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The problem
Interconnection nets provide basic 
mechanisms for communicating mess. 
In the case of shared-address-space 
computers additional hardware is required 
to keep multiple copies of data consistent 
with each other
If there exist two copies of the data (in 
different caches/memory elements), how 
do we ensure that different processors 
operate on these in a manner that follows 
predefined semantics?
Example: 

Two procs P0 & P1 are connected over a 
shared bus to a globally accessible mem. 
Both processors load the same variable.
There are now three copies of the variable
The coherence mechanism must now 
ensure that all operationsperformed on 
these copies are serializable



Protocols

Invalidate protocol (a)
invalidates the data item 
on the first update at a 
remote processor 
subsequent updates 
need not be performed 
on this copy.

Update protocol (b)
whenever a data item is 
written, all of its copies in 
the system are updated. 
If a processor simply 
reads a data item once 
and never uses it, 
subsequent updates to 
this item at other 
processors cause excess 
overhead in terms of 
latency at source and 
bandwidth on the 
network.



False sharing

Refers to the situation in which different processors update 
different parts of of the same cache-line. 

although the updates are not performed on shared variables, the 
system does not detect this. 

In an invalidate protocol
when a processor updates its part of the cache-line, the other 
copies of this line are invalidated. 
When other processors try to update their parts of the cache-line, 
the line must actually be fetched from the remote processor. 
False sharing can cause a cache-line to be ping-ponged between 
various processors. 

In an update protocol, 
this situation is slightly better: all reads can be performed locally 
and the writes must be updated.
This saves an invalidate operation that is otherwise wasted.



Three-state coherence protocol

States labeled invalid, dirty, and shared
Solid lines depict processor actions 
Dashed lines coherence actions. 
For example,

When a processor executes a read on 
an invalid block, 

the block is fetched and 
a transition is made from invalid to 
shared.

If a processor does a write on a shared 
block, 

the coherence protocol propagates a 
C_write (a coherence write) on the block. 
This triggers a transition from shared to 
invalid at all the other blocks.



Implementation of coherence protocols

can be carried out using a variety of 
hardware mechanisms:

snoopy systems, 
directory based systems, or 
combinations thereof.



Snoopy Cache Systems
Snoopy caches are typically associated with multiprocessor systems 
based on broadcast interconnection networks such as a bus or a ring.
All processors snoop on (monitor) the bus for transactions. 

This allows the processor to make state transitions for its cache-blocks.
Extensively studied and used in commercial systems.

1. If different procs operate on different data items, these can be cached. 
1. Once these items are tagged dirty, all subsequent operations can be 

performed locally on the cache without generating external traffic. 
2. If a data item is read by a no. processors, it transitions to the shared 

state in the cache and all subsequent read operations become local. 
In both cases, the coherence protocol does not add any overhead.
Disadvantages:

If multiple processors read and update the same data item, they 
generate coherence functions across processors. 
Since a shared bus has a finite bandwidth, only a constant number of 
such coherence operations can execute in unit time.



Directory based systems
the global memory is augmented with a directory that maintains a
bitmap representing cache-blocks and the processors at which they 
are cached. 

These bitmap entries are sometimes referred to as the presence bits. 
Only processors that hold a particular block (or are reading it)
participate in the state transitions due to coherence operations. 

Note that there may be other state transitions triggered by processor 
read, write, or flush (retiring a line from cache) but these transitions 
can be handled locally with the operation reflected in the presence 
bits and state in the directory.

If different processors operate on distinct data blocks, 
these blocks become dirty in the respective caches and 
all operations after the first one can be performed locally. 

If multiple processors read (but do not update) a single data block, 
the data block gets replicated in the caches in the shared state and
subsequent reads can happen without triggering any coherence 
overheads.



Distributed directory schemes
In scalable architectures, memory is physically distributed across processors. 
The corresponding presence bits of the blocks are also distributed. 
Each processor is responsible for maintaining the coherence of its own memory 
blocks.

Since each memory block has an owner its directory location is implicitly known to all 
processors. 
When a processor attempts to read a block for the first time, it requests the owner for the
block. 
The owner suitably directs this request based on presence and state information locally 
available. 
When a processor writes into a memory block, it propagates an invalidate to the owner, 
which in turn forwards the invalidate to all procs that have a cached copy of the block. 

Note that the communication overhead associated with state update messages is 
not reduced.
Distributed directories permit O(p) simultaneous coherence operations, provided 
the underlying network can sustain the associated state update messages. 

From this point of view, distributed directories are inherently more scalable than snoopy 
systems or centralized directory systems. 
The latency and bandwidth of the network become fundamental performance 
bottlenecks for such systems.



Interconnection networks



Interconnection networks

Provide mechanisms for data transfer between 
processing nodes or 
between processors and memory modules. 

A black-box view of an interconnection network consists of n inputs 
and m outputs. 

The outputs may or may not be distinct from the inputs. 
Typical interconnection networks are built using links & switches. 
Links:

A link corresponds to physical media such as a set of wires or fibers 
capable of carrying information. 
For links based on conducting media, the capacitive coupling 
between wires limits the speed of signal propagation. 
This capacitive coupling and attenuation of signal strength are 
functions of the length of the link.



Switch
An intercon. network consisting of two set of input and output ports.
Degree: total no. of ports on a switch 
Switches provide a range of functionality

Minimal functionality: a mapping from the input to the output ports.
Switches may also provide support for 

internal buffering (when the requested output port is busy), 
routing (to alleviate congestion on the network), and 
multicast (same output on multiple ports). 

The mapping provided using a variety of mechanisms based on 
physical crossbars, 
multi-ported memories, 
multiplexor-demultiplexors, and
multiplexed buses. 

The cost of a switch is influenced by the cost of 
the mapping hardware: grows as the square of the degree
the peripheral hardware: linearly as the degree
the packaging costs: linearly as the number of pins.



Network interface
Provides the connectivity between the nodes and the network
The network interface has input and output ports that pipe data into and 
out of the network
Responsibility of 

packetizing data, 
computing routing information, 
buffering incoming and outgoing data for matching speeds of network 
and processing elements 
error checking. 

Conventional network interfaces hang off the I/O buses
Interfaces in tightly coupled parallel machines hang off the memory bus

Since I/O buses are typically slower than memory buses => the latter can 
support higher bandwidth.



Static vs. dynamic networks
Static network

consist of point-to-point communication links among processing nodes  
are also referred to as direct networks.

Dynamic networks 
are built using switches and communication links. 
communication links are connected dynamically by the switches to
establish paths among processing nodes and memory banks. 
Are also referred to as indirect networks. 

Figure: 
(a) a simple static network of four processing elements or nodes. 

Each proc.node connected via a netw. interface to 2 nodes in a mesh config
(b) a dynamic netw.of 4 nodes connected via a netw.of switches to other 

nodes



Network Topologies: Bus-based Networks
A wide variety of network topologies have been used in 
interconnection networks.

These topologies try to trade off cost and scalability with 
performance

Simplest network: A bus-based network 
consisting of a shared medium that is common to all the nodes. 
Advantages: 

cost of the network scales linearly as the number of nodes, p. 
the distance between any two nodes in the network is constant
ideal for broadcasting information among nodes. 

Disadvantages:
the bounded bandwidth of a bus places limitations on the overall
performance of the network as the number of nodes increases. 
Typical bus based machines are limited to dozens of nodes. 

Sun Enterprise servers and Intel Pentium based shared-bus 
multiprocessors are examples of such architectures.



Bus-based interconnects, with caches
Typical programs: a majority of the data accessed is local to the node

For such programs, it is possible to provide a cache for each node.
Private data is cached at the node&only remote data is accessed through bus

Figure (a) : 
p processors sharing a bus to the memory. 
Assume that each processor accesses k data items, 
Assume each data access takes time tcycle, 
The execution time is lower bounded by tcycle x k p seconds. 

Figure (b): 
Assume 50% of the memory accesses (0.5k) are made to local data
Assume access time to the private mem identical to the global mem, tcycle. 
Total execution time is lower bounded by 0.5 x tcycle x k + 0.5 x tcycle x k p.
p large, the organization of Figure (b) results in a lower bound
This time is a 50% improvement in lower bound on execution time compared 
to the organization of Figure (a).



Crossbar Networks
A simple way to connect p processors 
to b memory banks 
Employs a grid of switches or 
switching nodes. 
Non-blocking network 

in the sense that the connection of a processing node to a memory 
bank does not block the connection of any other processing nodes to 
other memory banks.

Total number of switching nodes required to implement such a 
network is O(pb). 
Usualy b < p; otherwise, at any given time, there will be some 
processing nodes that will be unable to access any memory banks.

⇒ As the value of p is increased, the complexity (component count) of 
the switching network grows as O(p2). 
As the no.processing nodes becomes large, this switch complexity is 
difficult to realize at high data rates. 

⇒ crossbar networks are not very scalable in terms of cost.



Multistage netws

Remarks:
The crossbar interconnect.netw

scalable in terms of performance  
unscalable in terms of cost. 

The shared bus network is 
scalable in terms of cost 
unscalable in terms of performance. 

An intermediate class of networks (multistage interconnection 
netws) lies between these two extremes. 

More scalable than the bus in terms of performance and 
More scalable than the crossbar in terms of cost. 
The general schematic of a multistage network consisting of p 
processing nodes and b memory banks is shown



Omega network
A commonly used multistage connection network 
Consists of log p stages, where p is the number of 
inputs (processing nodes) and also the number of 
outputs (memory banks).
Each stage consists of an interconnection pattern that 
connects p inputs and p outputs
A link exists between input i and output j if the following 
is true:

This equation represents a left-rotation operation on the binary 
representation of i to obtain j. 
This interconnection pattern is called a perfect shuffle. 

At each stage of an omega network, a perfect shuffle 
interconnection pattern feeds into a set of p/2 switches



Perfect shuffle example and switch mode

Perfect shuffle for p=8 Each switch of Omega 
networks is in one mode. 

1. the inputs are sent straight 
through to the outputs -
pass-through connection.

2. the inputs to the switching 
node are crossed over and 
then sent out - cross-over 
connection.



Costs and routing in Omega netw

An omega network has p/2 x log p switching nodes, and the cost of 
such a network grows as O(p log p). 

this cost is less than the Θ(p2) cost of a complete crossbar network. 
Routing data in an omega network is accomplished  as follows: 

Let s be the binary representation of a processor that needs to write 
some data into memory bank t. 
The data traverses the link to the first switching node. 
If the most significant bits of s and t are the same, then the data is 
routed in pass-through mode by the switch. 
If these bits are different, the data is routed through in crossover mode.
This scheme is repeated at the next switching stage using the next 
most significant bit. 
Traversing log p stages uses all log p bits in the binary representations 
of s and t.



Examples

A complete omega network 
connecting 8 inputs and 8 
outputs.

Access to a memory bank by a 
processor may disallow access 
to another memory bank by 
another processor. 

Networks with this property are 
referred to as blocking networks

Example of blocking in omega 
netw: one of the messages 
(010 to 111 or 110 to 100) is 
blocked at link AB.



Completely- & Star – Connected Network
Completely-connected net:

each node has a direct 
communication link to every 
other node in the network. 
ideal in the sense that a node 
can send a message to 
another node in a single step
static counterparts of 
crossbar switching networks, 

the communication between 
any I/O pair does not block 
communication between any 
other pair.

Star-connected netw, 
one processor acts as 
the central processor. 
Every other proc. has a 
communication link 
connecting it to this proc. 
Similar to bus-based net

Communication between 
any pair of processors is 
routed through the 
central processor

Central processor: the 
bottleneck



Linear arrays
Due to the large number of links in completely 
connected networks, sparser networks are typically 
used to build parallel computers. 
A linear array is a static network in which each node 
(except the two nodes at the ends) has two neighbors, 
one each to its left and right. 
A simple extension of the linear array is the ring or a 
1- D torus : 

The ring has a wraparound connection between the 
extremities of the linear array. 
In this case, each node has two neighbors.



2D mesh, 2D tor and 3D mesh
A two-dimensional mesh:

is an extension of the linear array to two-dimensions. 
Each dimension has sqrt(p) nodes with a node identified by a two-tuple (i, j). 
Every node (except periphery) connected to 4 nodes (indices differ in any dim by 1) 
It can be laid out in 2-D space, making it attractive from a wiring standpoint. 
A variety of regularly structured computations map very naturally to a 2-D mesh. 

⇒ 2-D meshes were often used as interconnects in parallel machines. 
2D meshes can be augmented with wraparound links to form 2D tori (b). 
The three-dimensional cube 

Is a generalization of the 2-D mesh to three dimensions, as illustrated in (c). 
Each node element in a 3-D cube (exception on periphery), is connected to six other 
nodes, two along each of the three dimensions.
For example, in the Cray T3E 
A variety of physical simulations (for example, 3-D weather modeling, structural 
modeling, etc.) can be mapped naturally to 3-D network topologies. 

=> 3-D cubes are used commonly in interconnection networks for parallel computers



k-d mesh & hypercube
k-d mesh: topology consisting of d dimensions with k nodes along 
each dimension. 

d=1: linear case
d=2: mesh
d=3: 3D cube
k=2: hypercube 

Hypercube topology: two nodes along each dimension and log p 
dimensions. 
Construction:

A zero-dimensional hypercube consists of 20, i.e., one node. 
A one-dimensional hypercube is constructed from two zero-
dimensional hypercubes by connecting them. 
A two-dimensional hypercube of four nodes is constructed from two 
one-dimensional hypercubes by connecting corresponding nodes. 
In general a d-dimensional hypercube is constructed by connecting 
corresponding nodes of two (d - 1) dimensional hypercubes. 



Construction of hypercube and numbering scheme
Numbering scheme:

A numbering of two subcubes
of p/2 nodes => derive a 
numbering scheme for the 
cube of p nodes by prefixing 
the labels of one of the 
subcubes with "0" and the 
labels of the other with a "1". 

Useful property that the 
minimum distance between 
two nodes is given by the no. 
of bits that are different in the 
two labels. 

Example: nodes labeled 0110 
and 0101 are 2 links apart: 
they differ at two bit positions. 
Property useful for deriving a 
no. parallel algs for the 
hypercube architecture.



Tree-based networks

Tree n.: one in which there is only one path between any pair of nodes 
Linear arrays & star-connected net. are special cases of tree networks. 
Figure: networks based on complete binary trees. 
Static tree networks have a processing element at each node of the 
tree (in (a)). 
In a dynamic tree network, nodes at intermediate levels are switching 
nodes and the leaf nodes are processing elements (in (b)).
To route a message in a tree:

the source node sends the message up the tree until it reaches the 
node at the root of the smallest subtree containing both the source and 
destination nodes. 
Then the mess is routed down the tree towards the destination node



Fat tree
Tree networks suffer from a communication bottleneck 
at higher levels of the tree. 

For example, when many nodes in the left subtree of a node 
communicate with nodes in the right subtree, the root node 
must handle all the messages. 

This problem can be alleviated in dynamic tree networks 
by increasing the no. communication links and switching 
nodes closer to the root (fat tree)



Criteria in evaluating static interconnection networks

1. Diameter
2. Connectivity
3. Bisection width
4. Channel capacity
5. Bisection bandwidth
6. Cost



1. Diameter
The diameter of a network is the maximum distance 
between any two processing nodes in the network.
The distance between two processing nodes is 
defined as the shortest path (in terms of number of 
links) between them. 
Examples:

Completely-connected network is one, 
Star-connected network is two. 
Ring network is floor(p/2). 
Two-dimensional mesh without wraparound connections: 
2(sqrt(p)-1) 
Wraparound mesh is 2floor(sqrt(p)/2).
Hypercube-connected network is log p 
Complete binary tree is 2 log((p + 1)/2)



2. Connectivity

The connectivity of a network is a measure of the 
multiplicity of paths between any two processing nodes. 
A network with high connectivity is desirable, because it 
lowers contention for communication resources.
One measure of connectivity: 

The minimum no. of arcs that must be removed from the 
network to break it into two disconnected networks. 
This is called the arc connectivity of the network. 
Examples:

one for linear arrays, as well as tree and star networks. 
two for rings and 2-D meshes without wraparound, 
four for 2-D wraparound meshes, and 
d for d-dimensional hypercubes.



3. Bisection width

Defined as the minimum number of communication 
links that must be removed to partition the network 
into two equal halves. 
Examples:

ring is two, 
two-dimensional p-node mesh without wraparound 
connections is sqrt(p) and with wraparound connections is 
2sqrt(p).
tree and a star is one, 
completely-connected network of p nodes is p2/4. 
hypercube is p/2 (from its construction)



4. Channel width, rate & bandwidth

Channel width: 
Defines as the number of bits that can be communicated 
simultaneously over a link connecting two nodes 
Equal to the no. of physical wires in each communication link. 

Channel rate:
The peak rate at which a single physical wire can deliver bits. 

Channel bandwidth:
The peak rate at which data can be communicated between 
the ends of a communication link 
The product of channel rate and channel width.



5. Bisection bandwidth
defined as the minimum volume of communication 
allowed between any two halves of the network. 
the product of the bisection width and the channel 
bandwidth.
sometimes referred to as cross-section bandwidth.
can be used as a measure of cost 

it provides a lower bound on the area in a 2D packaging or the 
volume in a 3D packaging. 
If is w, the lower bound on the area

in a 2D packaging is Θ(w2), 
in a 3D packaging is Θ(w3/2). 



6. Cost

can be defined in terms of the no. of 
communication links or the no. of wires required 
by the network. 
Examples:

Linear arrays and trees use only p - 1 links to 
connect p nodes. 
A d-dimensional wraparound mesh has dp links. 
A hypercube-connected network has (p log p)/2 links.



A summary of static network topologies



Evaluating Dynamic Interconnection Networks
A no. of evaluation metrics for dynamic networks follow from the
corresponding metrics for static networks.
Since a message traversing a switch must pay an overhead, it is 
logical to think of each switch as a node in the network, in addition 
to the processing nodes. 

1. Diameter of the network 
can now be defined as the maximum distance between any two 
nodes in the network  (processing or switching) 

2. Connectivity of a dynamic network can be defined in terms of node 
or edge connectivity. 

The node connectivity is the min.no.nodes that must fail (be 
removed from the network) to fragment the network into two parts. 
We should consider only switching nodes (as opposed to all nodes). 
The arc connectivity of the network can be similarly defined as the 
minimum number of edges that must fail (be removed from the 
network) to fragment the network into two unreachable parts.



Evaluating Dynamic Interconnection Networks –
bisection width
We consider any possible 
partitioning of the p processing 
nodes into two equal parts. 

For each such partition, we select 
an induced partitioning of the 
switching nodes s.t. the no. edges 
crossing this partition is minimized. 

The min.no. of edges for any such 
partition is the bisection width of 
the dynamic network. 
Another intuitive way of thinking of 
bisection width: 

in terms of the min. no. edges that 
must be removed from the network 
so as to partition the network into 
two halves with identical no.of
processing nodes. 

Example: 
three bisections, A, B, and 
C, each of which partitions 
the network into 2 groups of 
2 processing nodes each. 
Each partition results in an 
edge cut of four. 

=> Conclude that the bisection 
width of this graph is four.



Cost of dynamic network topologies

Determined by the link cost & switch cost. 
Typical dynamic netws: the degree of a switch is const. 
The no.of links and switches is asymptotically identical. 
Switch cost exceeds link cost => the cost of dynamic 
networks is often determined by the number of 
switching nodes in the network.


