
VIII. Communication costs, routing 
mechanism, mapping techniques, 
cost-performance tradeoffs

April 6th, 2009



Message Passing Costs 
Major overheads in the execution of parallel programs: 
from communication of information between 
processing elements. 
The cost of communication is dependent on a variety 
of features including:

programming model semantics, 
network topology, 
data handling and routing, and 
associated software protocols.

Time taken to communicate a message between two 
nodes in a network 
= time to prepare a message for transmission + time taken by the

message to traverse the network to its destination. 



Parameters that determine the communication latency

Startup time (ts): 
The startup time is the time required to handle a message at the sending and 
receiving nodes. 
Includes 
1. the time to prepare the message (adding header, trailer & error correction information), 
2. the time to execute the routing algorithm, and 
3. the time to establish an interface between the local node and the router. 
This delay is incurred only once for a single message transfer.

Per-hop time (th): 
After a message leaves a node, it takes a finite amount of time to reach the next 
node in its path. 
The time taken by the header of a message to travel between two directly-
connected nodes in the network 
It is also known as node latency. 
Is directly related to the latency within the routing switch for determining which 
output buffer or channel the message should be forwarded to.

Per-word transfer time (tw): 
If the channel bandwidth is r words per second, then each word takes time tw = 1/r 
to traverse the link. 
This time includes network as well as buffering overheads.



Store-and-Forward Routing
When a message is traversing a path with multiple links, each intermediate node 
on the path forwards the message to the next node after it has received and 
stored the entire message. 
Suppose that a message of size m is being transmitted through such a network. 
Assume that it traverses l links.
At each link, the message incurs a cost th for the header and twm for the rest of 
the message to traverse the link. 
Since there are l such links, the total time is (th + twm)l. 
Therefore, for store-and-forward routing, the total communication cost for a 
message of size m words to traverse l communication links is

In current parallel computers, the per-hop time th is quite small. 
For most parallel algorithms, it is less than twm even for small values of m and 
thus can be ignored. 
For parallel platforms using store-and-forward routing, the time given by the 
above equation can be simplified to



Packet Routing

Store-and-forward:  message is sent from one node to the next only 
after the entire message has been received
Consider the scenario in which the original message is broken into two 
equal sized parts before it is sent.

An intermediate node waits for only half of the original message to arrive 
before passing it on. 

A step further:  breaks the message into four parts. 
In addition to better utilization of communication resources, this 
principle offers other advantages:

lower overhead from packet loss (errors), 
possibility of packets taking different paths, and 
better error correction capability. 

This technique is the basis for long-haul communication networks such 
as the Internet, where error rates, number of hops, and variation in 
network state can be higher. 
The overhead here is that each packet must carry routing, error 
correction, and sequencing information.



Store-and-forward vs. packet routing

Passing a message from 
node P0 to P3 

(a) through a store-and-
forward communication 
network; 

(b) extending the concept to 
cut-through routing. 
The shaded regions 
represent the time that the 
message is in transit. 
The startup time 
associated with this 
message transfer is 
assumed to be zero.



Cost communication in packet routing
Consider the transfer of an m word message through the network. 
Assume:

routing tables are static over the time of mes. transfer - all packets traverse the same path
The time taken for programming the network interfaces & computing the routing info, is 
independent of the message length and is aggregated into the startup time ts
Size of a packet: r + s, r - original message, s - additional information carried in the packet
Time for packetizing the message is proportional to the length of the message: mtw1. 
The network is capable of communicating one word every tw2 seconds, 
Incurs a delay of th on each hop, and 
The first packet traverses l hops, 

Then the packet takes time thl + tw2(r + s) to reach the destination. 
The destination node receives an additional packet every tw2(r + s) seconds. 
Since there are m/r - 1 additional packets, the total communication time is given by:

Packet routing suited to networks with highly dynamic states & higher error rates, 
such as local- and wide-area networks. 
Individual packets may take different routes &retransmissions can be localized to lost packets.



Cut-Through Routing
Aim: to further reduce the overheads associated with packet switching. 

Forcing allpackets to take the same path, we can eliminate the overhead of 
transmitting routing information with each packet.
By forcing in-sequence delivery, sequencing information can be eliminated. 
By associating error information at message level rather than packet level, the 
overhead associated with error detection and correction can be reduced.
Since error rates in interconnection networks for parallel machines are extremely 
low, lean error detection mechanisms can be used instead of expensive error 
correction schemes.

Routing scheme resulting from these optimizations:cut-through routing. 
A message is broken into fixed size units called flow control digits or flits. 
Flits do not contain the overheads of packets => much smaller than packets. 
A tracer is sent from the source to the destination node to establish a connection. 
Once a connection has been established, the flits are sent one after the other. 
All flits follow the same path in a dovetailed fashion. 
Intermediate node does not wait for entire message to arrive before forwarding it. 
As soon as a flit is received at intermediate node, it is passed on to the next node.

No necessary a buffer at each intermediate node to store the entire message. 
=> cut-through routing uses less memory at intermediate nodes, and is faster.



Cost of cut-through routing
Assume:

the message traverses l links, and 
th is the per-hop time => the header of the message takes time lth to reach the destination. 
the message is m words long => the entire message arrives in time twm after the arrival of the 
header of the message. 

The total communication time for cut-through routing is

Improvement over store-and-forward routing 
If the communication is between nearest neighbors (that is, l = 1), or if the message 
size is small, then the communication time is similar for store-and- forward 
Most current parallel computers & many LANs support cut-through routing. 

The size of a flit is determined by a variety of network parameters. 
The control circuitry must operate at the flit rate. 
Select a very small flit size, for a given link bandwidth, the required flit rate becomes large. 
As flit sizes become large, internal buffer sizes increase (and the latency of message transfer) 
Flit sizes in recent cut-through interconnection networks range from four bits to 32 bytes. 

In many parallel programming paradigms that rely predominantly on short messages 
(such as cache lines), the latency of messages is critical. 
Routers are using multilane cut-through routing. 

In multilane cut-through routing, a single physical channel is split into a no.f virtual channels.



Deadlocks in cut-through routing 
While traversing the network, if a 
message needs to use a link that is 
currently in use, then the message is 
blocked. 

This may lead to deadlock. 
Fig. illustrates a deadlock in a cut-
through routing network. 

The destinations of messages 0, 1, 2, and 
3 are A, B, C, and D, respectively. 
A flit from message 0 occupies the link 
CB (and the associated buffers). 
Since link BA is occupied by a flit from 
message 3, the flit from message 0 is 
blocked. 
Similarly, the flit from message 3 is 
blocked since link AD is in use. 
No messages can progress in the network 
and the network is deadlocked. 

Can be avoided by using appropriate 
routing techniques & message buffers.



Reducing the Cost
The equation of cost of communicating a message between two nodes l hops away using
cut-through routing  implies that in order to optimize the cost of message transfers:

1. Communicate in bulk: 
instead of sending small messages and paying a startup cost ts for each, aggregate small 
messages into a single large message and amortize the startup latency across a larger message. 
Because on typical platforms such as clusters and message-passing machines, the value of ts is 
much larger than those of th or tw.

2. Minimize the volume of data. 
To minimize the overhead paid in terms of per-word transfer time tw, it is desirable to reduce the 
volume of data communicated as much as possible.

3. Minimize distance of data transfer.
Minimize the number of hops l that a message must traverse.

First 2 objs are relatively easy to achieve, 3 is difficult (unnecessary burden alg.designer)
In mess-pass lib. (e.g MPI), the programmer has little control on the mapping of processes onto 
physical processors. 

In such paradigms, while tasks might have well defined topologies and may communicate only among 
neighbors in the task topology, the mapping of processes to nodes might destroy this structure.

Many architectures rely on randomized (two-step) routing, 
A message is first sent to a random node from source and from this intermediate node to the destination. 
This alleviates hot-spots & contention on the network. 
Minimizing number of hops in a randomized routing network yields no benefits.

The per-hop time (th) is typically dominated either by the startup latency (ts)for small messages or 
by perword component (twm) for large messages. 

Since the max no. hops (l) in most networks is relatively small, the per-hop time can be ignored



Simplified cost model
Cost of transferring a message between two nodes on a network is given by:

It takes the same amount of time to communicate between any pair of nodes => 
it corresponds to a completely connected network. 
Instead of designing algs for each specific arch (a mesh, hypercube, or tree), 
we design algs with this cost model in mind & port it to any target parallel comp.
Loss of accuracy (or fidelity) of prediction when the alg is ported from our 
simplified model (for a completely connected netw) to an actual machine arch.

If our initial assumption that the th term is typically dominated by the ts or tw terms is 
valid, then the loss in accuracy should be minimal.

Valid only for uncongested networks. 
Architectures have varying thresholds for when they get congested; 
a linear array has a much lower threshold for congestion than a hypercube. 

Valid only as long as the communication pattern does not congest the network.
Different communication patterns congest a given network to different extents.



Effect of congestion on communication cost
Consider a sqrt(p)xsqrt(p) mesh in which each node is comm.with its nearest neighbor. 

Since no links in the network are used for more than one communication, the time for this operation 
is ts + twm, where m is the number of words communicated. 
This time is consistent with our simplified model.

Consider a scenario in which each node is communic. with a randomly selected node. 
This randomness implies that there are p/2 communications (or p/4 bi-directional communications) 
occurring across any equi-partition of the machine. 
A 2-D mesh has a bisection width of sqrt(p).
Some links would now have to carry at least sqrt(p)/4 mess.on bidirectional communic.channels
These messages must be serialized over the link. 
If each message is of size m, the time for this operation is at least ts+twm x sqrt(p)/4. 
This time is not in conformity with our simplified model.

⇒ For a given arch., some communic. patterns can be non-congesting & others congesting
⇒ This makes the task of modeling communic. costs dependent not just on the architecture, 

but also on the communication pattern. 
⇒ To address this, we introduce the notion of effective bandwidth.

For communication patterns that do not congest the network, is identical to the link bandwidth. 
For communication operations that congest the network,is the link bandwidth scaled down by the 
degree of congestion on the most congested link. 

Difficult to estimate: it is a fct.of process to node mapping, routing algorithms, & communic. schedule. 
Therefore, we use a lower bound on the message communication time: 
The associated link bandwidth is scaled down by a factor p/b, b is the bisection width of the network.



A Performance Model to Prove the Scalability of MPP

Goals of communication network of a MPP: 
provide a communication layer that is fast, well balanced with the no. 
& performance of processors, and homogeneous. 
should cause no degradation in communication speed even when al 
processors of the MPP simultaneously perform intensive data transfer 
operations. 
should also ensure the same speed of data transfer between any two 
processors of the MPP.

Case study: parallel matrix-matrix multiplication
C = A X B on a p-processor MPP, where A, B are dense square n x n 
matrices,
the matrix-matrix multiplication involves O(n3) operations.
the total execution time of the parallel algorithm is

where tproc characterizes the speed of a single processor.



Matrix-matrix multiplication with matrices evenly 
partitioned in one dimension

Assume that the time of transfer of a 
data block is a linear function of the size 
of the data block. 

the cost of transfer of a single horizontal 
slice between two processors is

where ts is the start-up time and te is the 
time per element.

Each proc sends its slice to p - 1 other 
procs as well as receives their slices

Assume that the proc can be 
simultaneously sending a single message 
& receiving another single message 
(double-port model). 
Pessimistic assumption that the processor 
sends its slice to other processors in p - 1 
sequential steps
The estimation of the per-processor 
communication cost is

…



Matrix-matrix multiplication with matrices evenly 
partitioned in one dimension

Assume that communications and computations do not overlap. 
All of the communications are performed in parallel, and then all of the 
computations are performed in parallel. 

The total execution time of the parallel algorithm is

Scalability: how to ensure faster execution of the alg on a (p + 1)-proc. 
configuration compared with the p-processor configuration (p = 1, 2, . . .)? 

The algorithm must ensure speedup at least while upgrading the MPP from a 
one-processor to a two-processor configuration. 

It means that 

Typically ts/tproc ~ 103 and te/tproc ~ 10. 
The following inequality will be comfortably satisfied if n > 100:  
The algorithm will be scalable, if ttotal is a monotonically decreasing function of p, 
that is, if

or

The inequality above will be true if n is reasonably larger than p.



2D decomposition of matrices instead of 1D

Total per-processor communication cost,

Total execution time of that parallel alg,

Considerably less than in the 1D alg
Further improvements can be made 

to achieve overlapping communications 
and computations 
better locality of computation during 
execution of the algorithm. 

2D alg is efficient and scalable for any 
reasonable task size and no. processors.
Conclusion: 

MPP scalable when executing carefully 
designed and highly efficient parallel algs. 



Communication Costs in Shared-Address-Space Machines

Difficulty reasons:
Memory layout is typically determined by the system. 
Finite cache sizes can result in cache thrashing. 
Overheads associated with invalidate and update operations are 
difficult to quantify.
Spatial locality is difficult to model. 
Prefetching can play a role in reducing the overhead associated 
with data access. 
False sharing is often an important overhead in many programs. 
Contention in shared accesses is often a major contributing 
overhead in shared address space machines.

Building these into a single cost model results in a model that is 
too cumbersome to design programs for and
too specific to individual machines to be generally applicable.

A simplified model presented above accounts primarily for remote
data access but does not model a variety of other overheads
(see the textbook)



Routing Mechanisms for Interconnection Networks
Critical to the performance of parallel computers. 
A routing mechanism

Det. the path a mess. takes through the netw to get from source to destination. 
It takes as input a message's source and destination nodes. 
It may also use information about the state of the network. 
It returns one or more paths through the netw from the source to the destination

Classification based on route selection: 
A minimal routing mechanism 

always selects one of the shortest paths between the source and the destination. 
each link brings a message closer to its destination, 
can lead to congestion in parts of the network.

A nonminimal routing scheme
may route the message along a longer path to avoid network congestion.

Classification on the basis on information regarding the state of the network:
A deterministic routing scheme 

determines a unique path for a message, based on its source and destination. 
It does not use any information regarding the state of the network.
may result in uneven use of the communication resources in a network. 

An adaptive routing scheme 
uses information regarding the current state of the netw to determine the path of the mes
detects congestion in the network and routes messages around it



Dimension-ordered routing

Commonly used deterministic minimal routing technique
Assigns successive channels for traversal by a message based on a 
numbering scheme determined by the dimension of the channel. 
For a two-dimensional mesh is called XYrouting
For a hypercube is called E-cube routing.
XY-routing:

Consider a two-dimensional mesh without wraparound connections. 
A message is sent first along the X dimension until it reaches the column of the 
destination node and then along the Y dimension until it reaches its destination. 
Let PSy,Sx represent the position of the source node and PDy,Dx represent that of 
the destination node. 
Any minimal routing scheme should return a path of length |Sx - Dx| + |Sy - Dy|.
Assume that Dx >= Sx and Dy >= Sy. 
The message is passed through intermediate nodes PSy,Sx+1, PSy,Sx+2, ..., PSy,Dx
along the X dimension and 
Then through nodes PSy+1,Dx, PSy+2,Dx, ..., PDy,Dx along the Y dimension to reach the 
destination. 



E-cube routing

Consider a d-dimensional hypercube of p nodes. 
Let Ps and Pd be the labels of the source and destination nodes
We know that the binary representations of these labels are d bits long. 
The minimum distance between these nodes is given by the number of ones in Ps o 
Pd , where o represents the bitwise exclusive-OR operation. 
Node Ps computes Ps o Pd and sends the message along dimension k, where k is 
the position of the least significant nonzero bit in Ps o Pd .
At each intermediate step, node Pi , which receives the message, computes Pi o Pd
and forwards the message along the dimension corresponding to the least significant 
nonzero bit. 
This process continues until the message reaches its destination.
Example – Fig.  

Let Ps = 010 and Pd = 111 represent the source and destination nodes for a message.
Node Ps computes 010 o 111 = 101. 
In the first step, Ps forwards the message along the dimension corresponding to the least 
significant bit to node 011. 
Node 011 sends the message along the dimension corresponding to the most significant bit 
(011 o 111 = 100). 
The message reaches node 111, which is the destination of the message.



Impact of process-processor mapping
Problem:

A programmer often does not have control 
over how logical processes are mapped to 
physical nodes in a network.

even communication patterns that are not 
inherently congesting may congest the netw. 

Example – fig.
(a) underlying architecture; 
(b) processes and their interactions; 
(c) an intuitive mapping of processes to nodes: 

a single link in the underlying architecture only 
carries data corresponding to a single 
communication channel between processes.

(d) a random mapping of processes to nodes: 
each link in the machine carries up to six 
channels of data between processes. 
considerably larger communication times if the 
required data rates on communication 
channels between processes is high



Mapping Techniques for Graphs
Given 2 graphs, G(V, E), G'(V', E'),  mapping graph G into graph G' maps 

each vertex in the set V onto a vertex (or a set of vertices) in set V' and 
each edge in the set E onto an edge (or a set of edges) in E'. 

3 parameters are important:
Congestion of the mapping: 

The maximum number of edges mapped onto any edge in E' 
it is possible that more than one edge in E is mapped onto a single edge in E'. 

Dilatation of the mapping:
The maximum number of links in E‘ that any edge in E is mapped onto

An edge in E may be mapped onto multiple contiguous edges in E'. 
This is significant because traffic on the corresponding communication link must 
traverse more than one link, possibly contributing to congestion on the network.  

Expansion of the mapping:
The ratio of the number of nodes in the set V' to that in set V is called the. 

Third, the sets V and V' may contain different numbers of vertices. In this case, a node
in V corresponds to more than one node in V'. 
The expansion of the mapping must be identical to the ratio of virtual&physical procs.



Embedding a Linear Array into a Hypercube
A linear array/ring composed of 2d nodes (0: 2d -1) 
can be embedded into a d-dim. hypercube by 
mapping node i onto node G(i, d)

G : the binary reflected Gray code (RGC).
The entry G(i, d) denotes the ith entry in the sequence of 
Gray codes of d bits. 
Gray codes of d + 1 bits are derived from Gray codes of 
d bits by reflecting the table & prefixing the reflected 
entries with a 1 & the original entries with a 0. 
Adjoining entries (G(i, d) and G(i + 1, d)) differ from each 
other at only one bit position. 

Node i in the linear array is mapped to node G(i, d), 
and node i + 1 is mapped to G(i + 1, d) => is a direct 
link in the hypercube that corresponds to each direct 
link in the linear array. 

Mapping specified by the function G has a dilation of 
one and a congestion of one. 

Figure (b) : the embedding of an eight-node ring into 
a three-dimensional hypercube.



Embedding a Mesh into a Hypercube
Natural extension of  embedding a ring into a 
hypercube. 

Embed a 2r x 2s wraparound mesh into a 2r+s -node 
hypercube by mapping node (i, j) of the mesh onto 
node G(i, r - 1)||G( j, s - 1) of the hypercube (where || 
denotes concatenation of the two Gray codes). 
Immediate neighbors in the mesh are mapped to 
hypercube nodes whose labels differ in exactly one bit 
position => mapping has a dilation of one and a 
congestion of one.

Example: a 2 x 4 mesh into an eight-node 
hypercube. 

Node (i, j) of the mesh is mapped to node G(i, 1)||G(j, 2) 
of the hypercube
Node (0, 0) of the mesh is mapped to node 000 of the 
hypercube, because G(0, 1) is 0 and G(0, 2) is 00; 
Node (0, 1) of the mesh is mapped to node 001 of the 
hypercube

Figure illustrates embedding meshes into 
hypercubes:
(a) a 4 x 4 mesh to the nodes in a four-dimensional 

hypercube; and 
(b) a 2 x 4 mesh embedded into a three-dimensional 

hypercube.



Embedding a Mesh into a Linear Array
An intuitive mapping of a linear array into a mesh is 
illustrated in Figure (a): 

the solid lines correspond to links in the linear array and 
normal lines to links in the mesh.
congestion-one, dilation-one mapping of a linear array to a 
mesh is possible.

Consider now the inverse of this mapping, 
given a mesh, map vertices of the mesh to those in a linear 
array using the inverse of the same mapping function-Fig. (b) 
solid lines correspond to edges in the linear array and 
normal lines to edges in the mesh. 
the congestion of the mapping in this case is five – i.e., no 
solid line carries more than five normal
In general: the congestion of this (inverse) mapping is 
sqrt(p)+1 for a general p-node mapping (one for each of the 
sqrt(p) edges to the next row, and one additional edge).

We can do better? 
Congestion of any mapping is lower bounded by sqrt(p) 

see textbook  - why 
In general: 

the lower bound on congestion of a mapping of network S 
with x links into network Q with y links is x/y. 
In the case of the mapping from a mesh to a linear array, this 
would be 2p/p, or 2.



Embedding a Hypercube into a 2-D Mesh
p-node hypercube into a p-node 2-D mesh, 
p is an even power of two. 
visualize the hypercube as sqrt(p) 
subcubes, each with sqrt(p) nodes.

let d = log p be the dim of the hypercube. 
take the d/2 least significant bits and use them 
to define individual subcubes of sqrt(p) nodes. 
For example, in the case of a 4D hypercube, 
we use the lower two bits to define the 
subcubes as (0000, 0001, 0011, 0010), (0100, 
0101, 0111, 0110), (1100, 1101, 1111, 1110), 
and (1000, 1001, 1011, 1010). 

The (row) mapping from a hypercube to a 
mesh can now be defined as follows: 

Each sqrt(p) node subcube is mapped to a 
sqrt(p) node row of the mesh. 
We do this by simply inverting the linear-array 
to hypercube mapping. 
The congestion: sqrt(p)/2 

Fig: p = 16 and p = 32 
Column mapping: 

We map the hypercube nodes into the mesh 
in such a way that nodes with identical d/2 
least significant bits in the hypercube are 
mapped to the same column. 
a congestion of sqrt(p)/2. 



Cost-Performance Tradeoffs
Remark: it is possible to map denser networks into sparser networks with 
associated congestion overheads. 

a sparser network whose link bandwidth is increased to compensate for the 
congestion can perform as well as the denser network (modulo dilation effects).
Example: a mesh whose links are faster by a factor of sqrt(p)/2 will yield comparable 
performance to a hypercube => call it fat-mesh. 

A fat-mesh has the same bisection-bandwidth as a hypercube; 
However it has a higher diameter. 
Using appropriate message routing technqs, the effect of node distance can be minimized. 

Analyzing the performance of a mesh & a hypercube netw with identical costs:
Cost of a network is proportional to the number of wires, 

a square p-node wraparound mesh with (log p)/4 wires per channel costs as much as a p-
node hypercube with one wire per channel. 

Average communication times of these two networks. 
See textbook

For p > 16 and sufficiently large message sizes, a mesh outperforms a hypercube of 
the same cost. 

For large enough messages, a mesh is always better than a hypercube of the same cost, 
provided the network is lightly loaded. 
Even when the network is heavily loaded, the performance of a mesh is similar to that of a 
hypercube of the same cost.


