
Scilab
A Hands on Introduction

by
Satish Annigeri Ph.D.

Professor of Civil Engineering
B.V. Bhoomaraddi College of Engineering & Technology, Hubli

satish@bvb.edu

Department of Civil Engineering
B.V. Bhoomaraddi College of Engineering & Technology, Hubli

17 & 18 April, 2004

Table of Contents
Preface...ii
Introduction... 1
Tutorial 1 – Scilab Environment... 2
Tutorial 2 – The Workspace and Working Directory..3
Tutorial 3 – Matrix Operations... 4
Tutorial 4 – Sub-matrices..5
Tutorial 5 – Statistics.. 6
Tutorial 6 – Plotting Graphs..7
Tutorial 7 – Scilab Programming Language... 8
Tutorial 8 – Functions in Scilab.. 9
Tutorial 9 – Miscellaneous Commands...10
Appendix... 11

Scilab Tutorial i

Preface
Scilab is a software for numerical mathematics and scientific visualization. It is capable of

interactive calculations as well as automation of computations through programming. It provides
all basic operations on matrices through built-in functions so that the trouble of developing and
testing code for basic operations are completely avoided. Its ability to plot 2D and 3D graphs
helps in visualizing the data we work with. All these make Scilab an excellent tool for teaching,
especially those subjects that involve matrix operations. Further, the numerous toolboxes that are
available for various specialized applications make it an important tool for research. Being
compatible with Matlab®, all available Matlab M-files can be directly used in Scilab. Scicos, a
hybrid dynamic systems modeler and simulator for Scilab, simplifies simulations. The greatest
features of Scilab are that it is multi-platform and is free. It is available for many operating
systems including Windows, Linux and MacOS X. More information about the features of
Scilab are given in the Introduction.

Scilab can help a student understand all intermediate steps in solving even complicated
problems, as easily as using a calculator. In fact, it is a calculator that is capable of matrix
algebra computations. Once the student is sure of having mastered the steps, they can be
converted into functions and whole problems can be solved by simply calling a few functions.
Scilab is an invaluable tool as solved problems need not be restricted to simple examples to suit
hand calculations.

Scilab is the outcome of years of development and continues to be improved and developed.
Having a rich set of features and being in wide use, its developers could very well have chosen
to commercialize it. But they have chosen to make it a 'free' software. Free, as in 'free of cost' as
well as in 'freedom', because the source code is also available for those who wish to modify and
improve it. You can visit the following websites to see some definitions of software freedom
and licensing issues:

http://www.fsf.org/licenses/licenses.html and
Open Source Initiative (http://www.opensource.org/licenses

You can also read the Scilab software license at the following website:
http://scilabsoft.inria.fr/license.txt

The Scilab license is included in the Appendix at the end of this document.
When its developers have been so generous, we as users must contribute to this movement

by learning to use it and applying it to solve problems. This tutorial is an attempt to introduce
students to the basics of Scilab. The next part of the tutorial is aimed at teaching students of
Civil Engineering to the basics of Scilab by applying it to the problem of matrix analysis of
plane frames. I hope this motivates students to learn and apply Scilab to solve a wider range of
problems.

This is the first version of this document and will certainly contain errors, typographical as
well as factual. You can help improve this document by reporting all errors you find and by
suggesting modifications and additions. Your views are always welcome. I can be reached at the
email address given on the cover page.

Acknowledgments
It goes without saying that my first indebtedness is to the developers of Scilab and the

consortium that continues to develop it. I must also thank Dr. A.B. Raju, E&EE Department,
BVBCET who first introduced me to Scilab and forever freed me from using Matlab.

April 2004 Satish Annigeri

Scilab Tutorial ii

http://scilabsoft.inria.fr/license.txt
http://www.opensource.org/licenses
http://www.opensource.org/licenses
http://www.fsf.org/licenses/licenses.html

Introduction
Scilab is a scientific software package for numerical computations providing a powerful

open computing environment for engineering and scientific applications. Developed since 1990
by researchers from INRIA (French National Institute for Research in Computer Science and
Control, http://www.inria.fr/index.en.html) and ENPC (National School of Bridges and
Roads, http://www.enpc.fr/english/int_index.htm), it is now maintained and developed
by Scilab Consortium (http://scilabsoft.inria.fr/consortium/consortium.html) since
its creation in May 2003.

Distributed freely and open source through the Internet since 1994, Scilab is currently being
used in educational and industrial environments around the world.

Scilab includes hundreds of mathematical functions with the possibility to add interactively
programs from various languages (C, Fortran...). It has sophisticated data structures (including
lists, polynomials, rational functions, linear systems...), an interpreter and a high level
programming language.

Scilab has been designed to be an open system where the user can define new data types and
operations on these data types by using overloading.

A number of toolboxes are available with the system:
• 2-D and 3-D graphics, animation
• Linear algebra, sparse matrices
• Polynomials and rational functions
• Simulation: ODE solver and DAE solver
• Scicos : a hybrid dynamic systems modeler and simulator
• Classic and robust control, LMI optimization
• Differentiable and non-differentiable optimization
• Signal processing
• Metanet: graphs and networks
• Parallel Scilab using PVM
• Statistics
• Interface with Computer Algebra (Maple, MuPAD)
• Interface with Tcl/Tk
• And a large number of contributions for various domains.

Scilab works on most Unix systems including GNU/Linux and on Windows
9X/NT/2000/XP. It comes with source code, on-line help and English user manuals. Binary
versions are available.
Some of its features are listed below:

• Basic data type is a matrix, and all matrix operations are available as built-in operations.
• Has a built-in interpreted high-level programming language.
• Graphics such as 2D and 3D graphs can be generated and exported to various formats so

that they can be included into documents.
To the left is a 3D graph generated in Scilab and
exported to GIF format and included in the
document for presentation. Scilab can export to
Postscript and GIF formats as well as to Xfig
(popular free software for drawing figures) and
LaTeX (free scientific document preparation
system) file formats.

Scilab Tutorial Introduction | 1

http://www.scicos.org/
http://scilabsoft.inria.fr/consortium/consortium.html
http://www.enpc.fr/
http://www.inria.fr/

Tutorial 1 – Scilab Environment

Fig. 1 Scilab environment

When you startup Scilab, you see a window as shown in Fig. 1 above. The user enters Scilab
commands at the prompt (-->). But many of the commands are also available through the menu

at the top. The most important menu for a beginner is the “Help”
menu. Clicking on the “Help” menu opens a help window with a
list of topics on which help is available. Clicking on the relevant
topic takes you into a hypertext linked documents similar to web
pages.

Help on specific commands can also be accessed directly
from the command line instead of having to navigate through a
series of links. Thus, to get help on the Scilab command “inv”,
simply type

-->help inv
on the command line.

Scilab can be used as a simple calculator to perform
numerical calculations. It also has the ability to define variables
and store values in them so that they can be used later. This is

demonstrated in the following examples:
-->2+3
ans =

5.
-->2/3
ans =

.6666667
-->2^3
ans =

8.

-->a=2
a = 2.
-->b=

3.
b =

3.
-->c=a+b
c =

5.

-->pi=atan(1.0)*4
pi =

3.1415927
-->sin(pi/4)
ans =

0.7071068
-->exp(0.1)
ans =

1.1051709
Note that Scilab creates a variable named “ans” to store results of calculations whenever

the user does not supply a variable for the purpose. You could enter more than one command on
the same line by separating the commands by semicolons(;). The semicolon suppresses echoing
of intermediate results. Try the command -->a=5; and you will notice that the prompt
reappears immediately without echoing a=5.

Scilab Tutorial Tutorial 1 – Scilab Environment | 2

Tutorial 2 – The Workspace and Working Directory
While the Scilab environment is the visible face of Scilab, there is another that is not

visible. It is the memory space where all variables and functions are stored, and is called the
Workspace. Many a times it is necessary to inspect the workspace to check whether a variable
or a function has been defined or not. The following commands help the user in inspecting the
memory space: who , whos and who_user(). Use the online help to learn more about these
commands.

The who command lists the names of variables in the Scilab workspace. Note the variable
names preceded by the “%” symbol. These are special variables that are used often and therefore
predefined by Scilab. It includes %pi (), %e (e), %i (−1), %inf (∞), %nan (NaN) and
others.

The whos command lists the variables along with the amount of memory they take up in
the workspace. The variables to be listed can be selected based on either their type or name.
Some examples are:

-->whos() Lists entire contents of the workspace, including functions,
libraries, constants

-->whos -type constants
Lists only variables that can store real or complex constants.
Other types are boolean, string, function, library, polynomial
etc. For a complete list use the command -->help typeof.

-->whos -name nam Lists all variables whose name begins with the letters nam

To understand how Scilab deals with numbers, try out the following commands and use the
whos command as follows:
-->a1=5; Defines a real number variable with name 'a1'
-->a2=sqrt(-4) Defines a complex number variable with name 'a2'
-->a3=[1, 2; 3, 4] Defines a 2x2 matrix with name 'a3'
-->whos -name a Lists all variables with name starting with the letter 'a'
Name Type Size Bytes
a3 constant 2 by 2 48
a2 constant 1 by 1 32
a1 constant 1 by 1 24

Now try the following commands:
-->a1=sqrt(-9) Converts 'a1' to a complex number
-->whos -name a Note that 'a' is now a complex number
-->a1=a3 Converts 'a1' to a matrix
-->whos -name a Note that 'a' is now a matrix
-->save('ex01.dat') Saves all variables in the workspace to a disk file ex01.dat
-->load('ex01.dat') Loads all variables from a disk file ex01.dat to workspace

Note the following points:
 Scilab treats a scalar number as a matrix of size 1x1 (and not as a simple number)

because the basic data type in Scilab is a matrix.
 Scilab automatically converts the type of the variable as the situation demands. There is

no need to specifically define the type for the variable.

Scilab Tutorial Tutorial 2 – The Workspace and Working Directory | 3

Tutorial 3 – Matrix Operations
Matrix operations that are built-in into Scilab are addition, subtraction, multiplication,

transpose, inversion, determinant, trigonometric, logarithmic, exponential functions and many
others. Study the following examples:
-->a=[1 2 3; 4 5 6; 7 8 9]; Define a 3x3 matrix
-->b=a'; Transpose a and store it in b.

-->c=a+b Add a to b and store the result in c. a and b must be of the
same size.

-->d=a-b Subtract b from a and store the result in d.

-->e=a*b Multiply a with b and store the result in e. a and b must be
comptible for matrix multiplication.

-->f=[3 1 2; 1 5 3; 2 3 6]; Define a 3x3 matrix with name f.

-->g=inv(f)
Invert matrix f and store the result in g. f must be square
and positive definite. A warning will be displayed if it is ill
conditioned.

-->f*g The answer must be an identity matrix
-->det(f) Determinant of f.
-->log(a) Matrix of log of each element of a.
-->a .* b Element by element multiplication.
-->a^2 Same as a*a.
-->a .^2 Element by element square.

There are some handy functions to generate commonly used matrices, such as zero matrices,
identity matrices etc.
-->a=zeros(5,8) Creates a 5x8 matrix with all elements zero.
-->b=ones(4,6) Creates a 4x6 matrix with all elements 1
-->c=eye(3,3) Creates a 3x3 identity matrix
-->d=eye(3,3)*10 Creates a 3x3 diagonal matrix

It is possible to generate a range of numbers to form a vector. Study the following
command:
-->a=[1:5] Creates a vector with 5 elements as follows [1, 2, 3, 4, 5]

-->b=[0:0.5:5] Creates a vector with 11 elements as follows [0, 0.5, 1.0,
1.5, ... 4.5, 5.0]

A range requires a start value, an increment and an ending value, separated by colons (:). If
only two values are given (separated by only one colon), they are taken to be the start and end
values and incremented is assumed to be 1.

You can create an empty matrix with the command a=[].

Scilab Tutorial Tutorial 3 – Matrix Operations | 4

Tutorial 4 – Sub-matrices
A sub-matrix can be identified by the row and column numbers at which it starts and ends.

Let us first create a matrix of size 5x8.

-->a=rand(5,8)*100 Generates a 5x8 matrix whose elements are generated as
random numbers.

Since the elements are random numbers, each person will get a different matrix. Let us
assume we wish to identify a 2x4 sub-matrix of 'a' demarcated by rows 3 to 4 and columns 2 to
5. This is obtained as a(3:4, 2:5). The range of rows and columns is represented by the range
commands 3:4 and 2:5 respectively. Thus 3:4 defines the range 3, 4 while 2:5 defines the range
2, 3, 4, 5. However, matrix 'a' remains unaffected.
-->b=a(3:4, 2:5) This command copies the sub-matrix of into 'b'.

A sub-matrix can be overwritten just as easily as it can be copied. To make all elements of
the sub-matrix between the above range equal to zero, use the following command:

-->a(3:4, 2:5)=zeros(2,4) This command creates a 2x4 matrix of zeros and puts it into
the sub-matrix of 'a' between rows 3:4 and columns 2:5.

Note that the sub-matrix on the left hand side and the matrix on the right side (a zero matrix
in the above example) must be of the same size.

While using range to demarcate rows and/or columns, it is permitted to leave out the start
(or end) value in the range, in which case it is assumed to be 1 (or the number of the last row or
column). To indicate all rows (or columns) it is enough to use only the colon (:). Thus, the sub-
matrix consisting of all the rows and columns 2 and 3 of a, the command is a(:, 2:3).
Naturally a(:, :) represents the whole matrix, which of course could be represented simply as
a.

Scilab Tutorial Tutorial 4 – Sub-matrices | 5

Tutorial 5 – Statistics
Scilab can perform all basic statistical calculations. The data is assumed to be contained in a

matrix and calculations can be performed treating rows (or columns) as the observations and the
columns (or rows) as the parameters. To choose rows as the observations, the indicator is 'r' or
1. To choose columns as the observations, the indicator is 'c' or 2. If no indicator is furnished,
the operation is applied to the entire matrix element by element. The available statistical
functions are sum(), mean(), stdev(), st_deviation(), median().

Let us first generate a matrix of 5 observations on 3 parameters. Let the elements be random
numbers. This is done using the following command:
-->a=rand(5,3) Creates a 5x3 matrix of random numbers .

Assuming rows to be observations and columns to be parameters, the sum, mean and
standard deviation are calculated as follows:
-->s=sum(a, 'r') Sum of columns of a.
-->m=mean(a,1) Mean value of each column of a.
-->sd=stdev(a, 1) Standard deviation of a.
-->sd2=st_deviation(a, 'r') Standard deviation of a. Sample size std.
-->mdn=median(a,'r') Median of columns of a.

The same operations can be performed treating columns as observations by replacing the 'r'
or 1 with 'c' or 2.

When neither 'r' (or 1) nor 'c' (or 2) is supplied, the operations are carried out treating the
entire matrix as a set of observations on a single parameter.

The maximum and minimum values in a column, row or matrix can be obtained with the
max() and min() functions respectively in the same way as the above statistical functions,
except that you must use 'r' or 'c' but not 1 or 2.

Scilab Tutorial Tutorial 5 – Statistics | 6

Tutorial 6 – Plotting Graphs
Let us learn to plot simple graphs. We first have to generate the data to be used for the

graph. Let us assume we want to draw the graph of cos x and sinx  for one full cycle (2
radians). Let us first generate the values for the x-axis with the following command:
-->x=[0:%pi/16:2*%pi];

In the above command, note that %pi is a predefined constant representing the value of  .
The command to create a range of values, 0:%pi/16:2*%pi, requires a starting value, an
increment and an ending value. In the above example, they are 0, /16 and 2 respectively.
The increment is optional and when not given, it is taken to be 1. Thus, 'x' is a vector with 33
elements.

Next, let us create the values for the y-axis, first column representing cosine and the second
sine. They are created by the following commands:
-->y=[cos(x) sin(x)]

Note that cos(x) and sin(x) are the two columns of a new matrix which is first created
and then stored in y. We can now plot the graph with the command:
-->plot2d(x,y)

The graph generated by this command is shown below. The graph can be enhanced and
annotated. You can add grid lines, labels for x- and y-axes, legend for the different lines etc.

Fig. 2 Graph of sin(x) and cos(x) using function plot2d()

You can learn more about the plot2d and other related functions from the online help.

Scilab Tutorial Tutorial 6 – Plotting Graphs | 7

Tutorial 7 – Scilab Programming Language
Scilab has a built-in interpreted programming language so that a series of commands can be

automated. The programming language offers most of the features of any high level language,
such as looping (for, while), conditional execution (if-then-else, select) and functions. The
greatest advantage is that the statements can be any valid Scilab commands.

To loop over an index variable 'i' from 1 to 10 and display its value each time, the following
loop you can try the following commands at the prompt:

-->for i=1:10
-->disp(i)
-->end

The for loop is closed by the corresponding end statement. Once the loop is closed, the
block of statements enclosed within the loop will be executed. The disp(i) command displays
the value of i.

Conditional execution is performed using the if-then-elseif-else construct. Try the
following statements on the command line:

-->x=10;
-->if x<0 then disp('Negative')
-->elseif x==0 then disp('Zero')
-->else disp('Positive')
-->end
 Positive

This will display the word Positive.
A list of all the Scilab programming language primitives and commands can be displayed by

the command what(). The command produces the following list:
if else for while end select case quit
exit return help what who pause clear resume
then do apropos abort break elseif
You can learn about each command using the help command. Thus help while will give

complete information about while along with examples and other commands that are related to
it.

Scilab Tutorial Tutorial 7 – Scilab Programming Language | 8

Tutorial 8 – Functions in Scilab
Functions serve the same purpose in Scilab as in other programming languages. They are

independent blocks of code, with their own input and output parameters that can be associated
with variables at the time of calling the function. They modularize a program and encapsulate a
series of statements and associate them with the name of the function.

Scilab provides a built in editor, called as SciPad within Scilab wherein the user can type the
code for functions and compile and load it into the workspace. SciPad can be invoked by
clicking on 'Editor' choice on the main menu at the top of the Scilab work environment.

Let us write a simple function to calculate the length of a line in the x-y plane, given the
coordinates of its two ends (x1, y1) and (x2, y2). The length of such a line is given by the
expression l=x2−x1

2 y2− y1
2 . Before defining the function in SciPad, let us try it out in

Scilab.
-->x1=1; y1=4; x2=10; y2=6;
-->dx=x2-x1; dy=y2-y1;
-->l=sqrt(dx^2 + dy^2)
l =

9.2195445
Studying the above statements to be put into the functions, notice that x1, y1, x2 and y2 are

input values and the length 'l' is the output parameter. Define the code as described below:
1. Open SciPad by clicking on Editor on the main menu.
2. Type the lines of code to define the function.
3. Save the contents of the file to a disk file by clicking File > Save in SciPad and choosing

a name for the file.
4. Load the function into Scilab by clicking on 'Load into Scilab' on the SciPad main menu.
type the following code into SciPad:

function [l] = len(x1, y1, x2, y2)
dx=x2-x1; dy=y2-y1;
l=sqrt(dx^2 + dy^2);
endfunction

In the above code, function and endfunction are Scilab keywords and must be typed
exactly as shown. They signify the start and end of a function definition.

The variable enclosed between square brackets is an output parameter, and will be returned
to Scilab workspace (or to the parent function from where it was invoked). The name of the
function has been chosen as 'len' (short for length, as the name length is already used by Scilab
for another purpose). The input parameters x1, y1, x2 and y2 are the variables bringing in input
from the Scilab workspace (or the parent function from where it is called). This function will be
invoked as ll = len(xx1,yy1,xx2,yy2) where ll is the output variable and xx1, yy1,
xx2 and yy2 are the input variables. Note that their names need not match the corresponding
names in the function definition.

Note the semicolons (;) used at the end of the executable statements which suppress the
echo of intermediate results. You can remove them if you need to debug the function when the
results are not matching the expected results. Alternately, use the function disp() to print out
intermediate results within a function to debug it and remove it once the bug is eliminated.

To try out the function, load it into Scilab by first saving the contents to a disk file (File >
Save) and then clicking on 'Load into Scilab'. If there are no syntax errors in your function
definition, it will be loaded into Scilab workspace and this can be verified with the command
whos -type function and searching for the name of your function, namely, len. To use the
function enter the following command: l=len(1,4,10,6).

However, if there are syntax errors, the line on which the error occurs is displayed and you
will have to remove the syntax errors and repeat the above steps.

Scilab Tutorial Tutorial 8 – Functions in Scilab | 9

Tutorial 9 – Miscellaneous Commands
Some commands related to operations on disks are important and they are listed below.

They are important when you want to change the directory in which your function files are stored
or from where they are they are to be read.
pwd Prints the name of the current working directory
getcwd() Same as pwd.
chdir('dir') Changes the working directory to a different disk location named dir.

It is possible to save all the variables in the Scilab Workspace to a disk file so that you can
quickly reload all the variables and functions from a previous session and continue from where
you left off. The commands used for this purpose are:

save('pf.bin') Saves entire contents of the Scilab workspace (variables and functions)
in the file pf.bin in the current working directory.

load('pf.bin') Restores contents of the Scilab workspace from the file pf.bin in the
current working directory.

save('pf.bin', xy) Saves only the variable xy of the Scilab workspace in the file pf.bin
in the current working directory.

It is possible to determine the size of variables in the Scilab workspace with the following
command:

size(xy) Returns a 1x2 matrix containing the number of rows and columns in the
variable xy.

length(xy) Returns the number of elements in xy (rows multiplied by columns).

Scilab can open files on disk and a number of functions are available for opening, closing
reading and writing disk files. The following lines of code illustrate how this can be
accomplished:
-->n=10; x=25.5; xy=[100 75;0 75; 200, 0];
-->fd=file(“ex01.dat”, “w”); // Opens a file ex01.dat for writing
-->mfprintf(fd, “n=%d, x=%f\n”, n, x);
-->mfprintf(fd, “%12.4f\t%12,4f\n”, xy);
-->mclose(fd);

You can now open the file ex01.dat in a text editor, such as notepad and see its contents.
You will notice that the commands are similar to the corresponding commands in C, namely,
fopen(), fprintf() and fclose(). Note that in the second command, the format string
must be sufficient to print one full row of the matrix xy. The sequence of operations must
always be, open the file and obtain a file descriptor, write to the file using the file descriptor and
close the file using the file descriptor.

Scilab Tutorial Tutorial 9 – Miscellaneous Commands | 10

Appendix
SCILAB License

1- Preface

The aim of this license is to lay down the conditions enabling you to use, modify and
circulate the SOFTWARE. However, INRIA and ENPC remain the authors of the SOFTWARE and
so retain property rights and the use of all ancillary rights.

2- Definitions

The SOFTWARE is defined as all successive versions of SCILAB software and their
documentation that have been developed by INRIA and ENPC.

SCILAB DERIVED SOFTWARE is defined as all or part of the SOFTWARE that you have
modified and/or translated and/or adapted.

SCILAB COMPOSITE SOFTWARE is defined as all or a part of the SOFTWARE that you have
interfaced with a software, an application package or a toolbox of which you are owner
or entitled beneficiary.

3- Object and conditions of the SOFTWARE license
**
a) INRIA and ENPC authorize you free of charge, to reproduce the SOFTWARE source
and/or object code on any present and future support, without restriction, providing
the following reference appears in all the copies: Scilab (c)INRIA-ENPC.

b) INRIA and ENPC authorize you free of charge to correct any bugs, carry out any
modifications required for the porting of the SOFTWARE and to carry out any usual
functional modification or correction, providing you insert a patch file or you
indicate by any other equivalent means the nature and date of the modification or
the correction, on the corresponding file(s) of the SOFTWARE.

c) INRIA and ENPC authorize you free of charge to use the SOFTWARE source and/or
object code, without restriction, providing the following reference appears in all
the copies: Scilab (c)INRIA-ENPC.

d) INRIA and ENPC authorize you free of charge to circulate and distribute, free of
charge or for a fee, the SOFTWARE source and/or object code, including the
SOFTWARE modified in accordance with above-mentioned article 3 b), on any present
and future support, providing:

* the following reference appears in all the copies: Scilab (c)INRIA-ENPC.

* the SOFTWARE is circulated or distributed under the present license.

* patch files or files containing equivalent means indicating the nature and the
date of the modification or the correction to the SOFTWARE file(s) concerned
are freely circulated.

4- Object and conditions of the DERIVED SOFTWARE license
**
a) INRIA and ENPC authorize you free of charge to reproduce and modify and/or

translate and/or adapt all or part of the source and/or the object code of the
SOFTWARE, providing a patch file indicating the date and the nature of the
modification and/or the translation and/or the adaptation and the name of their
author in the SOFTWARE file(s) concerned is inserted. The SOFTWARE thus modified
is defined as DERIVED SOFTWARE. The INRIA authorizes you free of charge to use the
source and/or object code of the SOFTWARE, without restriction, providing the
following reference appears in all the copies: Scilab (c)INRIA-ENPC.

b) INRIA and ENPC authorize you free of charge to use the SOFTWARE source and/or
object code modified according to article 4-a) above, without restriction,
providing the following reference appears in all the copies: "Scilab inside
(c)INRIA-ENPC".

c) The INRIA and the ENPC authorize you free of charge to circulate and distribute
for no charge, for non-commercial purposes the source and/or object code of
DERIVED SOFTWARE on any present and future support, providing:

* the reference " Scilab inside (c)INRIA-ENPC " is prominently mentioned;

* the DERIVED SOFTWARE is distributed under the present license;

* the recipients of the distribution can access the SOFTWARE code source;

Scilab Tutorial Appendix | 11

* the DERIVED SOFTWARE is distributed under a name other than SCILAB.

d) Any commercial use or circulation of the DERIVED SOFTWARE shall have been
previously authorized by INRIA and ENPC.

5- Object and conditions of the license concerning COMPOSITE SOFTWARE

a) INRIA and ENPC authorize you to reproduce and interface all or part of the

SOFTWARE with all or part of other software, application packages or toolboxes of
which you are owner or entitled beneficiary in order to obtain COMPOSITE SOFTWARE.

b) INRIA and ENPC authorize you free, of charge, to use the SOFTWARE source and/or
object code included in the COMPOSITE SOFTWARE, without restriction, providing the
following statement appears in all the copies: "composite software using Scilab
(c)INRIA-ENPC functionality".

c) INRIA and ENPC authorize you, free of charge, to circulate and distribute for no
charge, for purposes other than commercial, the source and/or object code of
COMPOSITE SOFTWARE on any present and future support, providing:

* the following reference is prominently mentioned: "composite software using
Scilab (c)INRIA-ENPC functionality ";

* the SOFTWARE included in COMPOSITE SOFTWARE is distributed under the present
license ;

* recipients of the distribution have access to the SOFTWARE source code;

* the COMPOSITE SOFTWARE is distributed under a name other than SCILAB.

e) Any commercial use or distribution of COMPOSITE SOFTWARE shall have been
previously authorized by INRIA and ENPC.

6- Limitation of the warranty

Except when mentioned otherwise in writing, the SOFTWARE is supplied as is, with no
explicit or implicit warranty, including warranties of commercialization or
adaptation. You assume all risks concerning the quality or the effects of the SOFTWARE
and its use. If the SOFTWARE is defective, you will bear the costs of all required
services, corrections or repairs.

7- Consent

When you access and use the SOFTWARE, you are presumed to be aware of and to have
accepted all the rights and obligations of the present license.

8- Binding effect

This license has the binding value of a contract. You are not responsible for respect
of the license by a third party.

9- Applicable law

The present license and its effects are subject to French law and the competent French
courts.

Scilab Tutorial Appendix | 12

Notes

Scilab Tutorial

Scilab Tutorial

	Preface
	Introduction
	Tutorial 1 – Scilab Environment
	Tutorial 2 – The Workspace and Working Directory
	Tutorial 3 – Matrix Operations
	Tutorial 4 – Sub-matrices
	Tutorial 5 – Statistics
	Tutorial 6 – Plotting Graphs
	Tutorial 7 – Scilab Programming Language
	Tutorial 8 – Functions in Scilab
	Tutorial 9 – Miscellaneous Commands
	Appendix

