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Dataflow architectures
Aim: 

make the aspects of a parallel com. explicit at the machine level 
without artificial constraints limiting the available parallelism in the program 

The idea: 
The program is represented by a graph of essential data dependences

rather than as a fixed collection of explicitly sequenced threads of control. 
An instruction may execute whenever its data operands are available.
The graph may be spread arbitrarily over a collection of processors.
Each node specifies op.&address of each of the nodes that need the result

A processor in a dataflow machine operates a simple circular pipeline. 
A message (token), cons.of data&an address (tag) of its destination node. 
The tag is compared against those in a matching store. 

If present, the matching token is extracted & the instruction is issued for exec 
If not, the token is placed in the store to await its partner.

When a result is computed, a new message, or token, containing the result
d t i t t h f th d ti ti ifi d i th i t tidata is sent to each of the destinations specified in the instruction.



Dataflow architectures
The primary division is whether the graph isThe primary division is whether the graph is 

static, with each node representing a primitive operation, or
dynamic, in which case a node can represent the invocation of an 
arbitrary function, itself represented by a graph.arbitrary function, itself represented by a graph. 

In dynamic or tagged-token architectures, dynamically expanding the graph on 
function invocation is achieved by carrying context information in the tag

The key characteristic of dataflow architectures:
the ability to name operations performed anywhere in the machine, 
the support for synchronization of independent operations, and 
dynamic scheduling at the machine level.

The machine provides the ability to name a very large and dynamic set 
of threads which can be mapped arbitrarily to processors. 

Opposite - in data parallel archs, the compiler or sequencer maps a large set 
of “virtual procs” ops onto procs by assigning iterations of a regular loop nest. 

Typically, these machines provided a global address space 
Dataflow architectures experienced a gradual separation of programming 
model and hardware structure as the approach matured



Systolic Architectures
Replace a single sequential proc by a regular array of simple PEs andReplace a single sequential proc by a regular array of simple PEs and 
obtain very high throughput with modest memory bandwidth requirements
The early proposals were driven by the opportunity offered by VLSI to 
provide inexpensive special purpose chipsprovide inexpensive special purpose chips 
Differ from conventional pipelined function units:

the array structure can be non-linear, e.g. hexagonal, 
the pathways between PEs may be multidirectional, p y y ,
each PE may have a small amount of local instruction and data memory. 

Differ from SIMD in that each PE might do a different operation. 
Aspects in common with mes.passing, data parallel,&dataflow models, buAspects in common with mes.passing, data parallel,&dataflow models, bu
takes on a unique character for a specialized class of problems

Alg. represented as a collection of comp. units connected in a regular pattern. 
Data move at regular “heartbeats” as determined by local state.

Example: computation of an inner product:
at each beat the input data advances to the right, 
is multiplied by a local weight, and 
is accumulated into the output sequence as it also advances to the right. 



Systolic Architectures
Practical realizations of these ideas: 

iWarp: general programmability in the nodes, in order for a variety of 
algorithms to be realized on the same hardware. g

The network can be configured as a collection of dedicated channels, 
representing the systolic communication pattern,

data can be transferred directly from processor registers to processor 
registers across a channelregisters across a channel. 
the global knowledge of the communication pattern is exploited to reduce 
contention and even to avoid deadlock. 

The key characteristic of systolic architectures:The key characteristic of systolic architectures:
ability to integrate highly specialized computation under a simple, 
regular, and highly localized communication patterns.

Systolic algs: generally amenable to solutions on generic machines
regular, local communication pattern yield good locality
the communication bandwidth needed is low, and 
the synchronization requirements are simple. 
l h d ff ti th ti t f ll l hi⇒ algs have proved effective on the entire spectrum of parallel machines.



Circuit Model
Model the machine at the circuit level, so that all computational 
and signal propagation delays can be taken into account. 

is impossible for a complex supercomputer becauseis impossible for a complex supercomputer, because 
generating and debugging detailed circuit specifications are not much 
easier than a full-blown implementation 
a circuit simulator would take eons to run the simulation.

If the circuit is to be implemented on a dense VLSI chip wouldIf the circuit is to be implemented on a dense VLSI chip, would 
include the effect of wires, in terms of 

the chip area they consume (cost) and
the signal propagation delay between and within thethe signal propagation delay between and within the 
interconnected blocks (time). 

Note: in modern VLSI design wire delays and area are beginning to 
overshadow switching or gate delays and the area occupied by 
devices respectivelydevices, respectively.

E.g. For the hypercube architecture, interprocessor wire delays can 
dominate the intraprocessor delays, 
⇒ communication step time much larger than that of the mesh- and torus-

b d hit tbased architectures.



Circuit Model
Determine bounds on area and wire-length parameters based on 
network properties, 

without having to resort to specification & layout with VLSI design tools. 
Examples: 

in 2D VLSI implementation, the bisection width of a network yields a 
lower bound on its layout area in an asymptotic sense. 

bisection width is B => smallest dimension of the chip should be at least Bwbisection width is B > smallest dimension of the chip should be at least Bw, 
where w is the minimum wire width

In the case of 2D meshes, the area lower bound will be linear in the 
number p of processors. 

Such an architecture is said to be scalable in the VLSI layout senseSuch an architecture is said to be scalable in the VLSI layout sense. 
Hypercube: the area required is a quadratic function of p and the 
architecture is not scalable.

Power consumption of digital circuits is another limiting factor: p g g
Power dissipation in modern microprocessors 

grows ~ linearly with the product of die area & clock frequency (both rising) 
today stands at a few tens of watts in high-performance designs. 

Disposing of the heat generated by 1 M procs is a great challengeDisposing of the heat generated by 1 M procs is a great challenge.



Graph Models
A di t ib t d h h t i d i il b th t kA distributed-memory arch.: characterized primarily by the network
The network is usually represented as a graph

vertices corresponding to processor–memory nodes and 
edges corresponding to communication linksedges corresponding to communication links. 

If communication links are unidirectional, then directed edges are used. 
Undirected edges imply bidirectional communication

Parameters of an interconnection network includeParameters of an interconnection network include
1. Network diameter: 

the longest of the shortest paths between various pairs of nodes, 
should be relatively small if network latency is to be minimized. 

2. Bisection (band)width: 
smallest no. links need to be cut in order to : netw into 2 subnetws of 1/2 size. 
important when nodes communicate with each other in a random fashion 
a small value limits the rate of data transfer between the two halves of the netwa small value limits the rate of data transfer between the two halves of the netw

3. Vertex or node degree: 
No. communication ports required of each node,
Constant independent of network size if arch.is readily scalable to larger sizes. 
Influence the cost of each node 



Bulk-synchronous parallel (BSP) model -1990

attempts to hide the communication latency altogether through a 
specific parallel programming style 

thus making the network topology irrelevant
Synchronization of processors occurs once every L time steps, 
where L is a periodicity parameter. 
A parallel computation consists of a sequence of superstepsA parallel computation consists of a sequence of supersteps. 

In a given superstep, each processor performs a task consisting 
of local computation steps, message transmissions, and 
message receptions from other processors g
Data received in messages will not be used in the current 
superstep but rather beginning with the next superstep. 
After each period of L time units, a global check is made to see if 
the current superstep has been completedthe current superstep has been completed. 

If so, then the processors move on to executing the next superstep.
Otherwise, the next period of L time units is allocated to the 
unfinished superstep.



LogP model - 1996
The development of efficient parallel algorithms suffers from the proliferation 
of available interconnection networks:

for algorithm design must be done virtually from scratch for each new architecture.g g y
? abstract away the effects of the interconnection topology (as PRAM for global-
mem. mach.) in order to free the alg. designer from a lot of machine-specific details. 

Models that replace the topological information reflected in the interconnection 
graph with a small number of parameters do exist g p p

have been shown to capture the effect of interconnection topology fairly accurately.
An example of such abstract models: LogP model (1996). 
The model specifies the performance characteristics of the interconnection 
network but does not describe the structure of the networknetwork, but does not describe the structure of the network. 
The model has four basic parameters:
1. L: an upper bound on the latency, or delay, incurred in sending a message from its 

source processor to its target processor.
th h d l th f ti th t i d i th t i i2. o: the overhead: length of time that a processor is engaged in the transmission or 

reception of each message - during this time the proc.cannot perform other ops.
3. g: the gap between messages: the minimum time interval between consecutive 

message transmissions or consecutive message receptions at a processor. 
4 P: the number of processors4. P: the number of processors.



LogP model 
The processors communicate by point-to-point short messages.
Assumes a unit time for local operations and calls it a processor cycle. 
The parameters L o and g are measured as multiples of the processor cycleThe parameters L, o, and g are measured as multiples of the processor cycle.
It is assumed that the network has a finite capacity

at most L/g mess can be in transit from any processor or to any processor at any time.
If a processor attempts to transmit a message that would exceed this limit, it stalls unti
the message can be sent without exceeding the capacity limitthe message can be sent without exceeding the capacity limit.

The model is asynchronous:
processors work asynchronously, and the latency experienced by any message is 
unpredictable but is bounded above by L in the absence of stalls. 

B f i ti i l t th di t d t i t tBecause of variations in latency, the messages directed to a given target 
processor may not arrive in the same order as they are sent.
Parameters are not equally important in all situations; often it is possible to 
ignore one or more parameters and work with a simpler model. 

Algs. that communicate data infrequently: ignore the bandwidth and capacity limits. 
If messages are sent in long streams pipelined through the network (transmission time
is dominated by the inter-message gaps) the latency may be disregarded. 
In some MPPs the overhead dominates the gap, so g can be eliminated.



Example 1/LogP: optimal broadcasting a single data unit 
from one processor to P 1 othersfrom one processor to P - 1 others

Idea: all processors that have received the data unit transmit it as quickly as 
possible, while ensuring that no processor receives more than one message.
The source of the broadcast begins transmitting the data unit at time 0. 
The first data unit enters the network at time o, takes L cycles to arrive at the 
destination, and is received by the processor at time L + 2o. 
Meanwhile the source will initiate transmission to other procs at time g 2gMeanwhile the source will initiate transmission to other procs at time g, 2g,…, 
Assuming g ≥ o, each of which acts as the root of a smaller broadcast tree.
The optimal broadcast tree for p processors is unbalanced with the fan-out at 
each node determined by the relative values of L, o, and g. 
Figure : optimal broadcast tree for P = 8, L = 6, g = 4, and o = 2. 

No./node: time at which it has received the data unit and can begin sending it on. 
Proc. overhead of successive transmissions overlaps delivery of previous messages. 
Procs may experience idle cycles at the end of the algorithm while the last few y p y g
messages are in transit.



Ex. 2: sum of as many values as possible within  time T
Pattern of communication among the procs again forms a tree (~Ex 2)Pattern of communication among the procs again forms a tree (~Ex. 2). 
Each processor has the task of summing a set of the elements and then 
(except for the root processor) transmitting the result to its parent. 

Elements to be summed by a proc. consist of original inputs stored in its memory, 
together with partial results received from its children in the communication treetogether with partial results received from its children in the communication tree. 

1. Determine the optimal schedule of communication events; 
2. Determine the distribution of the initial inputs.

If T ≤ L + 2o, ,
the optimal solution is to sum T + 1 values on a single proc

Otherwise
the last step performed by the root processor (at time T - 1) is to add a value it has 
computed locally to a value it just received from another processor.computed locally to a value it just received from another processor. 
Remote proc must have sent the value at time T - 1 - L - 2o, and we assume 
recursively that it forms the root of an optimal summation tree with this time bound. 
… (see the textbook)

Fig: communication tree for optimal summing for T = 28 P = 8 L = 5 g =4 o= 2Fig: communication tree for optimal summing for T = 28,P = 8,L = 5,g =4,o= 2.



Message Passing ParadigmMessage-Passing Paradigm



Principles
Th di i f th ld t d t id l d h fThe paradigm is one of the oldest and most widely used approaches for 
programming parallel computers. 

its roots can be traced back in the early days of parallel proc. 
its wide-spread adopted

There are two key attributes that characterize the paradigm. 
1. Assumes a partitioned address space and 
2. It supports only explicit parallelization.
Each data element must belong to one of the partitions of the spaceEach data element must belong to one of the partitions of the space 

data must be explicitly partitioned and placed
encourages locality of access 

All interactions (read-only, read/write) require cooperation of 2 processes:
th th t h th d t d1. the process that has the data and 

2. the process that wants to access the data. 
Advantage of explicit two-way interactions:

the programmer is fully aware of all the costs of nonlocal interactions, and is p g y
more likely to think about algorithms (and mappings) that minimize interactions.
paradigm can be efficiently implemented on a wide variety of architectures.

Disadvantage:
For dynamic and/or unstructured interactions the complexity of the code writtenFor dynamic and/or unstructured interactions the complexity of the code written 
for this type of paradigm can be very high for this reason. 



Programming issues
Parallelism is coded explicitly by the programmer:

The programmer is responsible:
for analyzing the underlying serial algorithm/application and 
Identifying ways by which he/she can decompose the computations and extract concurrency. y g y y p p y

Programming using the paradigm tends to be hard and intellectually demanding.
Properly written message-passing programs can often achieve very high performance 
and scale to a very large number of processes.

Progs are written using the asynchronous or loosely synchronous paradigms.Progs are written using the asynchronous or loosely synchronous paradigms. 
In the asynchronous paradigm:

all concurrent tasks execute asynchronously. 
such programs can be harder to reason about & can have non-deterministic behavior

Loosely synchronous programs:Loosely synchronous programs: 
tasks or subsets of tasks synchronize to perform interactions.
between these interactions, tasks execute completely asynchronously. 
Since the interaction happens synchronously, it is still quite easy to reason about the program

Paradigm supports execution of a different program on each of the p processes. a ad g suppo ts e ecut o o a d e e t p og a o eac o t e p p ocesses
provides the ultimate flexibility in parallel programming, 
makes the job of writing parallel programs effectively unscalable. 

⇒ most programs are written using the single program multiple data (SPMD) approach. 
In SPMD programs the code executed by different processes is identical except for a small noIn SPMD programs the code executed by different processes is identical except for a small no
processes (e.g., the "root" process). 



Building Blocks: Send and Receive Operations
In their simplest form, the prototypes of these operations arep p yp p

send(void *sendbuf, int nelems, int dest)
receive(void *recvbuf, int nelems, int source)

The sendbuf points to a buffer that stores the data to be sent, 
recvbuf points to a buffer that stores the data to be receivedrecvbuf points to a buffer that stores the data to be received, 
nelems is the number of data units to be sent and received, 
dest is the identifier of the process that receives the data, and 
source is the identifier of the process that sends the data. 

Performance ramifications of how these functions are implemented. 
Example:

P0 P1
100 i (& 1 0)a = 100; receive(&a, 1, 0)

send(&a, 1, 1); printf("%d\n", a);
Most platforms have additional hardw support for send&recv. messages:

Asynchronous message transfer using network interface hardwareAsynchronous message transfer using network interface hardware. 
allow the transfer from buffer memory to desired location without CPU intervention. 

DMA (direct memory access) 
allows copying of data from one memory location to another without CPU support
If send returns before the communication operation has been accomplished P1If send returns before the communication operation has been accomplished, P1 
might receive the value 0 in a instead of 100!



Blocking Message Passing Operations
The sending operation blocks until it can guarantee that the semantics 
will not be violated on return irrespective of what happens in the 
program subsequently.
There are two mechanisms by which this can be achieved:There are two mechanisms by which this can be achieved:
1. Blocking Non-Buffered Send/Receive. 
2. Blocking Buffered Send/Receive.

1 Blocking Non-Buffered Send/Receive1. Blocking Non-Buffered Send/Receive 
The send operation does not return until the matching receive has 
been encountered at the receiving process. 
Then the message is sent and the send operation returns upon 

l ti f th i ti ticompletion of the communication operation. 
Involves a handshake between the sending and receiving processes. 

The sending process sends a request to communicate to the receiving process
When the receiving process encounters the target receive it responds to theWhen the receiving process encounters the target receive, it responds to the 
request. 
The sending process upon receiving this response initiates a transfer operation. 

Since there are no buffers used at either sending or receiving ends, 
this is also referred to as a non-buffered blocking operationthis is also referred to as a non-buffered blocking operation.



Idling Overheads in Blocking Non-Buffered Send/Recv

3 scenarios:
(a) the send is reached before the receive is posted, 
(b) the send and receive are posted around the same time(b) the send and receive are posted around the same time, 
(c) the receive is posted before the send is reached. 

In cases (a) and (c): there is considerable idling at the sending 
and receiving processand receiving process. 

⇒ A blocking non-buffered protocol is suitable when the send and 
receive are posted at roughly the same time. 

In an asynchronous environment this may be impossible to predictIn an asynchronous environment, this may be impossible to predict. 



Deadlocks in Blocking Non-Buffered Send/Recv

Consider the following simple exchange of messages that can 
lead to a deadlocklead to a deadlock:

P0 P1
send(&a, 1, 1); send(&a, 1, 0);
receive(&b 1 1); receive(&b 1 0);receive(&b, 1, 1); receive(&b, 1, 0);

The send at P0 waits for the matching receive at P1 
The send at process P1 waits for the corresponding receive at 
P0 resulting in an infinite waitP0, resulting in an infinite wait.
Deadlocks are very easy in blocking protocols and care must be 
taken to break cyclic waits of the nature outlined. 
In the above example, this can be corrected by replacing the p y p g
operation sequence of one of the processes by a receive and a 
send as opposed to the other way around. 
This often makes the code more cumbersome and buggy.



Blocking Buffered Send/Receive
The sender 

has a buffer preallocated for communicating messages. 
copies the data into the designated buffercopies the data into the designated buffer 
returns after the copy operation has been completed. 
continue with the program knowing that any changes to the data will 
not impact program semantics.

The actual communication can be accomplished in many ways 
depending on the available hardware resources. 

If the hardware supports asynchronous comm. (independent of the 
CPU) then a network transfer can be initiated after the mess hasCPU), then a network transfer can be initiated after the mess. has 
been copied into the buffer.

Receiving end: 
the data is copied into a buffer at the receiver as well. 
When the receiving process encounters a receive operation, it checks 
to see if the message is available in its receive buffer. 
If so, the data is copied into the target location. 



Blocking Buffered Send/Receive
(a) in the presence of communication hardware with buffers at send&receive ends; 
(b) in the absence of communication hardware:

• sender interrupts receiver and deposits data in buffer at receiver end.p p
• both processes participate in a communication operation and the message is 
deposited in a buffer at the receiver end. 
• When the receiver eventually encounters a receive operation, the message is 
copied from the buffer into the target locationcopied from the buffer into the target location. 



Impact of finite buffers in message passing
Consider the following code fragment:

P0 P1
for (i = 0; i < 1000; i++) { for (i = 0; i < 1000; i++) {

produce data(&a); receive(&a 1 0);produce_data(&a); receive(&a, 1, 0);
send(&a, 1, 1); } consume_data(&a); }

If proc. P1 was slow getting to this loop, proc. P0 might have sent all of its data
If there is enough buffer space, then both processes can proceed;If there is enough buffer space, then both processes can proceed; 
However, if the buffer is not sufficient (i.e., buffer overflow), the sender would h
to be blocked until some of the corresponding receive operations had been 
posted, thus freeing up buffer space. 
This can often lead to unforeseen overheads and performance degradationThis can often lead to unforeseen overheads and performance degradation. 
It is a good idea to write programs that have bounded buffer requirements.
A simple code fragment such as the following deadlocks since both processes 
wait to receive data but nobody sends it.

P0 P1
receive(&a, 1, 1); receive(&a, 1, 0);
send(&b, 1, 1); send(&b, 1, 0);

Deadlocks are caused only by waits on receiveoperations in this caseDeadlocks are caused only by waits on receiveoperations in this case.



Non-Blocking Message Passing Operations

Often possible to require the programmer to ensure semantic correctness & 
provide a fast send/receive op. that incurs little overhead. 
R t f th d/ i b f it i ti ll f t dReturns from the send/receive op. before it is semantically safe to do so. 
The user must be careful not to alter data that may be potentially participating 
in a communication operation. 
Non-blocking ops are accompanied by a check-status op. indicating whether g p p y p g
the semantics of initiated transfer may be violated or not. 
Upon return from a non-blocking send/recv op., the process is free to perform 
any comp. that does not depend upon the completion of the op.. 
Later in the program the process can check whether or not the non-blockingLater in the program, the process can check whether or not the non blocking 
op. has completed, and, if necessary, wait for its completion
Non-blocking operations can be buffered or non-buffered. 

In the nonbuffered case: 
a process wishing to send data to another simply posts a pending message and returns toa process wishing to send data to another simply posts a pending message and returns to 
the user program. The program can then do other useful work. 
When the corresponding receive is posted, the communication operation is initiated. 
When this operation is completed, the check-status op. nindicates that it is safe for the 
programmer to touch this data



Space of possible protocols

Non-blocking non-buffered send & recv ops
(a) in absence of communication hardware;
(b) in presence of communication hardware.



Levels of parallelismLevels of parallelism
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parallelism 
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computer 
programp g



Levels of 
parallelism 
combined withcombined with 
the basic 
parallel 
processorprocessor 
configurations



Parallelism levels
1. Microparallelization 

takes place inside a single processor 
does not require the intervention of the programmer to implement. 

2. Medium-grain parallelization 
associated with language supported or loop level parallelization. 
While some headway has been made in automating this level of 
parallelization with optimizing compilers, the results of these attempts 
are only moderately satisfactory. 

3. Coarse-grain parallelization 
associated with distributed memory parallel computers 
is almost exclusively introduced by the programmer. 

4. Grid-level parallelization
currently the focus of intensive research 
very promising model for solving large problems, 
its applicability is limited to certain classes of computational probls, 
belonging to the “large-scale embarrassingly parallel” category.



Microparallelism
Modern day desktop processors such as those developed by Intel, 
AMD, IBM, etc., are already highly parallelized. 

Such processors have multiple pipelines for integer and floating-point 
operations, so two different levels of parallelization can be considered: 

1. First, the depth of the pipeline: 
if a pipeline of depth k is used then k operations can be executed at the 
same timesame time. 

2. Second, number of pipelines: 
assuming that there are l integer pipelines of depth k1 and m floating-point 
pipelines of depth k2 in a given processor, and that all pipelines arepipelines of depth k2 in a given processor, and that all pipelines are 
operating at maximum capacity at a given moment, then k1 × l + k2 × m 
operations are executed by the processor concurrently in every cycle.

Availability of this level of parallelism is a function of dependencies 
i id t f hi l tiinside a stream of machine language operations. 

These dependencies are analyzed and microparallelism is supported: 
1. by the logic unit inside of the processor on the hardware level and 
2. by the compiler& compiler supplied optimization on the software level. 



Medium-grain Parallelism
Suppose multiple processors are connected to a global (logically and 
physically) shared memory, the typical way of introducing 
parallelization is to perform similar operations on subsets of data. 
Natural algorithmic level of achieving such parallelization: divide 
between multiple processors work performed by a loop. 

A given loop is divided into as many parts as there are processors 
Assume that the number of parts equals the number of processors
Each part is executed independently by a separate processor.

Supported either through a set of special directives or through high-
level language extensions.
Compilers capable of automatically generating this level of par.

The results have been disappointing thus far. 
Parallelizing compilers are relatively successful in generating par.code 
with simple loops, addition of two vectors, matrix multiplication, etc. 
In more complicated cases, i.e., when functions are called inside of 
l th d t till b ll di id d i t ll l itloops, the code must still be manually divided into parallel units.



Coarse-level parallelism
Typical approach to distributed memory parallelization is to create 
independent programming units that will execute separate work 
units communicating with each other via message passing 
Minimizing the number of messages passed between components 
becomes an important goal of program design. 
One must seek to divide a distributed parallel program into large 

t ti l it th t i d d t f h thcomputational units that are as independent from each other as 
possible and only rarely communicate. 

Most often each work unit is a derivative of the main program and 
performs the same subset of operations as the other work units butperforms the same subset of operations as the other work units but 
on separate data sets. 

This type of an approach is called SPMD (single program, multiple 
data) and often referred to as coarse level parallelization.)

This level of parallelization must be implemented manually by the 
programmer as the division of work is based on a semantic 
analysis of the algs used to solve the problem 
One of the more important problems: load balancing.



Coarse-level parallelism
Since each computational unit is relatively independent it may require 
different time to complete its work. 

This may in turn lead to a situation when all processors but oneThis may, in turn, lead to a situation when all processors but one 
remain idle as they wait for the last one to complete its job. 
Work units should be large and independent & should also complete 
their tasks within a similar time => SPMD approach somewhat more 
attractive than the division of work into completely independent unitsattractive than the division of work into completely independent units.

Make the software “match” the underlying hardware.
treat a shared memory machine as a distributed memory computer and 
apply approaches based on message passing.apply approaches based on message passing.
treat a distributed memory computer as a shared memory system 
(approach impractical)
hybrid hardware, where shared memory nodes have been combined 
into a distributed memory configuration which results in a distributedinto a distributed memory configuration, which results in a distributed 
shared memory computer. 

Treating such a machine as a distributed memory computer and applying 
appropriate parallelization techniques is usually more successful than 
treating it as a shared memory environmenttreating it as a shared memory environment. 



Grid Parallelism

A no. computers, irrespective of their individual 
architectures are loosely connected via a networkarchitectures are loosely connected via a network. 
In the most general case, each machine and 
connections between them is assumed to be different. 

E t l h t tExtremely heterogeneous system, 
Requires the coarsest level of parallelization:

the work must be divided into independent units that can be 
completed on different computers at different speed and returnedcompleted on different computers at different speed and returned 
to the main solution coordinator at any time and in any order, 
without compromising the integrity of the solution. 

Examples of successfully tested tasks: p y
analysis of very large sets of independent data blocks, in which 
the problem lies in the total size of data to be analyzed 

such as in the SETI@home project


