
III. Architecture - Logical and
physical organization

March 6th, 2009

Content

Logical organization
Flynn taxonomy
SIMD and MIMD
Communication

shared data space
exchanging messages

Physical organization
Historical context
Shared memory versus distributed memory

Why? How?

There are dozens of different parallel architectures, among them:
networks of workstations (NoW),
clusters of off-the shelf PCs,
massively parallel supercomputers,
tightly coupled symmetric multiprocessors,
multiprocessor workstations

Etc
Some architectures provide better performance than others.

The notion of performance of a parallel system is quite theoretical
since it also depends on the kind of application which is used on it.

Logical organization refers to a programmer's view of the platform
Physical organization refers to the actual hardware organization of
the platform.

Logical organization
Parallel computers can be divided into two main categories:
1. Control-flow parallel computers (focus exclusively on this ones!!!)

based on the same principles as the sequential or von Neumann computer,
multiple instructions can be executed at any given time.

2. Data-flow parallel computers,
sometimes referred to as “non-von Neumann,”
completely different: no pointer to active instruction(s) or a locus of control.
control is distributed: availability of operands triggers the activation of instructs.

Critical components of parallel comp.from a programmer's perspective:
1. ways of expressing parallel tasks - referred to as the control structure
2. mechanisms for specifying interact.betw.tasks-communication model
Parallel tasks can be specified at various levels of granularity:
1. One extreme, each progr.in a set of progs is viewed as 1 parallel task.
2. Other extreme, individual instrs within a progr.are viewed as par. tasks.
3. Between these extremes: a range of models for specifying the control

structure of progrs& the corresponding architectural support for them.

Flynn’s taxonomy

Control Structure of Parallel Platforms

M. J. Flynn (1972) introduced a system for the categorisation of the
system architectures of computers

It is still valid today and cited in every book about parallel computing.
It is far the most common way to characterize parallel syst. archs.

Categorizes all computers according to the
no. of instruction streams and data streams they have,
where a stream is a sequence of instructions or data on which a
computer operates.

4 classes of computers based on the no. of
instruction streams (single or multiple) and
data streams (single or multiple)

⇒ abbreviations SISD, SIMD, MISD, and MIMD (pronounced “sis-dee,”
“simdee,” and so forth)

This classification is based upon the relationship between the
instructions and the manipulated data.
⇒ it is quite general and does not reflect all the aspects of parallel syst.

Single Instruction, Single Data (SISD)

One stream of instructions processes a
single stream of data
This is the common von Neumann
model used in virtually all single
processor computers.
The most simple type of computer
performs one instruction per cycle

such as reading from memory,
addition of two values
only one set of data or operand

Such a system is called a scalar
computer.
Example: Adding two values in 5 steps
=> adding n values in 5n steps

SISD and pipelines
In reality each of the steps is actually
composed of several sub-steps,
increasing the no. cycles required for one
summation even more.
The solution to this inefficient use of
processing power is pipelining:

If there is one functional unit available for
each of the five steps required, the
addition still requires five cycles.
The advantage is that with all functional
units being busy at the same time, one
result is produced every cycle.

For the summation of n pairs of numbers,
only (n−1)+5 cycles are then required.
Fig. shows the summation in a pipeline.

Summation of n values

SISD and superscalar
As the execution of instructions usually takes more than five steps,
pipelines are made longer in real processors.
Long pipelines generate a new problem:

If there is a branching event (if -statement),
the pipeline has to be emptied and filled again
there is a no. cycles eq. to the pipeline length until results are again delivered.

Compilers and CPUs also try to minimize this problem by “guessing” the
outcome (branch prediction).

The power of a proc. can be increased by combining several pipelines.
This is then called a superscalar processor.
Fixed-point and logical calculations (performed in ALU - Arithmetic/
Logical Unit) are usually separated from floating-point math (done by FPU
– Floating Point Unit).
The FPU is commonly subdivided in a unit for + and one for x.
These units may be present several times, & some procs have additional
functional units for / & the computation of square roots.
To actually gain a benefit from having several pipelines, these have to be
used at the same time (“pipeline of pipes”)

Multiple Instruction, Single Data (MISD)
No well known systs fit this designation.
Such a computer is neither theoretically nor practically possible
It is mentioned for the sake of completeness.
Some authors are viewing MISD as generalized pipelines in which each
stage performs a relatively complex operation

as opposed to ordinary pipelines found in modern processors where each
stage does a very simple instruction-level operation.
a single data stream enters the machine consisting of p processors
various transformations are performed on each data item before it is
passed on to the next processor(s).
Successive data items can go through different transformations

data-dependent conditional statements in the instruction streams (control-driven)
special control tags carried along with the data (data-driven).

The MISD organization can thus be viewed as a flexible or high-level
pipeline with multiple paths and programmable stages.

The key difference between the above pipeline and a MISD architecture is that the
floating-point pipeline stages are not programmable.

Single Instruction, Multiple Data (SIMD)

A single instruction stream is concurrently broadcast to multiple
processors, each with its own data stream.
Commercial systems: Thinking Machines, MasPar, CPP DAP
Gamma II, Quadrics Apemille
Typically deployed in specialized applications, such as digital
signal processing, that are suited to fine grained parallelism and
require little inter process communication.
Vector processors, which operate on vector data in a pipelined
fashion, can also be categorized as SIMD.
Exploiting this parallelism is usually done by the compiler.

Multiple Instruction, Multiple Data (MIMD)
Each PE has its own stream of instructions operating on its own data.
Is the most general of the architectures: each of the other cases can
be mapped onto the MIMD architecture.
The vast majority of modern parallel systems fit into this category.
On a MIMD computer each of the parallel processing units executes
operations independently of each other, subject to synchronization
through appropriate message passing at specified time intervals.
Both parallel data distribution as well as the message passing and
synchronization are under user control.
Ex: Intel Gamma, Delta Touchstone, Cray C-90, IBM SP2 (1990s).

SIMD case: Vector computer
A computer that performs one instruction on several data sets is called a
vector computer.
Vector computers work just like the pipelined scalar computer
The difference is that instead of processing single values, vectors of data are
processed in one cycle.
The number of values in a vector is limited by the CPU design.

A vector processor than can simultaneously work with 64 vector elements can also
generate 64 results per cycle

To actually use the theoretically possible performance of a vector computer,
the calculations themselves need to be vectorized.
Example:

Consider the following code segment that adds 2 vectors:
for (i = 0; i < 1000; i++) c[i] = a[i] + b[i];
Various iterations of the loop are independent of each other; i.e., c[0] = a[0] + b[0];
c[1] = a[1] + b[1];, etc., can all be executed independently of each other.
If there is a mechanism for executing the same instruction, in this case add on all
the processors with appropriate data, we could execute this loop much faster.

SIMD and MIMD

Vectorisation is not dead

In practice:
Vector computers used to be very common in the field of HPC, as
they allowed very high performance even at lower CPU clock
speeds.
They have begun to slowly disappear.

Vector processors are very complex and thus expensive, and
perform poorly with non-vectorisable problems.
Today’s scalar processors are much cheaper and achieve higher
CPU clock speeds.

With the Pentium III, Intel introduced SSE (Streaming SIMD
Extensions), which is a set of vector instructions.

In certain applications, such as video encoding, the use of these
vector instructions can offer quite impressive performance
increases.
More vector instructions were added with SSE2 (Pentium 4) and
SSE3 (Pentium 4 Prescott).

SIMD and the control unit
A single control unit dispatches instructions to each processing unit.
The same instruction is executed synchronously by all processing units.
Examples of systems:

Old: Illiac IV, MPP, DAP, CM-2, and MasPar MP-1 Thinking Machines
CM-2 or the NCUBE Inc. computers of the 1980s
Modern: MMX units in Intel processors and DSP chips such as the
Sharc, Intel Pentium processor with SSE
Each processor performs the same arithmetic operation (or stays idle)
during each computer clock, as controlled by a central control unit.

High-level languages are used, and computation and communication
among processors are synchronized implicitly at every clock period.
These architectural enhancements rely on the highly structured
(regular) nature of the underlying computations, for example in image
processing and graphics, to deliver improved performance.

SIMD and array processors
If SIMD’s processors are directed by instructions issued from a central
control unit, are characterized as array processors.

A relatively large number of relatively weak processors, each associated
with a relatively small memory.
Processors are combined into a matrix-like topology, hence the popular
name of this category - processor arrays.
Program compilation&array processing manag.takes place in control unit.
Each processor performs operations on separate data streams;
All processors may perform the same operation, or some of them may
skip a given operation or a sequence of operations.

Vendors were ICL, MasPar and Thinking Machines.
Currently, SIMDs are no longer produced for the mainstream of par.com
Advantage: the processors work synchronously, which enables relatively
easy program tracing and debugging.
Disadvantages:

Relatively difficult to use them for unstructured problems

SIMD is a data parallel architecture

The key characteristic of the programming model is that
operations can be performed in parallel on each element of a
large regular data structure, such as an array or matrix.
The program is logically a single thread of control, carrying out a
sequence of either sequential or parallel steps.

While the SIMD concept works well for structured computations
on parallel data structures such as arrays, often it is necessary to
selectively turn off operations on certain data items.

Most SIMD programming paradigms allow for an "activity mask".
This is a binary mask associated with each data item and operation
that specifies whether it should participate in the operation or not.
Conditional execution can be detrimental to the performance of SIMD
processors and therefore must be used with care.

Conditional statements in SIMD

The conditional statement
in Fig. is executed in two
steps:

1. In the first step, all
processors that have B
equal to zero execute the
instruction C =A. All other
processors are idle.

2. In the second step, the
'else' part of the instruction
(C =A/B) is executed. The
processors that were active
in the first step now
become idle.
Not highly efficient!

SIMD design choices: Synchronous vs. asynchronous

Each processor can execute or ignore the instruction being broadcast
based on its local state or data-dependent conditions.

This leads to some inefficiency in executing conditional computations.
For example: an “if-then-else” statement is executed by first enabling
the processors for which the condition is satisfied and then flipping
the “enable” bit before getting into the “else” part.

On the average, half of the processors will be idle for each branch.
Even worse for “case” statements involving multiway branches.
A possible cure is to use the asynchronous version of SIMD,

known as SPMD (spim-dee or single-program, multiple data):
each processor runs its own copy of the common program.
the advantage is that in an “if-then-else” computation, each processor
will only spend time on the relevant branch.
the disadvantages include the need for occasional synchronization
and the higher complexity of each processor, which must now have a
program memory and instruction fetch/decode logic.

SIMD design choices: Custom vs. commodity-chip SIMD

commodity (off-the-shelf) components:
components tend to be inexpensive because of mass production.
such general-purpose components will likely contain elements
that may not be needed for a particular design.
These extra components may complicate the design,
manufacture, and testing of the SIMD machine and may
introduce speed penalties as well.

custom components
including ASICs = application-specific ICs, multichip modules, or
WSI = wafer-scale integrated circuits
generally offer better performance
lead to much higher cost in view of their development costs being
borne by a relatively small number of parallel machine users

Multi-core

Up to this point, we only considered systems that
process just one instruction per cycle.

This applies to all computers containing only one
processing core

With multi-core CPUs, single-CPU systems can
have more than one processing core, making them
MIMD systems.
Combining several processing cores or processors
(no matter if scalar or vector processors) yields a
computer that can process several instructions and
data sets per cycle.

Between SIMD and MIMD

SIMD inefficiency => a natural evolution of multipro-
cessor systems towards the more flexible MIMD model

especially the merged programming model in which there is a
single program on each node.

This merged programming model is a hybrid between the data
parallel model and the message passing model

Successfully exemplified by Connection Machine CM-5
In this SPMD (single program multiple data) model,

data parallel programs can enable or disable the message
passing mode typical for MIMD,

⇒ thus one can take advantage of the best features of both models
Other examples of such platforms: Sun Ultra Servers,
multiprocessor PCs, workstation clusters, the IBM SP.

SIMD pro and contra

SIMD computers require less hardware than MIMD computers
because they have only one global control unit.
because only one copy of the program needs to be stored.

MIMD computers store the program and operating system at each
processor.
The relative unpopularity of SIMD processors as general purpose
compute engines can be attributed to:

their specialized hardware architectures,
economic factors,
design constraints,
product life-cycle, and
application characteristics
extensive design effort resulting in longer product development times
the irregular nature of many applications

MIMD pro and contra
higher flexibility of the MIMD architecture compared with SIMD
ability to take advantage of commodity microprocessors

⇒ avoiding lengthy development cycles
⇒ getting a free ride on the speed improvement curve for such

microprocessors.
Most effective for medium- to coarse-grain parallel applications,

computation is divided into relatively large subcomputations or
tasks whose executions are assigned to the various processors.

Advantages of MIMD machines include:
flexibility in exploiting various forms of parallelism,
relative ease of partitioning into smaller independent parallel
processors in a multiuser environment
less difficult expansion (scalability).

Disadvantages include:
considerable interprocessor communication overhead and
more difficult programming.

MIMD subcategories|Flynn–Johnson classification

1988: E. E. Johnson proposed
a further classification of MIMD
based on :
1. their memory structure: global or

distributed
2. mechanism used for communic./

synchronization: shared
variables or message passing.

GMSV: shared-memory
multiprocessors
DMMP: distributed-memory
multicomputers
DMSV: is sometimes called
distributed shared memory

combine the implementation
ease of distributed memory with
the programming ease of the
shared-variable scheme

GMMP is not widely used

Shared memory (SM-MIMD)
All processors are connected to a common mem (RAM-Random Access Mem)
Usually all processors are identical and have equal memory access

This is called symmetric multiprocessing (SMP).
The connection between procs and memory is of predominant importance.
For example: a shared memory system with a bus connection.

advantage of a bus is its expandability.
disadvantage is that all processors have to share the bandwidth provided by the bus

To circumvent the problem of limited memory bandwidth, direct connections
from each CPU to each memory module are desired.

This can be achieved by using a crossbar switch.
The problem is their high complexity when many connections need to be made.
This problem can be weakened by using multi-stage crossbar switches, which in turn
leads to longer communication times.

⇒ No. CPUs&mem modules than can be connected by crossbar switches is limited.
Advantage of shared mem.systs: all processors make use of the whole mem
⇒ This makes them easy to program and efficient to use.
The limiting factor to their performance is the number of processors and
memory modules that can be connected to each other.
⇒ Shared memory-systems usually consist of rather few processors.

Distributed memory (DM-MIMD)
Each processor has its own local memory.
The processors are connected to each other.
The demands imposed on the communication network are lower than
in the case of a SM-MIMD

the communication between processors may be slower than the
communication between processor and memory.

Distributed memory systems can be hugely expanded
Several thousand processors are not uncommon, this is called
massively parallel processing (MPP).

To actually use the theoretical performance, much more programming
effort than with shared memory systems is required.

The problem has to be subdivided into parts that require little
communication.
The processors can only access their own memory.
Should they require data from the memory of another processor, then
these data have to be copied.
Due to the relatively slow communications network between the
processors, this should be avoided as much as possible.

ccNUMA
Shared memory systems suffer from a limited system size,
Distributed memory systems suffer from the arduous
communication between the memories of the processors.
A compromise is the ccNUMA (cache coherent non-uniform
memory access) architecture.

consists of several SMP systems.
these are connected to each other by means of a fast
communications network, often crossbar switches.
Access to the whole, distributed or non-unified memory is possible
via a common cache.
A ccNUMA system is as easy to use as a true shared memory
system, at the same time it is much easier to expand.
To achieve optimal performance, it has to be made sure that local
memory is used, and not the memory of the other modules, which
is only accessible via the slow communications network.
The modular structure is another big advantage of this
architecture.

Most ccNUMA system consist of modules that can be plugged together to
get systems of various sizes.

Design issues: MPP—massively vs.
moderately parallel processor

Massive parallelism is generally taken to include 1000 or more procs
Is it more cost-effective to build a parallel processor out of a relatively
small no.of powerful procs or a massive no.of very simple procs

the “herd of elephants” or the “army of ants” approach?
A general answer cannot be given to this question, as the best
choice is both application- and technology-dependent.
In the 1980s:

several massively parallel computers were built and marketed.
In the 1990s:

a general shift from massive to moderate parallelism (tens to
hundreds of processors),

The notion of massive parallelism has not been abandoned,
particularly at the highest level of performance required for Grand
Challenge problems (see Top 500!)

Design issues: Tightly vs. loosely coupled MIMD

Which is a better approach to HPC?
1. using specially designed multiprocessors/ multicomputers
2. a collection of ordinary workstations that are interconnected

by commodity networks and whose interactions are
coordinated by special system software and distributed file
systems

referred to as network of workstations (NOW) or cluster
computing, has been gaining popularity in recent years.

An intermediate approach is to link tightly coupled
clusters of processors via commodity networks:

Clusters of clusters = Grids
This is essentially a hierarchical approach that works best
when there is a great deal of data access locality.

Design issues: Explicit message passing vs.
virtual shared memory

Which scheme is better?
1. forcing the users to explicitly specify all messages that must be sent

between processors
2. allow them to program in an abstract higher-level model, with the

required messages automatically generated by the system software
This question is essentially very similar to the one asked in the early
days of high-level languages and virtual memory:

At some point in the past, programming in assembly languages and
doing explicit transfers between secondary and primary memories
could lead to higher efficiency
Nowadays, software is so complex and compilers and OS so
advanced that it no longer makes sense to hand-optimize the
programs, except in limited time-critical instances.

However, we are not yet at that point in parallel processing, and
hiding the explicit communication structure of a parallel machine
from the programmer has nontrivial consequences for performance.

Communication Model of
Parallel Platforms

1. shared data space
2. exchanging messages

Shared-Address-Space Platform
Supports a common data space that is accessible to all processors.
Processors interact by modifying data objs stored in shared-address-space.
Shared-address-space platforms supporting SPMD programming are also
referred to as multiprocessors.
Memory in shared-address-space platforms can be local (exclusive to a
processor) or global (common to all processors).

1. If the time taken by a processor to access any memory word in the system
(global or local) is identical, the platform is classified as a uniform memory
access (UMA) multicomputer (see (a) and (b))
If the time taken to access certain memory words is longer than others, the
platform is called a non-uniform memory access (NUMA) multicomputer.
Machines such as the SGI Origin 2000 and Sun Ultra HPC servers belong to
the class of NUMA multiprocessors.

Issues in using Shared-Address
The presence of a global memory space makes programming such
platforms much easier.
All read-only interactions are invisible to the programmer, as they are
coded no differently than in a serial program.

This greatly eases the burden of writing parallel programs.
Read/write interactions are harder to program than the read-only, as
these operations require mutual exclusion for concurrent accesses.

Shared-address-space programming paradigms such as threads
(POSIX, NT) and directives (OpenMP) therefore support
synchronization using locks and related mechanisms.

The presence of caches on processors also raises the issue of
multiple copies of a single memory word being manipulated by two or
more processors at the same time.

Supporting a shared-address-space involves two major tasks:
1. need an address translation mechanism to locates a memory word
2. ensure that concurrent operations on multiple copies of the same memory

word have well-defined semantics - cache coherence mechanism.

Issues in using Shared-Address
shared-address-space machines

only support an address translation mechanism
leave the task of ensuring coherence to the programmer.

The native programming model for such platforms consists of primitives such
as get and put.
These primitives allow a processor to get (and put) variables stored at a
remote processor.
If one of the copies of this variable is changed, the other copies are not

automatically updated or invalidated.
Since 2005, x86- compatible CPUs designed for desktop computers
are available with two “cores”(makes them dual-processor systs).

This cheap extra computing power has to be used efficiently, which
requires parallel programming.
Parallel programming methods that work on multi-core PCs also work
on larger shared memory systems,
A program designed for a cluster or other type of distributed memory
system will also perform well on multi-core PC.

Shared-address-space vs. shared-memory computers

The term shared-memory computer is historically
used for architectures in which the memory is
physically shared among various processors,

Each processor has equal access to any memory segment.
This is identical to the UMA model

This is in contrast to a distributed-memory computer:
Different segments of the memory are physically
associated with different processing elements.

Either of these physical models, shared or
distributed memory, can present the logical view of
a disjoint or shared-address-space platform.

A distributed-memory shared-address-space computer is
identical to a NUMA machine.

Message-Passing Platforms
Each processing node with its own exclusive address space.
Each of these processing nodes can either be single processors or a shared-
address-space multiprocessor

a trend that is fast gaining momentum in modern message-passing parallel
computers.

Instances of such a view come naturally from clustered workstations
On such platforms, interactions between processes running on different
nodes must be accomplished using messages (=> message passing).

This exchange of messages is used to transfer data, work, and to synchronize
actions among the processes.

Message-passing paradigms support execution of a different program on
each of the nodes.
Examples of parallel platforms that support the message-passing paradigm
include the IBM SP, SGI Origin 2000, and workstation clusters.
It is easy to emulate a message-passing architecture containing on a shared-
address-space computer with the same number of nodes.
Emulating a shared-address-space architecture on a message-passing
computer is costly,

accessing another node's memory requires sending and receiving messages.

Message passing as programming paradigm
Interactions are accomplished by sending and receiving messages =>
the basic operations are send and receive.
Since the send and receive operations must specify target addresses,
there must be a mechanism to assign a unique identification or ID to
each of the multiple processes executing a parallel program.

This ID is typically made available to the program using a function such
as whoami, which returns to a calling process its ID.

There is one other function that is typically needed to complete the
basic set of message-passing operations – numprocs, which specifies
the no. of processes participating in the ensemble.
With these four basic operations, it is possible to write any message-
passing program.
Different message-passing APIs, such as the

1. Message Passing Interface (MPI) and
2. Parallel Virtual Machine (PVM),

support these basic operations and a variety of higher level
functionality under different function names.

Physical organization

Supercomputer

A supercomputer is the fastest computer of its time
Today’s supercomputer is tomorrow’s desktop or laptop computer.
One of the first supercomputers of historical significance was the
Cray-1.

It was used quite successfully in many applications involving large-
scale simulation in the early 1980s.
The Cray-1 was not a parallel computer, however, but it employed a
powerful (at the time) vector processor with many vector registers
attached to the main memory.

Today, all supercomputers are parallel computers (see Top500).
Some are based on specialized processors and networks
But the majority are based on commodity hardware and open source
operating system and applications software.

Historical context: intrinsec & explicit parallelism

Parallelism initially invaded computers at the processor level under
several aspects:

The first one took place during the era of scalar processors,
in the development of coprocessors taking in charge some specific tasks of the
working unit (mathematical ops, communications, graphics,...) and relieving the
Central Processing Unit (CPU). Another aspect has resided in the processor
itself.

The development of
1. Complementary Metal-Oxide-Semiconductor (CMOS) technology since 1963
2. the Very-Large-Scale Integration (VLSI) since the 1980s

⇒ the inclusion of more and more complex components in the processors
such as pipelines and multiple computation units.

As the CMOS technology is nearer and nearer its physical limits
⇒ intrinsic parallelization of the processors has logically been followed by

the emergence of multiple-core processors.
[More comments in the textbook!]

Shared vs. distributed
memory

Parallel machine with shared memory

Examples of “old” vendors:
• most famous examples are the Cray series such as Cray- 1 and 2, and Cray X-MP
and Y-MP, Cray X1E;

• others vendors: Convex or Alliant, Univ. of Illinois (Illiac IV), BBN, Sequent, SGI.

Resurge resurgence of shared memory computers in the form of:
• multiprocessor desktops, which usually contain two or four processors;
• midrange systems with four or eight processors, primarily used as servers;
• and high-performance nodes for the top of the line parallel computers, which
usually contain 16, 32, or even 64 processors (switching technology is applied).

Advantages & disadvantages
Advantages:

neither require data distributions over the processors nor data
messages between them.
the communications between PUs required for the control of the
application are implicitly performed via the shared memory and can
thus be very fast.
the memory connection is facilitated by fast bus technology or a
variety of switch types (i.e., omega, butterfly etc)
easy to program

with loop parallelization being the simplest and the most efficient means
of achieving parallelism

Disadvantages:
Cache memory resulted in relatively complicated data
management/cache coherency issues.
the fact that it always was and still is almost impossible

to scale shared memory architectures to more than 32 processors
to simultaneously avoid saturating the bandwidth between the
processors and the global memory.

Special class 1: SMPs – symmetric multiprocessors

all processors share a connection to a common memory and access
all memory locations at equal speeds.
SMP systems are arguably the easiest parallel systems to program
because programmers do not need to distribute data structures
among processors.
because increasing the number of processors increases contention
for the memory, the processor/memory bandwidth is typically a
limiting factor.
SMP systems do not scale well and are limited to small numbers of
processors.

Special class 2: NUMA - non-uniform memory access
the memory is shared,

it is uniformly addressable from all processors,
BUT some blocks of memory may be physically more closely associated with some
processors than others.

⇒ This reduces the memory bandwidth bottleneck& allows systs with more procs;
⇒ The access time from a processor to a memory location can be significantly

different depending on how "close" the memory location is to the processor
To mitigate the effects of non-uniform access, each processor has a cache,
along with a protocol to keep cache entries coherent
⇒ another name for these architectures is cache-coherent non-uniform memory

access systems (ccNUMA)

Drawbacks of memory centralization & solutions

it implies a very high memory bandwidth, potentially with
concurrency, in order to avoid bottlenecks

⇒ the interconnection network between the memory and the PUs as
well as the memory controller speed are often the limiting factors of
the no. of PUs included in that kind of machine.

Solutions?
1. Processors can access memory through a special processor-to-

memory network that must have very low latency
quite a difficult design challenge for more than a few processors

2. memory latency-hiding techniques must be employed
An example of such methods is the use of multithreading in the
processors so that they continue with useful processing functions while
they wait for pending memory access requests to be serviced.

3. [optional] processor-to-processor network may be used for
coordination and synchronization purposes.

Examples of processor-to-memory and
processor-to-processor networks

Assume:
number p of processors,
number m of memory modules

1. Crossbar switch; O(pm) complexity, and
thus quite costly for highly parallel systems

2. Single or multiple buses (the latter with
complete or partial connectivity)

3. Multistage interconnection network (MIN);
cheaper than Example 1, more bandwidth
than Example 2

Cache
Motivation: reduce the amount of data that must pass through the
processor-to-memory interconnection network
Use a private cache memory of reasonable size within each
processor.
The reason that using cache memories reduces the traffic through the
network is the same here as for conventional processors:

locality of data access,
repeated access to the same data, and
the greater efficiency of block, as opposed to word-at-a-time, data
transfers.

Multiple caches gives rise to the cache coherence problem:
Copies of data in the main memory & in various caches may become
inconsistent.
Approach:

1. Do not cache shared data at all or allow only a single cache copy.
If the volume of shared data is small and access to it infrequent, these policies
work quite well.

2. Do not cache “writeable” shared data or allow only a single cache copy.
Read-only shared data can be placed in multiple caches with no complication.

Use a cache coherence protocol

introduce a nontrivial consistency enforcement
overhead, depending on the coherence protocol
used, but removes the above restrictions.
Examples:

snoopy caches for bus-based systems
each cache monitors all data transfers on the bus to see if the
validity of the data it is holding will be affected

directory-based schemes
where writeable shared data are “owned” by a single
processor or cache at any given time, with a directory used to
determine physical data locations

Parallel machines with distributed memory
the PUs are still linked together by an interconnection network
each PU has its own memory with an exclusive access.
some resources which are still shared like, for example, the mass
storage or the I/O operations
Vendors: Intel, NCube, Inmos, Convex, Cray, IBM.
“Old” Representatives: Cray T3D/T3E, Intel iPSC/2 and Paragon,
Connection Machines (CM-1 to CM-5), MasPar (MP1& MP2).
Current: IBM Blue Gene or the Cray Red Storm.

Advantages & disadvantages

Advantages:
can be scaled to a large number of processors.

Even some of the early distributed memory machines
successfully employed up to 1024 processors.

larger flexibility in terms of design and configuration has
made them more financially viable than their predecessors

Disadvantages:
more difficult to write and debug than shared memory p.c
the necessity of a data distribution over the processors’
own memory and
the use of messages passing between processors to
exchange data or information to control the application
the performances of the interconnection network between
the PUs is also a critical point

Interconnection networks

Each processor is usually connected to the network through
multiple links or channels
direct networks: the processor channels are directly connected to
their counterparts in other processors according to some
interconnection pattern or topology.
Example:
1. Bus: a congestion-bound, but cheap, and scalable with respect

to cost network.
2. Dynamic networks: for example, a crossbar which is hard to

scale and has very many switches, is expensive, and typically
used for only limited number of processors.

3. Static networks: for example, Ω-networks, arrays, rings,
meshes, tori, hypercubes.

4. Combinations: for example, a bus connecting clusters which are
connected by a static network.

Classification: MPP and clusters

MPP (massively parallel processors)
the processors and the network infrastructure are
tightly coupled and specialized for use in a parallel
computer.
extremely scalable, in some cases supporting the
use of many thousands of processors in a single
system.

Clusters:
Of tens order

Distrib mem. P.C. as NUMA & hybrid systems

distributed-memory MIMD machines are sometimes
described as nonuniform memory access (NUMA)
architectures.

all-cache or cache-only memory architecture (COMA) for
such machines.

Hybrid:
clusters of nodes with separate address spaces in which
each node contains several processors that share memory.
made from clusters of SMPs connected by a fast network
are currently the dominant trend in high-performance
computing.

For example, in late 2003, four of the five fastest computers in
the world were hybrid systems.

