
Lab 3. OpenMP – parallel sorting and performance studies

Main goals of the assignment

• Learn about the differences between the efficiency and the improvement percentage using parallel version.

• Learn how to use a low number of processing elements in simulation of a large number of parallel tasks

The problem to solve

General overview

A parallel version of odd-even sorting that is efficient is requested.

Background

The odd-even sorting compares every 2 consecutive numbers in the array and swap them if first is greater than the second
to get an ascending order array. It consists of 2 phases – the odd phase and even phase:

Odd phase: Every odd indexed element is compared with the next even indexed element.

Even phase: Every even indexed element is compared with the next odd indexed element.

See the bellow figure for an example:

Figure 1: Example

How to parallelize

The maximum degree of parallelism is n/2. Usually the number of processing elements is lower than n/2. Then we need
to try an almost equal distribution of the coomparisons-exchanges on our cores. How we can do?

1



To do

1. Write the sequential code to implement odd-even sorting.

2. Write the OpenMP versions:

(a) group the n/2 comparisons-exchanges of one parallel step on the p threads;

(b) create a thread for each comparison-exchange (do not take into account the fact that we have p � n by using
n/2 the number of threads)

Introduce time records (hint: omp get wtime) before and after the part that is parallelized. Decide which version is
optimal using a very large sequence to be sorted (milions order).

3. Record the times T
(n)
p for the best variant in table like the folowing (with the maximum cores that you have, e.g. 8

or 16) – see the table

Table 1: Put inside the boxes the recorded times

n\p 1 2 4 8
100000
200000
400000

4. In order to compute the speedup we need to know the sorting time for the best sequential algorithm (quicksort!)
Compute the speedups using

S(n)(odd−even)
p =

T
(n)(quick−sort)
1

T
(n)(odd−even)
p

and record them in a similar table with the above one.

5. Draw conclusions related to:

• is the parallel version of odd-even effcient?

• dependence of the answer on the problem dimension n.

2


