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Timing
 In order to parallelize a progr./alg., we need to know which parts of a 

program need the most computation time.

 Three different time spans to be considered:

1. wall time: 
 The time span a “clock on the wall” would measure, which is the time elapsed 

between start and completion of the program. 

 This is usually the time to be minimized.

2. user time: 
 The actual runtime used by the program. 

 this << the wall time since the program has to wait a lot, for example for 
computation time allocation or data from the RAM or from the hard-disk. 

 These are indications for necessary optimizations. 

3. system time: 
 Time used not by the program itself, but by the operating system, e.g. for 

allocating memory or hard disk access. 

 System time should stay low.



Measuring time
 Unix command time: time ./shale

 Output example:
 real 3m13.535s

 user 3m11.298s

 sys 0m1.915s

 measures the total runtime used by the program

 For the performance analysis, we want to know the runtime required by 
individual parts of a program.
 There are several programming language and operating system dependent 

methods for measuring time inside a program.
 MPI & OpenMP have their own, platform independent functions for time measurement. 

 MPI_Wtime() & omp_get_wtime() return the wall time in secs, the difference between the 
results of two such function calls yields the runtime elapsed between the two function calls.

 advanced method of performance analysis: profiling. 
 the program has to be built with information for the profiler. 

 Example: gprof
 gprof program > prof.txt creates a text file with the profiling information. 

1. flat profile lists all function/pocedure calls, time used for them, percentage of the total time, 
no. of calls etc 

2. call tree, a listing of all procedures call by the procedures of the program.



Towards analytical modeling of parallel Progs

 A sequential algorithm is usually evaluated in terms of its 
execution time, expressed as a function of the size of its input. 

 The execution time of a parallel algorithm depends not only on 
input size but also on 

1. the number of PEs used, 

2. their relative computation speed 

3. interprocess communication speed. 

 a parallel alg. cannot be evaluated in isolation from a parallel 
architecture without some loss in accuracy. 

 A number of measures of performance are intuitive:

 the wall-clock time taken to solve a given problem on a given 
parallel platform. 

 how much faster the parallel program runs with respect to the 
serial program.



Execution time

 The serial runtime TS of a program

 is the time elapsed between the beginning and 

the end of its execution on a sequential computer.

 The parallel runtime TP

 is the time that elapses from the moment a 

parallel computation starts to the moment the last 

PE finishes execution. 



Factors influencing the performance

 The algorithm itself must be parallelizable & the data set to which 
it is to be applied must be such that an appropriately large 
number of processors can be applied.

 Overheads related to synchronization and memory access 
conflicts can lead to performance deterioration.

 Load balancing is usually rather difficult to achieve and the lack 
of it results in performance deterioration.

 Creation of algorithms that can be used on multiple processors 
often leads to the increase of computational complexity of the 
parallel algorithm over the sequential one.

 Dividing data among multiple memory units may reduce the 
memory contention and improve data locality, resulting in 
performance improvement.



Sources of overheads in parallel progs

 Using twice as many hardware resources, one can 
reasonably expect a program to run twice as fast –
This is rarely the case!

 The execution profile of a hypothetical parallel 
program executing on 8 PEs processing elements. 
 Profile indicates times spent performing computation (both 

essential and excess), communication, and idling.



Sources of overheads

1. Interprocess interaction:
 Any nontrivial parallel system requires its processing elements to 

interact and communicate data (e.g., intermediate results). 

 The time spent communicating data between processing elements is 
usually the most significant source of parallel processing overhead.

2. Idling: 
 due to many reasons such as:

 load imbalance,

 synchronization, 

 presence of serial components in a program. 

 Example1 : 
 when tasks generation is dynamic it is impossible (or at least difficult) to 

predict the size of the subtasks assigned to various processing elements. 

 the problem cannot be subdivided statically among the processing 
elements while maintaining uniform workload. 

 If different processing elements have different workloads, some PEs may 
be idle during part of the time that others are working on the problem. 



Sources of overhead

2. Idling:
 Example 2:  PEs must synchronize at certain points during parallel prog.execution. 

 If all processing elements are not ready for synchronization at the same time, then the 
ones that are ready sooner will be idle until all the rest are ready.

 Example 3: Parts of an algorithm may be unparallelizable, allowing only a single 
PE to work on it.
 While one PE works on the serial part, the other PEs must wait.

3. Excess Computation:
 Fastest sequential algorithm for a problem may be difficult/impossible to parallelize 

 use a parallel algorithm based on a poorer but easily parallelizable sequential algorithm. 
 that is, one with a higher degree of concurrency

 Difference in computation performed by the parallel program and the best serial 
program = excess computation overhead incurred by the parallel program.

 A parallel algorithm based on the best serial algorithm may still perform more 
aggregate computation than the serial algorithm. 

 Example: Fast Fourier Transform algorithm. 
 In its serial version, the results of certain computations can be reused. 

 Parallel version: these results cannot be reused: they are generated by different PEs. 

 Therefore, some computations are performed multiple times on different PEs.



Total parallel overhead

 The overheads incurred by a parallel program are encapsulated 
into a single expression referred to as the overhead function. 

 We define overhead function or total overhead of a parallel 
system, To, as the total time collectively spent by all the PEs 
over and above that required by the fastest known sequential 
algorithm for solving the same problem on a single processing 
element. 

 Consider

 The total time spent in solving a problem summed over all 
processing elements is pTP . 

 TS units of this time are spent performing useful work, 

 The remainder is overhead

 the overhead function is given by To=pTP - TS.



Speedup
 Question: how much performance gain is achieved by parallelizing a 

given application over a sequential implementation? 

 Speedup is a measure that captures the relative benefit of solving a 
problem in parallel. 

 Speedup, S, is the ratio of the time taken to solve a problem on a single 
PE to the time required to solve the same problem on a parallel computer 
with p identical PEs.

 Same type of PE in the single and parallel execution

 speedup S as the ratio of the serial runtime of the best sequential algorithm for 
solving a problem to the time taken by the parallel algorithm to solve the same 
problem on p processing elements

 Sometimes, the best sequential algorithm to solve a problem is not known,

 Or its runtime has a large constant that makes it impractical to implement. 

 In such cases, we take the fastest known algorithm that would be a practical 
choice for a serial computer to be the best sequential algorithm. 



Example: adding n numbers using n PEs

 If n = 2k, perform the operation in log n = k steps

 n=16:

TP= Θ(log n). 

TS= Θ(n) 

S= Θ(n/ log n).



Example: sorting

 Consider the example of parallelizing bubble sort. 

 Assume: 
 serial version of bubble sort of 105 records takes 150 s 

 a serial quicksort can sort the same list in 30 s. 

 a parallel version of bubble sort, also called odd-even sort, 
takes 40 seconds on 4 PEs:

 It would appear that the parallel odd-even sort 
algorithm results in a speedup of 150/40=3.75. 

 This conclusion is misleading! 

 The parallel algorithm results in a speedup of 30/40 
= 0.75 with respect to the best serial algorithm.



Theoretically S<=p

 If the best sequential algorithm takes TS units of time 

to solve a given problem on a single PE, then a S of 

p can be obtained on p PEs if none of the PEs 

spends more than time TS /p. 

 Assume: S>p => possible only if each PE spends 

less than time TS /p solving the problem => a single 

PE could emulate the p PEs and solve the problem 

in fewer than TS units of time => This is a 

contradiction because S is computed with respect to 

the best sequential algorithm. 



Superlinear speedup

 In practice, a speedup greater than p is sometimes observed.

 This usually happens:

1. When the work performed by a serial algorithm is greater than its 
parallel formulation 

 Exemple: search 

2. Due to hardware features that put the serial implementation at a 
disadvantage. 

 For example: 

 the data for a problem might be too large to fit into the cache of a 
single PE, 

 degrading its performance due to the use of slower memory 
elements. 

 when partitioned among several PE, the individual data-partitions 
would be small enough to fit into their respective PE' caches. 



Superlinearity due to exploratory decomposition

 Consider 

 an algorithm for exploring leaf nodes of 
an unstructured tree

 each leaf has a label associated with it 
and the objective is to find a node with a 
specified label, in this case 'S'. 

 two processing elements using depth-
first traversal. 

 Processor 0 searching the left subtree 

 Processor 1 searching the right subtree 

 Expands only the shaded nodes before 
the solution is found. 

 The corresponding serial formulation 
expands the entire tree.

 The serial algorithm does more work than 
the parallel algorithm.



Efficiency

 Ideal behavior is not achieved because while 
executing a parallel algorithm, the processing 
elements cannot devote 100% of their time to the 
computations of the algorithm.
 Example: part of the time required by the PEs to compute 

the sum of n numbers is spent idling (and communicating in 
real systems).

 Efficiency is a measure of the fraction of time for 
which a PE is usefully employed.

 E is the ratio of S to the no.of PEs : E=S/p. 

 In an ideal parallel system efficiency is equal to one. 

 In practice, efficiency is between zero and one



Examples

 Efficiency of adding n numbers on n processing 

elements: E= Θ(n/ log n)/n=Θ(1/ log n).

 Edge detection on images

 Sequential:

 Given an n x n pixel image, the problem of detecting edges 

corresponds to applying a 3x 3 template to each pixel. 

 The process of applying the template corresponds to multiplying 

pixel values with corresponding template values and summing 

across the template (a convolution operation).

 We have nine multiply-add operations for each pixel, 

 If each multiply-add takes time tc, then the entire operation takes 

time 9tcn
2 on a serial computer.



Edge detection - parallel
 Partitions the image equally across the PEs 

 Each PE applies the template to its own subimage. 

 For applying the template to the boundary pixels, a PE must get data that is assigned to the 
adjoining PE. 

 If a PE is assigned a vertically sliced subimage of dimension n x (n/p), 
 it must access a layer of n pixels from the PE to the left & similar for the right

 The algorithm executes in two steps: 
1. exchange a layer of n pixels with each of the two adjoining processing elements - 2(ts + twn).

2. apply template on local subimage: 9tcn
2/p

 The total time for the algorithm is therefore given by: TP=9tcn
2/p+ 2(ts + twn). 

 S= 9tcn
2 / [9tcn

2/p+ 2(ts + twn)], E= 1/ [1 +2(ts + twn)p / 9tcn
2].



Cost

 = parallel runtime x the no. of PEs used 

 Cost reflects the sum of the time that each PE spends solving the 
problem

 E can also be expressed as the ratio of the execution time of the 
fastest known sequential alg. for solving a problem to the cost of 
solving the same problem on p PEs.

 p=1: The cost of solving a problem on a single PE is the 
execution time of the fastest known sequential algorithm. 

 A parallel alg. is said to be cost-optimal if the cost of solving a 
problem on a parallel computer has the same asymptotic growth 
(in Θ terms) as a function of the input size as the fastest-known 
sequential algorithm on a single PE. 

 Since efficiency is the ratio of sequential cost to parallel cost, a 
cost-optimal parallel alg. has an efficiency of Θ(1).



Examples
 Cost of adding n numbers on n processing 

elements. 

 Cost=  Θ(n log n). 

 The serial runtime of this operation is Θ(n) =>  the 
algorithm is not cost optimal.

 Sorting alg. 

 Consider a sorting algorithm that uses n processing 
elements to sort the list in time (log n)2. 

 Since the serial runtime of a (comparison-based) sort 
is n log n, the speedup and efficiency of this algorithm 
are given by n/log n and 1/log n, respectively. 

 Cost= n(log n)2  => this algorithm is not cost optimal 



Effect of Granularity on Performance- Theory

 Adding n no. with n PEs - excessive in terms of the number of 
processing elements. 

 In practice, we assign larger pieces of input data to PEs. 
 This corresponds to increasing the granularity of computation on PEs.

 Using fewer than the maximum possible no. of PEs to execute a 
parallel algorithm is called scaling down a parallel system in terms of 
the no.of PEs. 

 A naive way to scale down a parallel sys. is to design a parallel 
algorithm for one input element per PE, and then use fewer PEs to 
simulate a large no. of PEs. 
 If there are n inputs and only p processing elements (p < n), we can 

use the parallel alg. designed for n PEs by assuming n virtual PEs and 
having each of the p physical  PEs simulate n/p virtual PEs.

 The total parallel runtime increases, at most, by a factor of n/p, and the 
processor-time product does not increase. 
=> If a parallel system with n PEs is cost-optimal, using p PEs (where p < n) to 

simulate n PEs preserves cost-optimality.



Effect of Granularity on Performance -practice

 Adding example: Consider p << n. 
 Assign n tasks to p < n PEs => a 

parallel time less than n(log n)2/p. 

 The corresponding speedup of this 
formulation is p/log n. 

 Examples: 

 sorting 1024 numbers (n = 1024, log n = 
10) on p=32 PEs=> S=3.2. 

 n = 106, log n = 20 => S=1.6. Worst! 

Remark: if a parallel system is not cost-
optimal to begin with, it may still not be 
cost-optimal after the granularity of 
computation increases

n=16, p=8



Adding n numbers cost-optimally
 Example: n = 16 and p = 4. 

 In the first step of this alg., each PE locally 
adds its n/p numbers in time Θ(n/p). 

 Now the problem is reduced to adding the 
p partial sums on p processing elements, 
which can be done in time Θ(log p) by the 
method described in the first example. 

 The parallel runtime of this algorithm is 
TP=Θ(n/p+log p) 

 Its cost is Θ(n + p log p). 

 As long as n = Ω(p log p), the cost is Θ(n), 
which is the same as the serial runtime. 

 Hence, this parallel system is cost-optimal.

 Demonstrate that the manner in which the 
computation is mapped onto PEs may 
determine whether a parallel system is 
cost-optimal. 

 Note: We cannot make all non-cost-
optimal systems cost-optimal by scaling 
down the no. of PEs.



Scaling Characteristics of Parallel Programs

 E= 1/ (1+TO/TS), 

 To grows at least linearly with p.

 the overall efficiency of the parallel 

program goes down for a given 

problem size (constant TS )

Example: 

adding n no. on p PEs, 

TP=n/p+ 2 log p, 

S= n/(n/p+2 log p),

E=1/(1+ 2p log p / n).

Compute S and E as functions of 

(n,p)



Scalable parallel systems

 The scalability of a 
parallel system is a 
measure of its capacity 
to increase S in 
proportion to the no. of 
PEs. 

 Reflects a parallel 
system's ability to 
utilize increasing 
processing resources 
effectively.

 Example: + n no.on p PEs

cost-optimal - n = Ω(p log p). 
 E=0.80 for n = 64 and p = 4, n = 8 

p log p. 

 p = 8, n= 8 p log p = 192, E=0.80 

 p = 16, n = 8 p log p = 512, 
E=0.80 . 

=> This parallel system remains 
cost-optimal at an efficiency of 
0.80 if n is increased as 8 p log p.



Remarks

 For a given problem size, as we increase the no. PEs, the overall 
efficiency of the parallel syst goes down.

 In many cases, the efficiency of a parallel syst increases if the 
problem size is increased while keeping the no. of PEs constant.

 a scalable parallel system= as one in which the efficiency can be 
kept constant as the no. of PEs  is increased, provided that the 
problem size is also increased.



Isoefficiency Function

 Problem size: W.

 we assume that it takes unit time to perform one basic 
computation step of an alg

 W = TS (of the fastest known algorithm).

 TP=[W+T0(W,p)]/p, S= W/ TP = Wp/[W+T0 (W,p)], E=S/p= 
W/[W+T0(W,p)]= 1/ [1+T0 (W,p)/W].

 W must be increased with respect to p to maintain E fixed

 Parallel syst is highly scalable if W need to grow linearly 
with respect to p

 Parallel syst is poorly scalable if W need to grow 
exponentially with p

 K=E/(1-E), W=KT0(W,p) => Extract W as a function of p

This function is called isoefficiecy function 



Isoefficiency function of adding numbers

 The overhead function for the problem of adding n 

numbers on p processing elements is approx 2p log p. 

 Substituting To by 2p log p we get W=K 2p log p. 

 Isoefficiency function for this parallel sys. is Θ(p log p). 

 If the no. of PEs is increased from p to p', the problem size n

must be increased by a factor of (p' log p')/(p log p) to get the 

same E as on p PEs. 

 Remark:

 the overhead due to communication is a function of p only. 

 In general, communication overhead can depend on both the 

problem size and the no. of PEs.



Minimum execution time for adding n no.

 The parallel run time for the problem of adding n 

numbers on p PEs is TP= n/p + 2 log p. 

 d TP/dp=0 => p=n/2 and we get TP
min = 2 log p.

 Minimum cost-optimal execution time for adding 

n numbers:

 minimum time in which a problem can be solved by a 

cost-optimal parallel system.

 after some computations (see textbook): TP
cost_opt= 2 

log n – log log n.



Other Scalability Metrics

 Suited to different system requirements. 

 For example, in real time applications, the objective is to 

scale up a system to accomplish a task in a specified time 

bound: 

 multimedia decompression, where MPEG streams must be 

decompressed at the rate of 25 frames/second.

 In many applications, the maximum size of a problem is 

constrained not by time, efficiency, or underlying models, 

but by the memory available on the machine. 

 metrics make assumptions on the growth function of available 

memory (with no.of PEs) and estimate how the performance 

of the parallel sys.changes with such scaling. 



Scaled Speedup

 This metric is defined as the speedup obtained when the problem 
size is increased linearly with the no. of PEs . 

 If the scaled-speedup curve is close to linear with respect to the 
no of PEs, then the parallel system is considered scalable. 

 Method 1:  

 the size of the problem is increased to fill the available memory 
on the parallel computer. 

 The assumption here is that aggregate memory of the system 
increases with the no. of PEs. 

 Method 2:

 the size of the problem grows with p subject to an upper-bound 
on execution time.



Memory & time-constrained scaling

 Multiplying a matrix dimension n x n with a vector: 
 TS =tcn

2, where tc is the time for a single multiply-add operation. 

 TP= tcn
2/p+ ts log p + twn, S= tcn

2/ (tcn
2/p+ ts log p + twn).

 Total memory requirement of the algorithm is Θ(n2). 

 Let us consider the two cases of problem scaling. 
 memory constrained scaling: 

 we assume that the memory of the parallel system grows linearly with the no. 
of PEs, i.e., m = Θ(p) => n2 = c x p, for some constant c. 

 The scaled speedup S' is given by: S’= tcc x p/ (tcc x p /p+ ts log p + tw sqrt(c x 
p)) or S'= c1p/(c2+c3 log p + c4 sqrt(p)). 

 In the limiting case, S’=O(sqrt(p)). 

 time constrained scaling, we have TP = O(n2/p). Since this is constrained 
to be constant, n2 = O(p) => this case is identical to the memory 
constrained case. 

 Multiplying two matrices – see textbook
 Memory constrained scaled: S’= O(p).

 Time constrained scaling: S”= O(p5/6) 



Serial fraction

 The experimentally determined serial fraction f can be used to quantify the 
performance of a parallel system on a fixed-size problem. 

 Consider a case when the serial runtime of a computation can be divided into 
a totally parallel and a totally serial component, i.e., W= Tser + Tpar

 Ideal: TP= Tser +Tpar/p. 

 All of the other parallel overheads such as excess computation and 
communication are captured in the serial component Tser. 

 The serial fraction f of a parallel program is defined as: f= Tser/W.

 TP= Tser + (W-Tser.)/p => TP/W=f+(1-f)/p; 

 S = W/TP => 1/S=f+(1-f)/p=> f=(1/S-1/p)/(1-1/p).

 Smaller values of f are better since they result in higher efficiencies. 

 If f increases with the no. PEs, then it is considered as an indicator of rising 
communication overhead, and thus an indicator of poor scalability.

 Example: serial component of the matrix-vector product: f = (ts p log p + twn 
p)/ [tcn

2(p-1)] - denominator of this equation is the serial runtime of the alg. 
and the numerator corresponds to the overhead in parallel execution.



Roadblocks to Parallel Processing



Amdahl’s law (1967)

 He established how slower parts of an algorithm influence its overall 
performance
 since the sequential parts of an algorithm are the “slowest,” Amdahl’s 

law dictates that these parts have the most serious negative impact on 
the overall performance.

 States that the fraction ƒ of inherently sequential or unparallelizable 
computation severely limits the speed-up that can be achieved with p 
processors.

 Assume: a fraction 1-f of the algorithm can be divided into p parts and 
ideally parallelized, the remaining f of operations cannot be 
parallelized and thus have to be executed on a single processor. The 
total

 S = p/(fp + (1 − f )) (see previous slide). 

 Since f < 1 => Sp <1/f.

 the speedup achievable through parallel computing is bound by the 
value that is inversely proportional to the fraction of the code that has 
to be executed sequentially.



Effects of Amdahl’s law

If f = 0.1, so that 90% of an algorithm can be ideally parallelized, 

and if p = 10, S< 6. 

If f = 0.01, meaning only 1% of the program is not parallelizable, for 

p = 100 we have that S = 50, so we operate at half the maximum efficiency.



Comments
 the derivation of Amdahl’s law relies on the assumption that the serial work f 

is independent of the size of the problem size n.
 In practice, it has been observed that f decreases as a function of problem size. 

 Therefore, the upper bound on the speed-up factor S usually increases as a 
function of problem size.

 Another anomaly is the so-called superlinear speed-up, which means that the 
speed-up factor has been measured to be more than P. 
 This may happen because of memory access and cache mismanagement or 

because the serial implementation on a single processor is suboptimal.

 There exist appls for which the sequential overhead is very small. 

 If the original serial computation is limited by resources other than the 
availability of CPU cycles, the actual performance could be much better
 A large parallel machine may allow bigger problems to be held in memory, thus 

reducing virtual memory paging, 

 Multiple processors each with its own cache may allow much more of the problem 
to remain in the cache. 

 Amdahl's law assumes that for any given input, the parallel and serial 
implementations perform exactly the same no. of computational steps. 
 If the serial algorithm being used in the formula is not the best possible algorithm 

for the problem, then a clever parallel algorithm that structures the computation 
differently can reduce the total number of computational steps.



Gustafson’s law

 Rather than asking how fast a given serial program would run on a 
parallel machine, he asks how long a given parallel program would have 
taken to run on a serial processor.

 Ttotal(1)= Tsetup +pTcompute(p)+ Tfinalization .

 Scaled serial fraction: γscaled =(Tsetup + Tfinalization )/Ttotal(p)

 Then Ttotal(1)= γscaled Ttotal (p)+p(1- γscaled ) Ttotal(p). 

 Rewriting the equation for speedup and simplifying: 

scaled (or fixed time) speedup: S(P)=P+(1-P) γscaled. 

 This equation is known as Gustafson's law

 Since γscaled depends on p, the result of taking the limit isn't obvious, but 
would give the same result as the limit in Amdahl's law. 

 We take the limit in p while holding Tcompute and thus γscaled constant. 
 The interpretation is that we are increasing the size of the problem so that the 

total running time remains constant when more processors are added. 

 This contains the implicit assumption that the execution time of the serial 
terms does not change as the problem size grows.

=> In this case, the speedup is linear in P ! => if the problem grows as 
more processors are added, Amdahl's law will be pessimistic!



Other laws

1. Grosch’s law: economy of scale applies, or computing power is proportional to the 
square of cost 

 If this law did in fact hold, investing money in p processors would be foolish as a single 
computer with the same total cost could offer p² times the performance of one such processor. 

 Grosch’s law was formulated in the days of mainframes and did hold for those machines. 

2. Minsky’s conjecture: S is proportional to the logarithm of p
 Roots in an analysis of data access conflicts assuming random distribution of addresses. 

 These conflicts will slow everything down to the point that quadrupling the number of 
processors only doubles the performance.

 However, data access patterns in real applications are far from random.

 Real speed-up can range from log p to p (p/log p being a reasonable middle ground).

3. The software inertia: billions of $ worth of existing software makes it hard to switch 
to parallel systs; the cost of converting the “decks” to parallel programs and retraining 
the programmers is prohibitive.

 not all programs needed in the future have already been written. 

 new appls will be developed & new probls will become solvable with increased performance.

 Students are being trained to think parallel. 

 Tools are being developed to transform sequential code into parallel code automatically. 



Asymptotic Analysis of Parallel 

Programs



Evaluating a set of parallel programs for 

solving a given problem

 Example: sorting

 The fastest serial programs 

for this problem run in time 

O (n log n). 

 Let us look at four different 

parallel algorithms A1, A2, 

A3, and A4, for sorting a 

given list.

 Objective of this exercise is 

to determine which of these 

four algorithms is the best.
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p n2 log n n Ön

TP 1 n Ön Ön 

log n

S n 

log n

log n Ön

log n

Ön

E Log 

n /n

1 Log 

n/ Ön

1

pTP n2 n

log n

n1.5 n

log n



Sorting example
 The simplest metric is one of speed

 the algorithm with the lowest TP is the best. 

 by this metric, algorithm A1 is the best, followed by A3, A4, and A2. 

 Resource utilization is an important aspect of practical program design 

 We will rarely have n2 PEs as are required by algorithm A1.

 This metric of evaluating the algorithm presents a starkly different 
image: algs A2 and A4 are the best, followed by A3 and A1.

 Cost:

 Last row of Table presents the cost of the four algorithms.

 The costs of algorithms A1 and A3 are higher than the serial runtime of 
n log n and therefore neither of these algorithms is cost optimal. 

 Algorithms A2 and A4 are cost optimal.

 Conclusions:

 Important to first understand the objectives of parallel algorithm 
analysis and to use appropriate metrics, because use of different 
metrics may often result in contradictory outcomes


