
VI. Implicit Parallelism - Instruction LevelVI. Implicit Parallelism Instruction Level
Parallelism. Pipeline Superscalar & Vector
PProcessors.

March 16th, 2009

Content

PipeliningPipelining
Vector Processors
Superscalar ProcessorsSuperscalar Processors
Programming issues

Traditional serial scalar von Neumann architecture
Provides single control flow with serially executed instructions
operating on scalar operands.
The processor has one instruction execution unit (IEU).
E ti f i t ti b l t t d ft ti f thExecution of an instruction can be only started after execution of the
previous instruction in the flow is terminated.
Except for a relatively small no. of special instructions for data transfer
between main memory and registers, the instructions take operandsbetween main memory and registers, the instructions take operands
from and put results to scalar registers

a scalar register is a register that holds a single integer or float no.
The total time of program execution is equal to the sum of execution
ti f th i t titimes of the instructions.
Performance of that architecture is determined by the clock rate.
All three components – processor, memory, and datapath – present
bottlenecks to the overall processing rate of a computer systembottlenecks to the overall processing rate of a computer system.

Architectural innovations over the years have addressed these
bottlenecks.
One of the most important innovations is multiplicity – in processing p p y p g
units, datapaths, and memory units.

Pipelining
By overlapping various stages in instruction execution (fetch, schedule,
decode, operand fetch, execute, store etc), enables faster execution.
The assembly line analogy works well for understanding pipelinesThe assembly-line analogy works well for understanding pipelines.

If the assembly of a car taking 100 time units can be broken into 10 pipelined
stages of 10 units each, the assembly line can produce a car every 10 time units!

Represents a 10-fold speedup over producing cars entirely serially, one after the other.
It is also evident from this example that to increase the speed of a single pipelineIt is also evident from this example that to increase the speed of a single pipeline,
one would break down the tasks into smaller and smaller units, thus lengthening
the pipeline and increasing overlap in execution.
In the context of processors, this enables faster clock rates since tasks are smaller.

Example: Pentium 4 operates at 2 0 GHz and has a 20 stage pipelineExample: Pentium 4 operates at 2.0 GHz and has a 20 stage pipeline.
On modern machines, essentially all operations are pipelined:

several hardware stages are needed to do any computation.
It is possible to do multiple operands concurrently: as soon as a low order digit for
one operand pair is computed by one stage that stage can be used to process theone operand pair is computed by one stage, that stage can be used to process the
same low order digit of the next operand pair.

This notion of pipelining operations was also not invented yesterday
the University of Manchester Atlas project implemented such arithmetic pipelines
as early as 1962as early as 1962.

Pipelining
The terminology is an analogy to a short length of pipe into which one starts
pushing marbles:

Imagine that the pipe will hold L marbles which will be symbolic for stagesImagine that the pipe will hold L marbles, which will be symbolic for stages
necessary to process each operand.
To do one complete operation on one operand pair takes L steps.
With multiple operands, we can keep pushing operands into the pipe until it is full,
after which one result (marble) pops out the other end at a rate of one result/cycle.after which one result (marble) pops out the other end at a rate of one result/cycle.
By this device, instead n operands taking L cycles each, that is, a total of n · L
cycles, only L + n cycles are required as long as the last operands can be flushed
from the pipeline once they have started into it.
The resulting speedup is n · L/(n + L), that is, L for large n.g p p () g

Speed of a pipeline is limited by the largest atomic task in the pipeline.
In typical instruction traces, every fifth to sixth instruction is a branch instr.

Long instruction pipelines therefore need effective techniques for predicting
branch destinations so that pipelines can be speculatively filledbranch destinations so that pipelines can be speculatively filled.
The penalty of a misprediction increases as the pipelines become deeper since a
larger number of instructions need to be flushed.
These factors place limitations on the depth of a processor pipeline and the
resulting performance gains.g p g

Vector Processor
Provides a single control flow with
serially executed instructions operating
on both vector and scalar operands.
Th ll li f thi hit t i tThe parallelism of this architecture is at
the instruction level.
Like the serial scalar processor:

it h l IEU d t b iit has only one IEU: does not begin
executing the next instruction until the
execution of the current one is
completed. co p eted

Unlike the serial scalar processor:
its instructions can operate both on
scalar operands and on vector

-implementations of this arch.:
ILLIAC-IV, STAR-100, Cyber-205,
Fujitsu VP 200, ATC, p

operands.
The vector operand:

is an ordered set of scalars that is

j , ,
-most elegant is the vector computer
Cray-1 in 1976.

-employs a data pipeline to
execute the vector instrucsgenerally located on a vector register. execute the vector instrucs.

Example – vector processor (1)
Multiplication of two vector operands,

Element-wise extensions of the corresponding scalar operation.
Operands from vector registers a and b and putting the result on p g p g
vector register c.
The instruction is executed by a pipelined unit able to multiply
scalars.
Th lti li ti f t l i titi d i t t dThe multiplication of two scalars is partitioned into m stages, and
the unit can simultaneously perform different stages for different
pairs of scalar elements of the vector operands.
The execution of vector instruction c = a x b, where a, b, and c e e ecut o o ecto st uct o c a b, e e a, b, a d c
are n-element vector registers, by the pipelined unit can be
summarized as follows:

1. first step, the unit performs stage 1 of the multiplication of
elements a1 and b1:elements a1 and b1:

Example – vector processor (2)
ith step (i = 2,…, m - 1), the unit performs in parallel:

stage 1 of the multiplication of elements ai and bi, g p
stage 2 of the multiplication of elements ai-1 and bi-1, …
stage i of the multiplication of elements a1 and b1,

Following steps:Following steps:

mth (m+j)th

(n+k-1)th (n+m-1)th()
(Final)

Example – vector processor (3)

In total, it takes n + m - 1 steps to execute this instruction.
The pipeline of the unit is fully loaded only from the mth to the nth
step of the execution.
Serial execution of n scalar multiplications with the same unit
would take n x m steps.
The speedup provided by vector instruction is S= n x m / (n+m-1)
If n is large enough, the speedup is approximately equal to the
length of the unit’s pipeline, S ≈ m.
Vector architectures are able to speed up such applications, a
significant part of whose computations falls into the basic

l t i tielement-wise operations on arrays.
Vector architecture includes the serial scalar architecture as a
particular case (n = 1, m = 1).

Superscalar execution

An obvious way to improve instruction execution rate beyond this
level is to use multiple pipelines.

During each clock cycle, multiple instructions are piped into the
processor in parallel.
Th i t ti t d lti l f ti l itThese instructions are executed on multiple functional units.

The ability of a processor to issue multiple instructions in the
same cycle is referred to as superscalar execution
E lExample:

Consider a processor with two pipelines and the ability to
simultaneously issue two instructions.
Th ti l f d tThese processors are sometimes also referred to as super-
pipelined processors.
Two issues per clock cycle => it is also referred to as two-way
superscalar or dual issue executionsuperscalar or dual issue execution.

Example

adding four numbers. g
The first and second
instructions are
independent and areindependent and are
issued concurrently:

load R1, @1000
load R2, @1008 at t=0

The schedule assumes
that each memory access y
takes a single cycle. In
reality, this may not be the
case.case

Superscalar issue: dependency between instructions
instructions in a program may be related to each otherinstructions in a program may be related to each other.
Data dependency:

The results of an instruction may be required for subsequent instructions.
The dependencies must be resolved before simultaneous issue of instrsThe dependencies must be resolved before simultaneous issue of instrs.

⇒ since the resolution is done at runtime, it must be supported in hardware.
⇒ the amount of instruction level parallelism in a program is often limited and is a

function of coding technique.g q
in many cases it is possible to extract more parallelism by reordering the
instructions and by altering the code

Resource dependency:
finite resources shared by various pipelines.
Example:

co-scheduling of two floating point operations on a dual issue machine with a single
floating point unitfloating point unit.
Instrs cannot be scheduled together since both need the floating point unit.

Branch dependency or procedural dependency:
Since the branch destination is known only at the point of execution, y p
scheduling instructions a priori across branches may lead to errors.

Microprocessors capabilities
The ability of a processor to detect and schedule concurrent instructions is critical
to superscalar performance.
From the example:

detect that it is possible to schedule the third instruction – load R2 @1008 – with thedetect that it is possible to schedule the third instruction load R2, @1008 with the
first instruction.

Most current microprocessors are capable of out-of order issue and completion
Model, referred as dynamic instruction issue, exploits maximum instr.level parallelism
Procs uses a window of instrs from which it selects instructions for simultaneous issueProcs.uses a window of instrs from which it selects instructions for simultaneous issue

This window corresponds to the look-ahead of the scheduler.
Current microprocs typically support up to four-issue superscalar execution
Due to:

limited parallelism,
resource dependencies, or
the inability of a processor to extract parallelism,

the resources of superscalar processors are heavily under-utilized. p p y
Parallelism extracted by superscalar procs is limited by instruction look-ahead.

The hardware logic for dynamic dependency analysis is typically in the range of 5-10%
of the total logic on conventional microprocessors

about 5% on the four-way superscalar Sun UltraSPARC.about 5% on the four way superscalar Sun UltraSPARC.
Complexity grows roughly quadratically with the no.issues & can become a bottleneck.

Superscalar arch. performance limited by
the available instruction level parallelism
I () 2 ti it (lti l dd it)In (c) 2 execution units (multiply-add units),
Illustrates several zero-issue cycles

cycles in which the floating point unit is idle).
These are essentially wasted cycles from the
point of view of the execution unitpoint of view of the execution unit.

If, during a particular cycle, no instructions
are issued on the execution units, it is
referred to as vertical waste
If only part of the execution units are usedIf only part of the execution units are used
during a cycle, it is termed horizontal waste.
In example, we have two cycles of vertical
waste and one cycle with horizontal waste.

In all, only 3 of the 8 available cycles are used
f ifor computation.

⇒ code fragment will yield no more than three-
eighths of the peak rated FLOP count of the
processor.

Superscalar Processor and scalar operands
The superscalar processor provides a
single control flow with instructions
operating on scalar operands and
being executed in parallel
The superscalar processor has several
instruction execution units executing
instructions in parallel.
Except for a small number of special
instructions for data transfer betweeninstructions for data transfer between
main memory and registers, the
instructions operate on scalar operands
located on the scalar registers.
CDC 6600 (1964) was the first ()
processor with several IEUs functioning
in parallel.
CDC 7600 (1969) was the first
processor with several pipelined IEUs
functioning in parallel

Two successive instructions can be executed
in parallel by two different IEUs if they do notfunctioning in parallel.

Nowadays practically all manufactured
microprocessors have many IEUs,
each of which is normally a pipelined
unit, and we can hardly imagine other

in parallel by two different IEUs if they do not
have conflicting operands, that is,
• if they do not write in the same register and
• neither instruction uses a register in which
the other writesunit, and we can hardly imagine other

microprocessor architectures.
the other writes.

Superscalar and pipelines
A dispatcher unit directing instructions to relevant IEUs based on
their type.
E h IEU i h t i d b th t f i t ti th t it tEach IEU is characterized by the set of instructions that it executes.
The entire set of instructions is divided into a number of
nonintersecting subsets each associated with some IEU.
Addi i ll h IEU b i li d iAdditionally each IEU can be a pipelined unit:

it can simultaneously execute several successive instructions, each
being on its stage of execution.

E lExample:
a pipelined unit executing a no. of successive independent instrucs.
Let the pipeline of the unit consist of m stages.
Let n successive instrucs I1,…, In, be performed by the unit.
Instruction Ik takes operands from registers ak, bk and puts the result
on register ck (k = 1,…, n).
L t t i t ti h fli ti dLet no two instructions have conflicting operands.

Example
At the first step, performs stage 1 of instruction I1:
At the ith step (i = 2,…, m - 1), the unit performs
in parallel stage 1 of instruction Ii, stage 2 of
i t ti Ii 1 t d t i f i t ti I1instruction Ii-1, etc., and stage i of instruction I1,

...
At the (n + m - 1)-th step, the unit only performs
the final stage m of instruction In; after completion g ; p
of this, register cn contains the result of
instruction In

It takes (n + m-1) steps to execute n instructionIt takes (n + m-1) steps to execute n instruction.
The pipeline of the unit is fully loaded only from the

mth to the nth step of the execution.
Strictly serial execution by the unit of n successive

instructions takes n x m stepsinstructions takes n x m steps.
The maximal speedup provided by this pipelined unit

is S= n x m / (n+m-1).
If n is large enough, the speedup SIEU ≈ m.g g

Very Long Instruction Word Processors
An alternate concept for exploiting instruction-level parallelismAn alternate concept for exploiting instruction-level parallelism
Relies on the compiler to resolve dependencies &resource availability at compile time

Instructions that can be executed concurrently
are packed into groups and
parceled off to the processor as a single long instruction word p p g g

to be executed on multiple functional units at the same time.
Additional parallel instructions are made available to the compiler to control parallel execution

First used in Multiflow Trace (1984) & subsequently as a variant in the Intel IA64 arch.
Advantages:

Scheduling is done in software
The decoding and instruction issue mechanisms are simple
The compiler

has a larger context from which to select instructions and
can use a variety of transformations to optimize parallelism when compared to a hardware issue unitcan use a variety of transformations to optimize parallelism when compared to a hardware issue unit.

Disadvantages:
compilers do not have the dynamic program state (e.g., the branch history buffer) available to
make scheduling decisions.

reduces the accuracy of branch and memory prediction
Other runtime situations such as stalls on data fetch because of cache misses are extremely
difficult to predict accurately.

limits the scope and performance of static compiler-based scheduling.
Performance is sensitive to the compilers' ability to detect data and resource dependencies
and read and write hazards, and to schedule instructions for maximum parallelism. , p

Limited to smaller scales of concurrency in the range of four- to eight-way parallelism.

Common view: Vector & Superscalar procs
Vector and superscalar archs. are united in a group for a no. reasons:

1. Successful vector archs are close to superscalar archs both ideologically and
in implementation.

t i li d it i i li d l f th l la vector pipelined unit is a specialized clone of the general-purpose superscalar
pipelined unit, which is optimized for pipelined execution of n successive
instructions performed as the same operation but on different operands.

optimization: the vector pipelined unit does not need a decoding stage and tuses a more
effective data pipeline instead of the instruction pipeline.p p p p

2. The design of some advanced superscalar processors, such as Intel i860, is
obviously influenced by the vector-pipelined architecture.

3. Share the same programming model
A good portable progr that can take full advantage of the performance potential ofA good portable progr. that can take full advantage of the performance potential of
superscalar procs is defined in the same way as for vector procs.

A good program for vector processors? It is the program’s use of a wide range of vector
instructions that implement basic operations on arrays.
A program intensively using basic ops on arrays is perfectly suitable for superscalar

i th t it ll hi h l l f tili ti f th i i li d itprocessors in that it allows a very-high level of utilization of their pipelined units.
Unlike vector procs, superscalar procs allow more sophisticated mixtures of
ops to efficiently load their pipelined units than just basic array ops

even if the superscalar arch looks richer than the vector arch, the real programming
model sed for s perscalar procs sho ld be the same as for ector procsmodel used for superscalar procs should be the same as for vector procs.

Loop unrolling – an programming example
The simple loopThe simple loop

for(i=0;i<n;i++){ b[i] = f(a[i]);}
is expanded into segments of length (say) m i’s.

for(i=0;i<n;i+=m){
b[i] f([i])b[i] = f(a[i]);
b[i+1] = f(a[i+1]);
…
b[i+m-1] = f(a[i+m-1]);
}

/* residual segment res = n mod m */
nms = n/m; res = n%m;
for(i=nms*m;i<nms*m+res;i++){(; ;){

b[i] = f(a[i]);
}

The first loop processes nms segments, each of which does m operations f(a[i]).
Our last loop cleans up the remaining (a residual segment).Our last loop cleans up the remaining (a residual segment).
Sometimes this residual segment is processed first, sometimes last (as shown) or for

data alignment reasons, part of the res first, the rest last.
We will refer to the instructions which process each f(a[i]) as a template.
Optimization: choose an appropriate depth of unrolling m which permits squeezing all theOptimization: choose an appropriate depth of unrolling m which permits squeezing all the

m templates together into the tightest time grouping possible.

Pre-fetching as stage of loop unrolling
Prefetching data within the segment which will be used by subsequent
segment elements in order to hide memory latencies.

to hide the time it takes to get the data from memory into registers.
Such data pre-fetching was called bottom loading in former times.

Pre-fetching in its simplest form is for m = 1 and takes the form
t = a[0]; /* prefetch a[0] */
for(i=0;i<n 1;){for(i=0;i<n-1;){

b[i] = f(t);
t = a[++i]; /* prefetch a[i+1] */

}
b[n-1] = f(t);

where one tries to hide the next load of a[i] under the loop overhead.

Loop nrolling p rpose hide latencies in partic lar the dela in readingLoop unrolling purpose: hide latencies, in particular, the delay in reading
data from memory

Unless the stored results will be needed in subsequent iterations of the loop
(a data dependency), these stores may always be hidden: their meanderings
into memory can go at least until all the loop iterations are finishedinto memory can go at least until all the loop iterations are finished.

Instruction Scheduling with Loop Unrolling
Consider the following operation to be performed on an array A: B = f(A), where
f(·) is in two steps: Bi = f2(f1(Ai)).
Each step of the calculation takes some time and there will be latencies in
between them where results are not yet availablebetween them where results are not yet available.
If we try to perform multiple is together, Bi = f(Ai) and Bi+1 = f(Ai+1),

the various operations: memory fetch, f1 and f2, might run concurrently,
we could set up two templates and try to align them.

By starting the f(Ai+1) operation steps one cycle after the f(Ai), the two templates can be
merged together.

Each calculation f(Ai) and f(Ai+1) takes some number (say m) of cycles.
If these two calculations ran sequentially, they would take twice what each one
requires that is 2 mrequires, that is, 2 · m.
By merging the two together and aligning them to fill in the gaps, they can be
computed in m + 1 cycles.

This will work only if:
th t ti i d d tl d tl1. the separate operations can run independently and concurrently,

2. if it is possible to align the templates to fill in some of the gaps, and
3. there are enough registers.

If there are only eight registers, alignment of two templates is all that seems possible at
compile timecompile time.

Data dependency

Look at the following loop in which f(x) is some arbitrary function,
for(i=m;i<n;i++){ x[i]=f(x[i-k]); }
x[i-k] must be computed before x[i] when k > 0

Counterexample:
for(i=m;i<n;i++){x[i]=f(x[i-k]);}
We or the compiler can unroll the loop in any way desiredWe or the compiler can unroll the loop in any way desired.
If n − m were divisible by 2, consider unrolling the loop above
with a dependency into groups of 2,
for(i=m;i<n;i+=2){for(i=m;i<n;i+=2){

x[i] =f(x[i-k]);
x[i+1]=f(x[i-k+1]);}

Branching and conditional execution

Example:
for(i=0;i<n;i++){

if(e(a[i])>0.0){
c[i]=f(a[i]);[] ([]);

} else {
c[i]=g(a[i]);

} }} }
Branch condition e(x) is usually simple but is likely to take a few
cycles.
The closest we can come to vectorizing this is to execute:The closest we can come to vectorizing this is to execute:

either both f and g and merge the results, or
alternatively, parts of both.

Memory hierarchy
Vector and superscalar processors have a two-level memory hierarchy:

1. Small and fast register memory.
2. Large and relatively slow main memory.

This memory hierarchy is reflected in instruction sets and directly visible to
the programmers.
A simple actual memory hierarchy includes the following levels:p y y g

1. Register memory
2. Cache memory
3. Main memory
4 Disk memory4. Disk memory

The situation when a data item being referenced is not in the cache is
called cache miss.

If the contribution of data transfer instructions into the total execution time of a
program is substantial a low no of cache misses will significantly accelerate theprogram is substantial, a low no. of cache misses will significantly accelerate the
execution of the program.
An obvious class of programs suitable for such optimization includes programs
intensively using basic operations on arrays.

Loop tiling
Specific optimization performed by optimizing C compilers in order to minimize the
number of cache misses
Example: Consider the following loop nest:
for(i=0; i<m; i++) /* loop 1 */() p

for(j=0; j<n; j++) /* loop 2 */
if(i==0) b[j]=a[i][j]; else b[j]+=a[i][j];

which computes the sum of rows of the m x n matrix a
Remarks:Remarks:

Data items accessed by reference b[j] are repeatedly used by successive iterations of loop 1.
If n of iterations of loop 2 is large enough, the data items may be flushed from the cache by the
moment of their repeated use.
To minimize the flushing of repeatedly used data items, no. iterations of loop 2 may decrease
To keep the total no.iterations of this loop nest unchanged, a controlling loop is introduced.

As a result the transformed loop nest looks as follows:
for(k=0; k<n; k+=T) /* additional controlling loop 0 */

for(i=0; i<m; i++) /* loop 1 */
for(j=k; j<min(k+T,n); j++) /* loop 2 */

if(i==0) b[j]=a[i][j]; else b[j]+a[i][j];
This transformation is called tiling, and T is the tile size.
Loop tiling improves temporal locality of nested loops by decreasing the no. iterations p g p p y p y g
between repeatedly used array elements.

