transformed objective function at the scaled
point (λ, µ)T can be very well approximated by the quadratic function ψ(λ, µ) := 1

2λ
2 + µ in (3.34),

and (2) the RNM move sequences of interest can be analyzed by beginning with an initial simplified
(scaled) triangle whose vertices (see (3.36)) involve bounded scalars (s, t, u) that lie in a compact set.
Under these conditions, the proof explains how algebraic constraints can be derived that characterize
geometrically valid sequences of RNM moves. Further algebraic constraints involving s can also be
defined that must be satisfied when the flatness increases by a factor of no more than 1.01.

In principle, one could establish the result of the proposition by numerically checking flatness
for all geometrically valid RNM move sequences beginning with the simplified triangle, but this
approach is complicated, structureless, and too time-consuming for numerical calculation. Instead,
we used Mathematica

�

7.0 to construct symbolic inequalities representing RNM move sequences
such that

� s, t, and u are suitably bounded,

� the geometric condition (3.35) for a valid RNM move applies, and

� the flatness increases by a factor of less than or equal to 1.01.

Proof of Proposition 3.15. The flatness is not changed by a reflection step as long as the same
coordinate frame is retained. Assuming that k0 is sufficiently large and that the move taken during
iteration k0 is a contraction, we wish to show that there is an index ` satisfying 1 < ` ≤ 14 such
that the flatness Γ of the RNM triangle ∆k0+`, measured in coordinate frame F2, must be a factor
of at least 1.01 larger than the flatness of ∆k0

, i.e., that

(3.37)
Γ

(2)
k0+`

Γ
(2)
k0

=
Ã

(2)
k0+`

Ã
(2)
k0

(
w̃

(2)
k0

w̃
(2)
k0+`

)3
> 1.01.

Let us prove (3.37) directly for ` = 1 when A0 of (3.36) is the worst vertex of ∆0 and an inside
contraction occurs. In this case, the next triangle ∆1 has vertices

(3.38) A1 =

(
1
4s− 1

4
1
4 t− 1

4u

)
, B1 =

(
s

t

)
, and C1 =

(
1

u

)
,

where the first vertex A0 has been replaced. We have two cases:

� If 0 ≤ s ≤ 1, then w̃(∆0) = 2 and w̃(∆1) = 5
4− 1

4s ≤ 5
4 , which implies that w̃(∆0)/w̃(∆1) ≥ 8

5 .

� If 1 < s ≤ 1.00001, then w̃(∆0) ≥ 2 and w̃(∆1) = 3
4s + 1

4 , so that w̃(∆1) ≤ 1.0000075 and
w̃(∆0)/w̃(∆1) ≥ 1.9999.
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For all s satisfying 0 ≤ s ≤ 1.00001, it follows that w̃(∆0)/w̃(∆1) ≥ 8
5 , and hence that

(
w̃(∆0)

w̃(∆1)

)3
≥
(

8

5

)3
= 4.096.

The area of ∆1 is half the area of ∆0. Hence the ratio of the flatnesses of ∆1 and ∆0 satisfies

Γ(∆1)

Γ(∆0)
=
Ã(∆1)

Ã(∆0)

(
w̃(∆0)

w̃(∆1)

)3
≥ 1

2 (4.096) > 1.01.

The same argument applies when ∆1 is the result of an outside contraction in which vertex A0 is
the worst.

But when the sequence of moves begins with a contraction in which vertex B0 or C0 is worst, we
must break into further cases, and the analysis becomes too complicated to do by hand. To examine
such sequences of RNM moves, we use a Mathematica program that generates inequalities involving
vertices of ∆` and the function ψ of (3.34), as described in Section 3.8.2.

Any sequence of RNM moves (where a move is specified by the worst vertex and the type of
move) starting with triangle ∆k0

gives rise to a set of algebraic inequalities in s, t, and u. The ith

of these latter inequalities has one of the forms φi(s) + νit + ωiu > θi or φi(s) + νit + ωiu ≥ θi,
where φi(s) is a quadratic polynomial in s with rational coefficients, and νi, ωi, and θi are rational
constants.

The next step is to determine whether there are acceptable values of s, t, and u for which these
inequalities are satisfied. To do so, we begin by treating s as constant (temporarily) and considering
the feasibility of a system of linear inequalities in t and u, namely the system Nz ≥ d, where
z = (t u)T , the ith row of N is (νi ωi), and di = θi − φi(s). A variant of Farkas’ lemma [26, page
89] states that the system of linear inequalities Nz ≥ d is feasible if and only if γT d ≤ 0 for every
vector γ satisfying γ ≥ 0 and NT γ = 0. If the only nonnegative vector γ satisfying NT γ = 0 is
γ = 0, then Nz ≥ d is feasible for any d.

The existence (or not) of a nonnegative nonzero γ in the null space of NT can be determined
symbolically by noting that the system Nz ≥ d is feasible if and only if it is solvable for every subset
of three rows of N . Let N̂ denote the 3 × 2 matrix consisting of three specified rows of N , with a
similar meaning for d̂. To determine the feasibility of N̂z ≥ d̂, we first find a vector γ̂ such that
N̂T γ̂ = 0.

If N̂ has rank 2, then γ̂ is unique (up to a scale factor) and we can write N̂T (or a column
permutation) so that the leftmost 2 × 2 submatrix B is nonsingular. Then, with

N̂T =

(
ν1 ν2 ν3

ω1 ω2 ω3

)
=
(
B h

)
, γ̂ is a multiple of

(
−B−1h

1

)
,

where the components of B−1 and h are rational numbers. If (with appropriate scaling) γ̂ ≥ 0 with

at least one positive component, then N̂T z ≥ d̂ is solvable if and only if γ̂T d̂ ≤ 0. If the components
of γ̂ do not have the same sign, N̂T z ≥ d̂ is solvable for any d̂.

If N̂ has rank one, its three rows must be scalar multiples of the same vector, i.e., the ith row is
(βiν1 βiω1), and the null vectors of N̂T are linear combinations of (β2,−β1, 0)T , (0, β3,−β2)

T , and
(β3, 0,−β1)

T .
Since the components of d are quadratic polynomials in s and the components of each γ̂ are

rational numbers, the conditions for feasibility of Nz ≥ d (e.g., the conjunction of conditions that

γ̂T d̂ ≤ 0 for each set of three rows of N) can be expressed as a Boolean combination of quadratic
inequalities in s with rational coefficients that, for a given value of s, evaluates to “True” if and only
if there exist t and u such that these inequalities are satisfied.

To verify the result of the proposition for a given sequence of ` RNM moves applied to ∆0, we
need to compute the flatness of ∆`, which is, by construction, equal to the flatness of ∆k0+` measured
in coordinate frame F2; see (3.32). We can directly calculate the ratio of the area of ∆` to the area
of ∆0 by using the number of contractions in the move sequence, since each contraction multiplies
the area by 1

2 . The width of ∆` can be obtained using inequalities and linear polynomials in s, since
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the width is determined by the largest and smallest x̃ coordinates, which are linear polynomials in
s. Consequently, the condition that the flatness for each triangle in the sequence is less than 1.01
times the original flatness can be expressed as a Boolean combination of (at most cubic) polynomial
inequalities in s, where s is constrained to satisfy 0 ≤ s ≤ 1.00001.

To determine whether there are allowable values of s for which a specified sequence of RNM
moves is possible, observe that a Boolean combination of polynomial inequalities in s will evaluate
to “True” for s in a certain union of intervals that can be computed as follows. We first find the
values of s that are solutions of the polynomial equations obtained by replacing any inequalities by
equalities. Then, between each adjacent pair of solutions, we choose a test value (e.g., the midpoint)
and check whether the associated inequality evaluates to “True” on that interval.

The computation time can be cut in half by considering only sequences that begin with an inside
contraction, for the following reason. The outside contraction point for an original triangle ∆ with
vertices p1, p2, and p3 is equal to the inside contraction point for a triangle, denoted by ∆′, whose
worst vertex p3 is the reflection point pr of ∆. With exact computation, the conditions for an outside
contraction of ∆ differ from those for an inside contraction of ∆′ if equality holds in some of the
comparisons. In particular, if f(p3) > f(pr) ≥ f(p2), then ∆ will undergo an outside contraction
and ∆′ will undergo an inside contraction; but if f(p3) = f(pr), then both ∆′ and ∆ will undergo
inside contractions. Since our inequalities allow for a small error in comparisons, this difference will
not change the result, and we may assume that the RNM move at ∆k0

is an inside contraction.
Finally, the definition of the RNM algorithm imposes further constraints on valid move patterns.

For example, if a reflection occurs, the reflection point must be strictly better than the second-
worst vertex, so this reflection point cannot be the worst point in the new triangle. Such sequences
(impossible in the RNM algorithm) would be permitted by the small error allowed in the inequalities,
so they are explicitly disallowed in the Mathematica code.

Putting all this together, a program can test each sequence of valid operations that begins with
an inside contraction to determine whether there exists an initial triangle for which ratio of the
flatnesses, measured in F2, is less than 1.01. The results of this computation show that, within no
more than 14 RNM moves following a contraction, a triangle is always reached for which the ratio of
the flatnesses, measured in the second coordinate frame F2, is at least 1.01. We stress that the count
of 14 moves includes a mixture of reflections and both forms of contraction. Details of these move
sequences can be found in the appendix. There we list the s-values and the associated sequences of
14 or fewer RNM moves for which the ratio of the flatnesses remains less than 1.01.

Proposition 3.15 used F2, but its analogue for F1 follows almost immediately with a slightly
smaller constant in place of 1.01.

Lemma 3.16. Under the assumptions of Proposition 3.15, there exists ` with 1 ≤ ` ≤ 14 such that

Γ
(1)
k0+` > 1.001 Γ

(1)
k0
.

Proof. The base point of F1 is the worst point of ∆k0
; the base point of F2 is the midpoint of the edge

of ∆k0
joining the two vertices whose x̃ coordinates are leftmost and rightmost when measured in F1.

By choosing k0 to be large enough, the two base points can be made arbitrarily close. Lemma 3.6(iii)
with ε = 0.0001 shows that for large enough k0, the flatnesses of triangles ∆k0

and ∆k0+` measured
in coordinate frames F1 and F2 satisfy

(3.39) 0.9999 Γ
(1)
k0

≤ Γ
(2)
k0

≤ 1.0001 Γ
(1)
k0

and 0.9999 Γ
(2)
k0+` ≤ Γ

(1)
k0+` ≤ 1.0001 Γ

(2)
k0+`.

Now, for ` as in Proposition 3.15,

Γ
(1)
k0+` ≥ 0.9999 Γ

(2)
k0+`

> 0.9999(1.01)Γ
(2)
k0

(by Proposition 3.15)

≥ 0.9999(1.01)(0.9999)Γ
(1)
k0

> 1.001 Γ
(1)
k0
.



3.10 Completion of the proof 21

3.10 Completion of the proof

The main result of this paper is the following theorem (called Theorem 1.2 in Section 1).

Theorem 3.17. If the RNM algorithm is applied to a function f ∈ F , starting from any nonde-
generate triangle, then the algorithm converges to the unique minimizer of f .

Proof. In this proof, Γj(∆i) denotes the flatness of RNM triangle ∆i measured in a coordinate frame
Fj whose base point is the worst vertex of triangle ∆j .

Given a small positive number κ, let k0 be sufficiently large (we will specify how small and how
large as we go along). As mentioned in Section 3.1, the RNM triangle must contract infinitely
often, so we may increase k0 to assume that ∆k0

contracts. Lemma 3.16 shows that the flatness
measured in Fk0

increases by a factor of 1.001 in at most 14 RNM moves; i.e., there exists k1 with
k0 < k1 ≤ k0 + 14 such that

(3.40) Γk0
(∆k1

) > 1.001 Γk0
(∆k0

).

We now switch coordinate frames on the left hand side: Lemma 3.6(iii) and Remark 3.9 show that
the flatness of ∆k1

in Fk1
is close to its flatness in Fk0

. In particular, if k0 is sufficiently large, then

(3.41) Γk1
(∆k1

) ≥ 0.9999 Γk0
(∆k1

).

Let k2 ≥ k1 be the first iteration after (or equal to) k1 such that ∆k2
contracts. Lemma 3.10 shows

that if k0 is sufficiently large, then from iteration k1 to the beginning of iteration k2, the distance
travelled by the centroid, measured in Fk1

, is less than κ. During those iterations, the RNM triangle
retains its shape and hence its flatness, as measured in Fk1

; that is,

(3.42) Γk1
(∆k2

) = Γk1
(∆k1

).

If κ was small enough, Lemma 3.6(iii) and Remark 3.9 again imply

(3.43) Γk2
(∆k2

) ≥ 0.9999 Γk1
(∆k2

).

Combining (3.40), (3.41), (3.42), and (3.43) yields

Γk2
(∆k2

) > (0.9999)2(1.001)Γk0
(∆k0

) > 1.0007 Γk0
(∆k0

).

If k0 is sufficiently large, then repeating the process that led from k0 to k2 defines k0 < k2 <
k4 < · · · such that

Γk2n
(∆k2n

) > (1.0007)nΓk0
(∆k0

)

for all n: to know that the same lower bound on k0 works at every stage, we use that in Lemma 3.6(iii)
the number δ is independent of b1, b2, and ∆. Now, if n is sufficiently large, then

Γk2n
(∆k2n

) > 10.

But ∆k2n
contracts, so this contradicts Lemma 3.13.

Hence the assumption made at the beginning of our long chain of results, Hypothesis 1, must be
wrong. In other words, the RNM algorithm does converge to the minimizer of f .

4 Concluding Remarks

4.1 Why do the McKinnon examples fail?

For general interest, we briefly revisit the smoothest McKinnon counterexample (1.1), which consists
of a twice-continuously differentiable function f and a specific starting triangle for which the RNM
algorithm converges to a nonminimizing point (with nonzero gradient). The Hessian matrix is
positive semidefinite and singular at the limit point, but positive definite everywhere else. Thus
all the assumptions in our convergence theorem are satisfied except for positive-definiteness of the
Hessian, which fails at one point. Hypothesis 1 is valid for this example, and it is enlightening to
examine where the proof by contradiction fails.
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The McKinnon iterates do satisfy several of the intermediate lemmas in our proof: the RNM
triangles not only flatten out (Lemma 3.8), but they do so more rapidly than the rate proved in
Lemma 3.11.4 However, an essential reduction step, Lemma 3.6, fails to hold for the McKinnon
example, as discussed below.

Positive-definiteness of the Hessian plays a crucial role in our proof by contradiction because it
allows us to uniformly approximate the objective function close to the limit point p† by its degree-2
Taylor polynomial. Applying a well-defined change of variables, the function 1

2x
2 + y for a simple

triangle can then be taken as a surrogate, and we can essentially reduce the problem to studying the
RNM algorithm for the objective function 1

2x
2+y near the non-optimal point (0, 0). In the McKinnon

example (1.1), however, the objective function near the limit point (0, 0) cannot be (uniformly) well
approximated by 1

2x
2 + y, even after a change of variable. Although the Hessian of the McKinnon

function f remains positive definite at base points in ∆k as k → ∞, it becomes increasingly close
to singular, in such a way that ever-smaller changes in the base point will eventually not satisfy the
closeness conditions of Lemma 3.6. In fact, the actual shape of the McKinnon objective function
allows a sequence of RNM moves that are forbidden for 1

2x
2 + y near the non-optimal point (0, 0).

namely an infinite sequence of inside contractions with the best vertex never replaced. In dynamical
terms, the McKinnon objective function allows symbolic dynamics forbidden for 1

2x
2 + y near (0, 0),

and these symbolic dynamics evade the contradiction in our argument.

4.2 An instance of RNM convergence

Most of this paper has been devoted to analysis of situations that we subsequently show cannot
occur; this is the nature of arguments by contradiction. For contrast, we present one example where
the RNM algorithm will converge, as we have proved, on the strictly convex quadratic function

f(x, y) = 2x2 + 3y2 + xy − 3x+ 5y,

whose minimizer is x∗ = (1,−1)T . Using starting vertices (0, 0.5)T, (0.25,−0.75)T, and (−0.8, 0)T, af-
ter 20 RNM iterations the best vertex is (0.997986,−1.00128)T, and the RNM triangles are obviously
converging to the solution. The first nine iterations are depicted in Figure 6.

−1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

Figure 6: Convergence of the RNM algorithm on a strictly convex quadratic function.

4.3 Significance of the results in this paper

This paper began by noting that very little is known about the theoretical properties of the original
Nelder–Mead method, despite 45 years of practice. It is fair to say that proving convergence for an

4As k → ∞, the McKinnon triangles satisfy ehk ≈ ewθ
k

for θ = |λ2|(1 + |λ2|)/λ1 ≈ 3, where λ1,2 = (1 ±
√

33)/8.
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RNM algorithm in two dimensions on a restricted class of functions adds only a little more to this
knowledge. This contribution seems of interest, however, because of the lack of other results despite
determined efforts, and the introduction of dynamical systems methods to the analysis.

Our analysis applies only to a simplified (“small step”) version of the original Nelder–Mead
method which excludes expansion steps. We have observed that in thousands of computational
experiments with functions defined in R

n (n ≥ 2) in which the Nelder–Mead method converges to a
minimizer, expansion steps are almost never taken in the neighborhood of the optimum. Expansion
steps are typically taken early on, forming part of the “adaptation to the local contours” that
constituted the motivation for Nelder and Mead when they originally conceived the algorithm [20].
Thus the RNM algorithm appears to represent, to a large extent, the behavior of the original method
near the solution. In this direction, it would be valuable if these empirical observations could be
rigorously justified under a well-defined set of conditions. The observed good performance of the
Nelder–Mead method on many real-world problems remains a puzzle.

This paper applies dynamical systems methods to the analysis of the RNM algorithm. The use
of such ideas in the proofs, particularly that of a (rescaled) local coordinate frame in Section 3.8.2,
may also be useful in other contexts where it is valuable to connect the geometry of a simplex with
the contours of the objective function. The evolving geometric figures of the algorithm remain one
of the intuitive appeals of the original Nelder–Mead method, leading to the nickname of “amoeba
method” [23]. There may well be other applications, but the latest direct search methods tend to
exhibit a less clear connection with geometry.

Finally, our analysis for the RNM algorithm relies in part on the fact that the volume of the
RNM simplex is non-increasing at every iteration, thereby avoiding the difficulties associated with
expansion steps. Consequently, McKinnon’s question remains open: does the original Nelder–Mead
algorithm, including expansion steps, always converge for the function x2 + y2, or more generally
for a class of functions like those treated in Theorem 3.17? We hope that further development of
the dynamical systems approach could lead to progress on this question.

Appendix: Computation for Proposition 3.15.

This appendix provides details of the symbolic computation performed to prove Proposition 3.15.
We regard the coding of moves as a form of symbolic dynamics for the RNM iteration. Moves
are represented as follows: 1, 2, and 3 denote reflections with, respectively, vertex A, B, or C

of (3.36) taken as the worst vertex, i.e. replaced during the move. Similarly, 4, 5, and 6 denote
inside contractions, and 7, 8, 9 denote outside contractions with worst vertex A,B,C, respectively.

We describe a sequence of move numbers as possible for a given s ∈ [0, 1.00001] if there exist
t, u ∈ [−40.0005, 40.0005] such that for the triangle (3.36) described by (s, t, u),

(i) the variables s, t, u satisfy the inequality implied by (3.35) for each RNM move,

(ii) the flatness after each step is less than or equal to 1.01 times the original flatness, and

(iii) no reflection undoes an immediately preceding reflection.

Remark 4.1. Because (3.35) involves a relaxation of 10−6, a sequence characterized as “possible”
using the first two properties listed above could be impossible for the RNM algorithm in exact
arithmetic. This is why the third condition explicitly prohibits sequences in which a reflection
undoes the previous move, something that can never happen in the RNM algorithm.

In the proof of Proposition 3.15, we described a symbolic algorithm for computing all possible
sequences beginning with an inside contraction. The Mathematica output below lists all these
sequences.

{5} possible for s in {{0.999999, 1.00001}}

{5, 6} possible for s in {{0.999999, 1.00001}}
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{6} possible for s in {{0.582145, 1.}}

{6, 2} possible for s in {{0.582145, 0.737035}}

{6, 2, 1} possible for s in {{0.582145, 0.695708}}

{6, 2, 1, 3} possible for s in {{0.582145, 0.654949}}

{6, 2, 1, 3, 2} possible for s in {{0.582145, 0.654949}}

{6, 2, 1, 3, 6} possible for s in {{0.582145, 0.654949}}

{6, 2, 1, 3, 6, 2} possible for s in {{0.616769, 0.654949}}

{6, 2, 1, 3, 6, 2, 5} possible for s in {{0.616769, 0.64706}}

{6, 2, 1, 3, 6, 8} possible for s in {{0.582145, 0.64706}}

{6, 2, 1, 3, 6, 8, 4} possible for s in {{0.582145, 0.623495}}

{6, 2, 1, 3, 9} possible for s in {{0.582145, 0.644579}}

{6, 2, 1, 6} possible for s in {{0.582145, 0.695708}}

{6, 2, 1, 9} possible for s in {{0.582145, 0.673138}}

{6, 2, 1, 9, 2} possible for s in {{0.616769, 0.673138}}

{6, 2, 1, 9, 2, 5} possible for s in {{0.616769, 0.64706}}

{6, 2, 1, 9, 8} possible for s in {{0.582145, 0.64706}}

{6, 2, 1, 9, 8, 4} possible for s in {{0.582145, 0.623495}}

{6, 2, 5} possible for s in {{0.582145, 0.737035}}

{6, 2, 5, 4} possible for s in {{0.582145, 0.695708}}

{6, 2, 5, 7} possible for s in {{0.582145, 0.681931}}

{6, 2, 5, 7, 6} possible for s in {{0.582145, 0.635866}}

{6, 2, 5, 7, 9} possible for s in {{0.582145, 0.681931}}

{6, 2, 5, 7, 9, 5} possible for s in {{0.582145, 0.679967}}

{6, 2, 5, 7, 9, 8} possible for s in {{0.582145, 0.663254}}

{6, 2, 5, 7, 9, 8, 4} possible for s in {{0.582145, 0.646912}}

{6, 2, 5, 7, 9, 8, 7} possible for s in {{0.582145, 0.663254}}

{6, 2, 5, 7, 9, 8, 7, 6} possible for s in {{0.582145, 0.663254}}

{6, 2, 5, 7, 9, 8, 7, 6, 5} possible for s in {{0.589537, 0.663254}}

{6, 2, 5, 7, 9, 8, 7, 6, 5, 1} possible for s in {{0.589537, 0.635373}}

{6, 2, 5, 7, 9, 8, 7, 9} possible for s in {{0.582145, 0.65445}}

{6, 2, 5, 7, 9, 8, 7, 9, 5} possible for s in {{0.582145, 0.651784}}

{6, 2, 5, 7, 9, 8, 7, 9, 5, 4} possible for s in {{0.582145, 0.651784}}

{6, 2, 5, 7, 9, 8, 7, 9, 5, 4, 3} possible for s in {{0.582145, 0.651784}}

{6, 2, 5, 7, 9, 8, 7, 9, 8} possible for s in {{0.597869, 0.65445}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4} possible for s in {{0.597869, 0.65445}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4, 6} possible for s in {{0.597869, 0.65445}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4, 6, 2} possible for s in {{0.597869, 0.654004}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4, 6, 2, 5} possible for s in {{0.64094, 0.654004}}

{6, 2, 5, 7, 9, 8, 7, 9, 8, 4, 6, 8} possible for s in {{0.64094, 0.65445}}

{6, 2, 8} possible for s in {{0.582145, 0.614711}}

{6, 5} possible for s in {{0.582145, 1.}}

{6, 8} possible for s in {{0.582145, 0.853944}}

{6, 8, 4} possible for s in {{0.582145, 0.810502}}

{6, 8, 7} possible for s in {{0.582145, 0.853944}}

{6, 8, 7, 6} possible for s in {{0.582145, 0.853944}}

{6, 8, 7, 9} possible for s in {{0.582145, 0.818183}}

{6, 8, 7, 9, 5} possible for s in {{0.582145, 0.811611}}

{6, 8, 7, 9, 8} possible for s in {{0.582145, 0.818183}}

{6, 8, 7, 9, 8, 4} possible for s in {{0.582145, 0.818183}}

{6, 8, 7, 9, 8, 4, 6} possible for s in {{0.763168, 0.818183}}

{6, 8, 7, 9, 8, 4, 6, 2} possible for s in {{0.763168, 0.817831}}

{6, 8, 7, 9, 8, 7} possible for s in {{0.582145, 0.777853}}
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{6, 8, 7, 9, 8, 7, 6} possible for s in {{0.582145, 0.777853}}

{6, 8, 7, 9, 8, 7, 6, 5} possible for s in {{0.589537, 0.777853}}

{6, 8, 7, 9, 8, 7, 6, 5, 1} possible for s in {{0.589537, 0.777853}}

{6, 8, 7, 9, 8, 7, 9} possible for s in {{0.582145, 0.751661}}

{6, 8, 7, 9, 8, 7, 9, 5} possible for s in {{0.582145, 0.751661}}

{6, 8, 7, 9, 8, 7, 9, 5, 4} possible for s in {{0.582145, 0.751661}}

{6, 8, 7, 9, 8, 7, 9, 5, 4, 3} possible for s in {{0.582145, 0.751661}}

{6, 8, 7, 9, 8, 7, 9, 8} possible for s in {{0.597869, 0.694824}}

{6, 8, 7, 9, 8, 7, 9, 8, 4} possible for s in {{0.597869, 0.694824}}

{6, 8, 7, 9, 8, 7, 9, 8, 4, 6} possible for s in {{0.597869, 0.694824}}

{6, 8, 7, 9, 8, 7, 9, 8, 4, 6, 2} possible for s in {{0.597869, 0.694824}}

{6, 8, 7, 9, 8, 7, 9, 8, 4, 6, 2, 5} possible for s in {{0.64094, 0.663616}}

{6, 8, 7, 9, 8, 7, 9, 8, 4, 6, 8} possible for s in {{0.64094, 0.663616}}

All we need from this computation is that there is no possible sequence of 14 steps or more. In
other words, following an inside contraction, the flatness will be greater than 1.01 times the original
flatness after no more than 14 steps (including the initial contraction).

Remarks about the list of possible sequences

The remarks in this section are not needed for the proof, but they may give further insight into the
behavior of the RNM algorithm as well as clear up some potential ambiguity about the computer
output above.

� That the sequence {4} is not possible (i.e., that an inside contraction with A0 as worst vertex
immediately increases the flatness by at least a factor of 1.01) was shown already near the
beginning of the proof of Proposition 3.15.

� The bound 40.0005 on |t| and |u| need not be fed into the program, because the program
automatically calculates stronger inequalities that are necessary for a contraction to occur.

� Move sequences that do not appear in the list may still occur in actual runs of the RNM
algorithm, but then the flatness must grow by more than a factor of 1.01. Similarly, a move
sequence appearing in the list may occur while running the RNM algorithm even if s lies outside
the given interval. For example, one can show that there exist triangles with 0 ≤ s < 0.582145
on which the RNM algorithm takes move {6}.

� One cannot predict from the list which step causes the flatness to grow beyond the factor
of 1.01. For example, using our definition the sequence {6, 2, 1, 3, 2} is possible (for a certain
range of s), but the extended sequence {6, 2, 1, 3, 2, 1} is not. This should not be taken to mean
that the last reflection {1} caused the increase in flatness, since reflections do not change the
flatness (measured in the same coordinate frame). Rather, there may exist a triangle in the
given range that for the objective function f(λ, µ) = 1

2λ
2 + µ will take the sequence of steps

{6, 2, 1, 3, 2, 1}. What must be the case, however, is that for any such triangle the initial inside
contraction {6} will have already increased the invariant by a factor at least 1.01.

� One cannot deduce that in every run of the RNM algorithm, every sufficiently advanced se-
quence of 14 steps involves a contraction. Experiments show that, when omitting any test for
flatness, a sequence beginning with {6} can legitimately be followed by a very large number
of reflect steps during which the flatness does not change. Thus we truly needed Lemma 3.10
in addition to Proposition 3.15 to complete our proof.

� The entire computation took about 11 minutes on an Intel Xeon 3.0 GHz processor.
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