Performance Metrics for Parallel Programs

Content

- measuring time
- towards analytic modeling,
- execution time,
- overhead,
- speedup,
- efficiency,

cost,

- granularity,
- scalability,
- roadblocks,
- asymptotic analysis

Timing

- In order to parallelize a progr./alg., we need to know which parts of a program need the most computation time.
- Three different time spans to be considered:
- *wall time*:
 - The time span a "clock on the wall" would measure, which is the time elapsed between start and completion of the program.
 - This is usually the time to be minimized.
- 2. user time:
 - The actual runtime used by the program.
 - this << the wall time since the program has to wait a lot, for example for computation time allocation or data from the RAM or from the hard-disk.
 - These are indications for necessary optimizations.
- 3. system time:
 - Time used not by the program itself, but by the operating system, e.g. for allocating memory or hard disk access.
 - System time should stay low.

Measuring time

- Unix command time: time ./shale
 - Output example:
 - real 3m13.535s
 - user 3m11.298s
 - sys 0m1.915s
 - measures the total runtime used by the program
- For the performance analysis, we want to know the runtime required by individual parts of a program.
 - There are several programming language and operating system dependent methods for measuring time inside a program.
 - MPI & OpenMP have their own, platform independent functions for time measurement.
 - MPI_Wtime() & omp_get_wtime() return the wall time in secs, the difference between the results of two such function calls yields the runtime elapsed between the two function calls.

advanced method of performance analysis: profiling.

- the program has to be built with information for the profiler.
- Example: gprof
 - gprof program > prof.txt creates a text file with the profiling information.
 - *flat profile* lists all function/pocedure calls, time used for them, percentage of the total time, no. of calls etc
 - *call tree*, a listing of all procedures call by the procedures of the program.

Towards analytical modeling of parallel Progs

- A sequential algorithm is usually evaluated in terms of its execution time, expressed as a function of the size of its input.
- The execution time of a parallel algorithm depends not only on input size but also on
 - 1. the number of PEs used,
 - 2. their relative computation speed
 - 3. interprocess communication speed.
 - ⇒ a parallel alg. cannot be evaluated in isolation from a parallel architecture without some loss in accuracy.
- A number of measures of performance are intuitive:
 - the wall-clock time taken to solve a given problem on a given parallel platform.
 - how much faster the parallel program runs with respect to the serial program.

Execution time

• The serial runtime T_S of a program

 is the time elapsed between the beginning and the end of its execution on a sequential computer.

• The parallel runtime T_P

 is the time that elapses from the moment a parallel computation starts to the moment the last PE finishes execution.

Factors influencing the performance

- The algorithm itself must be parallelizable & the data set to which it is to be applied must be such that an appropriately large number of processors can be applied.
- Overheads related to synchronization and memory access conflicts can lead to performance deterioration.
- Load balancing is usually rather difficult to achieve and the lack of it results in performance deterioration.
- Creation of algorithms that can be used on multiple processors often leads to the increase of computational complexity of the parallel algorithm over the sequential one.
- Dividing data among multiple memory units may reduce the memory contention and improve data locality, resulting in performance improvement.

Sources of overheads in parallel progs

- Using twice as many hardware resources, one can reasonably expect a program to run twice as fast – This is rarely the case!
- The execution profile of a hypothetical parallel program executing on 8 PEs processing elements.
 - Profile indicates times spent performing computation (both essential and excess), communication, and idling.

Sources of overheads

1. Interprocess interaction:

- Any nontrivial parallel system requires its processing elements to interact and communicate data (e.g., intermediate results).
- The time spent communicating data between processing elements is usually the most significant source of parallel processing overhead.

2. Idling:

- due to many reasons such as:
 - load imbalance,
 - synchronization,
 - presence of serial components in a program.

Example1 :

- when tasks generation is dynamic it is impossible (or at least difficult) to predict the size of the subtasks assigned to various processing elements.
- ⇒ the problem cannot be subdivided statically among the processing elements while maintaining uniform workload.
- ⇒ If different processing elements have different workloads, some PEs may be idle during part of the time that others are working on the problem.

Sources of overhead

2. Idling:

- Example 2: PEs must synchronize at certain points during parallel prog.execution.
 - If all processing elements are not ready for synchronization at the same time, then the ones that are ready sooner will be idle until all the rest are ready.
- Example 3: Parts of an algorithm may be unparallelizable, allowing only a single PE to work on it.
 - While one PE works on the serial part, the other PEs must wait.

3. Excess Computation:

- Fastest sequential algorithm for a problem may be difficult/impossible to parallelize
 - use a parallel algorithm based on a poorer but easily parallelizable sequential algorithm.
 - □ that is, one with a higher degree of concurrency
- Difference in computation performed by the parallel program and the best serial program = excess computation overhead incurred by the parallel program.
- A parallel algorithm based on the best serial algorithm may still perform more aggregate computation than the serial algorithm.
- Example: Fast Fourier Transform algorithm.
 - In its serial version, the results of certain computations can be reused.
 - Parallel version: these results cannot be reused: they are generated by different PEs.
 - Therefore, some computations are performed multiple times on different PEs.

Total parallel overhead

- The overheads incurred by a parallel program are encapsulated into a single expression referred to as the overhead function.
- We define overhead function or total overhead of a parallel system, T_o, as the total time collectively spent by all the PEs over and above that required by the fastest known sequential algorithm for solving the same problem on a single processing element.
- Consider
 - The total time spent in solving a problem summed over all processing elements is pT_P .
 - \Box T_{S} units of this time are spent performing useful work,
 - The remainder is overhead
 - ⇒ the overhead function is given by $T_o = pT_P T_S$.

Speedup

- Question: how much performance gain is achieved by parallelizing a given application over a sequential implementation?
- Speedup is a measure that captures the relative benefit of solving a problem in parallel.
- Speedup, S, is the ratio of the time taken to solve a problem on a single PE to the time required to solve the same problem on a parallel computer with p identical PEs.
 - Same type of PE in the single and parallel execution
 - speedup S as the ratio of the serial runtime of the best sequential algorithm for solving a problem to the time taken by the parallel algorithm to solve the same problem on p processing elements
 - Sometimes, the best sequential algorithm to solve a problem is not known,
 - Or its runtime has a large constant that makes it impractical to implement.
 - In such cases, we take the fastest known algorithm that would be a practical choice for a serial computer to be the best sequential algorithm.

Example: adding *n* numbers using *n* PEs

If n = 2^k, perform the operation in log n = k steps
n=16:

 $T_{P}=\Theta(\log n).$ $T_{S}=\Theta(n)$ $S=\Theta(n/\log n).$

Example: sorting

- Consider the example of parallelizing bubble sort.
- Assume:
 - serial version of bubble sort of 10⁵ records takes 150 s
 - a serial quicksort can sort the same list in 30 s.
 - a parallel version of bubble sort, also called odd-even sort, takes 40 seconds on 4 PEs:
- It would appear that the parallel odd-even sort algorithm results in a speedup of 150/40=3.75.
- This conclusion is misleading!
- The parallel algorithm results in a speedup of 30/40 = 0.75 with respect to the best serial algorithm.

Theoretically S<=p

- If the best sequential algorithm takes T_S units of time to solve a given problem on a single PE, then a S of p can be obtained on p PEs if none of the PEs spends more than time T_S /p.
- Assume: S>p => possible only if each PE spends less than time T_S /p solving the problem => a single PE could emulate the p PEs and solve the problem in fewer than T_S units of time => This is a contradiction because S is computed with respect to the best sequential algorithm.

Superlinear speedup

- In practice, a speedup greater than *p* is sometimes observed.
- This usually happens:
- 1. When the work performed by a serial algorithm is greater than its parallel formulation
 - Exemple: search
- 2. Due to hardware features that put the serial implementation at a disadvantage.
 - For example:
 - the data for a problem might be too large to fit into the cache of a single PE,
 - ⇒ degrading its performance due to the use of slower memory elements.
 - ⇒ when partitioned among several PE, the individual data-partitions would be small enough to fit into their respective PE' caches.

Superlinearity due to exploratory decomposition

- Consider
 - an algorithm for exploring leaf nodes of an unstructured tree
 - each leaf has a label associated with it and the objective is to find a node with a specified label, in this case 'S'.
 - two processing elements using depthfirst traversal.
 - Processor 0 searching the left subtree
 - Processor 1 searching the right subtree
 - Expands only the shaded nodes before the solution is found.
 - The corresponding serial formulation expands the entire tree.
- The serial algorithm does more work than the parallel algorithm.

Efficiency

- Ideal behavior is not achieved because while executing a parallel algorithm, the processing elements cannot devote 100% of their time to the computations of the algorithm.
 - Example: part of the time required by the PEs to compute the sum of n numbers is spent idling (and communicating in real systems).
- Efficiency is a measure of the fraction of time for which a PE is usefully employed.
- E is the ratio of S to the no.of PEs : E=S/p.
- In an ideal parallel system efficiency is equal to one.
- In practice, efficiency is between zero and one

Examples

- Efficiency of adding n numbers on n processing elements: $E = \Theta(n/\log n)/n = \Theta(1/\log n)$.
- Edge detection on images
 - Sequential:
 - Given an n x n pixel image, the problem of detecting edges corresponds to applying a 3x 3 template to each pixel.
 - The process of applying the template corresponds to multiplying pixel values with corresponding template values and summing across the template (a convolution operation).
 - □ We have nine multiply-add operations for each pixel,
 - □ If each multiply-add takes time t_c , then the entire operation takes time $9t_cn^2$ on a serial computer.

Edge detection - parallel

- Partitions the image equally across the PEs
- Each PE applies the template to its own subimage.
- For applying the template to the boundary pixels, a PE must get data that is assigned to the adjoining PE.
- If a PE is assigned a vertically sliced subimage of dimension $n \ge (n/p)$,
 - it must access a layer of *n* pixels from the PE to the left & similar for the right
- The algorithm executes in two steps:
 - exchange a layer of *n* pixels with each of the two adjoining processing elements $2(t_s + t_w n)$.
 - apply template on local subimage: $9t_c n^2/p$
- The total time for the algorithm is therefore given by: $T_P=9t_cn^2/p+2(t_s+t_wn)$.
- $S = 9t_c n^2 / [9t_c n^2/p + 2(t_s + t_w n)], E = 1/ [1 + 2(t_s + t_w n)p / 9t_c n^2].$

Cost

- = parallel runtime x the no. of PEs used
- Cost reflects the sum of the time that each PE spends solving the problem
 - ⇒ E can also be expressed as the ratio of the execution time of the fastest known sequential alg. for solving a problem to the cost of solving the same problem on p PEs.
- p=1: The cost of solving a problem on a single PE is the execution time of the fastest known sequential algorithm.
- A parallel alg. is said to be *cost-optimal* if the cost of solving a problem on a parallel computer has the same asymptotic growth (in Θ terms) as a function of the input size as the fastest-known sequential algorithm on a single PE.
 - ⇒ Since efficiency is the ratio of sequential cost to parallel cost, a cost-optimal parallel alg. has an efficiency of $\Theta(1)$.

Examples

- Cost of adding n numbers on n processing elements.
 - Cost= $\Theta(n \log n)$.
 - The serial runtime of this operation is $\Theta(n) =>$ the algorithm is not cost optimal.

Sorting alg.

- Consider a sorting algorithm that uses *n* processing elements to sort the list in time (log *n*)².
- Since the serial runtime of a (comparison-based) sort is *n* log *n*, the speedup and efficiency of this algorithm are given by *n*/log *n* and 1/log *n*, respectively.
- Cost= $n(\log n)^2 =>$ this algorithm is not cost optimal

Effect of Granularity on Performance- Theory

- Adding n no. with n PEs excessive in terms of the number of processing elements.
- In practice, we assign larger pieces of input data to PEs.
 - This corresponds to increasing the granularity of computation on PEs.
- Using fewer than the maximum possible no. of PEs to execute a parallel algorithm is called scaling down a parallel system in terms of the no.of PEs.
- A naive way to scale down a parallel sys. is to design a parallel algorithm for one input element per PE, and then use fewer PEs to simulate a large no. of PEs.
 - If there are *n* inputs and only *p* processing elements (*p* < *n*), we can use the parallel alg. designed for *n* PEs by assuming *n* virtual PEs and having each of the *p* physical PEs simulate *n/p* virtual PEs.
 - The total parallel runtime increases, at most, by a factor of n/p, and the processor-time product does not increase.
 - => If a parallel system with *n* PEs is cost-optimal, using *p* PEs (where *p* < *n*) to simulate *n* PEs preserves cost-optimality.

Effect of Granularity on Performance -practice

Adding example: Consider p << n.</p>

- Assign *n* tasks to p < n PEs => a parallel time less than $n(\log n)^2/p$.
- The corresponding speedup of this formulation is *p*/log *n*.
- Examples:
 - sorting 1024 numbers (n = 1024, log n = 10) on p=32 PEs=> S=3.2.

Remark: if a parallel system is not costoptimal to begin with, it may still not be cost-optimal after the granularity of computation increases

n=16, *p*=8

Adding *n* numbers cost-optimally

- Example: n = 16 and p = 4.
- In the first step of this alg., each PE locally adds its n/p numbers in time Θ(n/p).
- Now the problem is reduced to adding the *p* partial sums on *p* processing elements, which can be done in time Θ(log *p*) by the method described in the first example.
- The parallel runtime of this algorithm is TP=Θ(n/p+log p)
- Its cost is $\Theta(n + p \log p)$.
- As long as $n = \Omega(p \log p)$, the cost is $\Theta(n)$, which is the same as the serial runtime.
- Hence, this parallel system is cost-optimal.
- Demonstrate that the manner in which the computation is mapped onto PEs may determine whether a parallel system is cost-optimal.
- Note: We cannot make all non-costoptimal systems cost-optimal by scaling down the no. of PEs.

Scaling Characteristics of Parallel Programs

- $E= 1/(1+T_O/T_S)$,
 - T_o grows at least linearly with p.
 - ⇒ the overall efficiency of the parallel program goes down for a given problem size (constant T_S)
- Example:
 - adding *n* no. on *p* PEs,
 - $T_P = n/p + 2 \log p,$
 - $S=n/(n/p+2\log p),$

 $E=1/(1+2p \log p/n).$

Compute S and E as functions of (n,p)

Scalable parallel systems

- The scalability of a parallel system is a measure of its capacity to increase S in proportion to the no. of PEs.
- Reflects a parallel system's ability to utilize increasing processing resources effectively.

Example: + *n* no.on *p* PEs

cost-optimal - $n = \Omega(p \log p)$.

E=0.80 for n = 64 and p = 4, n = 8 p log p.

$$p = 8, n = 8 p \log p = 192, E = 0.80$$

- □ p = 16, $n = 8 p \log p = 512$, E=0.80.
- => This parallel system remains cost-optimal at an efficiency of 0.80 if *n* is increased as 8 *p* log *p*.

Remarks

- For a given problem size, as we increase the no. PEs, the overall efficiency of the parallel syst goes down.
- In many cases, the efficiency of a parallel syst increases if the problem size is increased while keeping the no. of PEs constant.
- a scalable parallel system= as one in which the efficiency can be kept constant as the no. of PEs is increased, provided that the problem size is also increased.

Isoefficiency Function

- Problem size: W.
- we assume that it takes unit time to perform one basic computation step of an alg
- \Rightarrow W = T_S (of the fastest known algorithm).
- $\Rightarrow T_P = [W + T_0(W,p)]/p, S = W/T_P = Wp/[W + T_0(W,p)], E = S/p = W/[W + T_0(W,p)] = 1/[1 + T_0(W,p)/W].$
- \Rightarrow W must be increased with respect to p to maintain E fixed
- Parallel syst is highly scalable if W need to grow linearly with respect to p
- Parallel syst is poorly scalable if W need to grow exponentially with p
- K=E/(1-E), W=KT₀(W,p) => Extract W as a function of p This function is called isoefficiecy function

Isoefficiency function of adding numbers

- The overhead function for the problem of adding n numbers on p processing elements is approx 2p log p.
- Substituting To by 2p log p we get W=K2p log p.
- Isoefficiency function for this parallel sys. is $\Theta(p \log p)$.
 - If the no. of PEs is increased from p to p', the problem size n must be increased by a factor of (p' log p')/(p log p) to get the same E as on p PEs.

Remark:

- the overhead due to communication is a function of p only.
- In general, communication overhead can depend on both the problem size and the no. of PEs.

Minimum execution time for adding n no.

- The parallel run time for the problem of adding *n* numbers on *p* PEs is $T_P = n/p + 2 \log p$.
- d $T_P/dp=0 => p=n/2$ and we get $T_P^{min} = 2 \log p$.
- Minimum cost-optimal execution time for adding n numbers:
 - minimum time in which a problem can be solved by a cost-optimal parallel system.
 - □ after some computations (see textbook): $T_P^{cost_opt} = 2$ log *n* – log log *n*.

Other Scalability Metrics

- Suited to different system requirements.
 - For example, in real time applications, the objective is to scale up a system to accomplish a task in a specified time bound:
 - multimedia decompression, where MPEG streams must be decompressed at the rate of 25 frames/second.
 - In many applications, the maximum size of a problem is constrained not by time, efficiency, or underlying models, but by the memory available on the machine.
 - metrics make assumptions on the growth function of available memory (with no.of PEs) and estimate how the performance of the parallel sys.changes with such scaling.

Scaled Speedup

- This metric is defined as the speedup obtained when the problem size is increased linearly with the no. of PEs.
- If the scaled-speedup curve is close to linear with respect to the no of PEs, then the parallel system is considered scalable.

• Method 1:

- the size of the problem is increased to fill the available memory on the parallel computer.
- The assumption here is that aggregate memory of the system increases with the no. of PEs.

Method 2:

the size of the problem grows with p subject to an upper-bound on execution time.

Memory & time-constrained scaling

- Multiplying a matrix dimension *n* x *n* with a vector:
 - \Box $T_S = t_c n^2$, where t_c is the time for a single multiply-add operation.
 - $T_{P} = t_{c} n^{2} / p + t_{s} \log p + t_{w} n, S = t_{c} n^{2} / (t_{c} n^{2} / p + t_{s} \log p + t_{w} n).$
 - Total memory requirement of the algorithm is $\Theta(n^2)$.
 - Let us consider the two cases of problem scaling.
 - memory constrained scaling:
 - □ we assume that the memory of the parallel system grows linearly with the no. of PEs, i.e., $m = \Theta(p) \Rightarrow n^2 = c \ge p$, for some constant *c*.
 - The scaled speedup S' is given by: $S = t_c c \ge p/(t_c c \ge p/p + t_s \log p + t_w \operatorname{sqrt}(c \ge p))$ or $S = c_1 p/(c_2 + c_3 \log p + c_4 \operatorname{sqrt}(p))$.
 - □ In the limiting case, S'=O(sqrt(p)).
 - time constrained scaling, we have $T_P = O(n^2/p)$. Since this is constrained to be constant, $n^2 = O(p) =>$ this case is identical to the memory constrained case.
- Multiplying two matrices see textbook
 - Memory constrained scaled: S' = O(p).
 - Time constrained scaling: $S'' = O(p^{5/6})$

Serial fraction

- The experimentally determined serial fraction *f* can be used to quantify the performance of a parallel system on a fixed-size problem.
- Consider a case when the serial runtime of a computation can be divided into a totally parallel and a totally serial component, i.e., W= Tser + Tpar
- Ideal: $T_P = Tser + Tpar/p$.
- All of the other parallel overheads such as excess computation and communication are captured in the serial component *Tser*.
- The serial fraction *f* of a parallel program is defined as: *f*= *Tser/W*.
- $T_P = Tser + (W-Tser.)/p => T_P/W=f+(1-f)/p;$
- $S = W/T_P \Rightarrow 1/S = f + (1-f)/p \Rightarrow f = (1/S 1/p)/(1 1/p).$
- Smaller values of f are better since they result in higher efficiencies.
- If f increases with the no. PEs, then it is considered as an indicator of rising communication overhead, and thus an indicator of poor scalability.
- **Example:** serial component of the matrix-vector product: $f = (t_s p \log p + t_w n p)/[t_c n^2(p-1)]$ denominator of this equation is the serial runtime of the alg. and the numerator corresponds to the overhead in parallel execution.

Roadblocks to Parallel Processing

Amdahl's law (1967)

- He established how slower parts of an algorithm influence its overall performance
 - since the sequential parts of an algorithm are the "slowest," Amdahl's law dictates that these parts have the most serious negative impact on the overall performance.
- States that the fraction f of inherently sequential or unparallelizable computation severely limits the speed-up that can be achieved with p processors.
- Assume: a fraction 1-f of the algorithm can be divided into p parts and ideally parallelized, the remaining f of operations cannot be parallelized and thus have to be executed on a single processor. The total
- S = p/(fp + (1 f)) (see previous slide).
- Since *f* < 1 => *Sp* <1/*f*.
- the speedup achievable through parallel computing is bound by the value that is inversely proportional to the fraction of the code that has to be executed sequentially.

Effects of Amdahl's law

If f = 0.1, so that 90% of an algorithm can be ideally parallelized, and if p = 10, S< 6. If f = 0.01, meaning only 1% of the program is not parallelizable, for p = 100 we have that S = 50, so we operate at half the maximum efficiency.

Comments

- the derivation of Amdahl's law relies on the assumption that the serial work f is independent of the size of the problem size n.
 - □ In practice, it has been observed that *f* decreases as a function of problem size.
 - Therefore, the upper bound on the speed-up factor S usually increases as a function of problem size.
- Another anomaly is the so-called superlinear speed-up, which means that the speed-up factor has been measured to be more than P.
 - This may happen because of memory access and cache mismanagement or because the serial implementation on a single processor is suboptimal.
- There exist appls for which the sequential overhead is very small.
- If the original serial computation is limited by resources other than the availability of CPU cycles, the actual performance could be much better
 - A large parallel machine may allow bigger problems to be held in memory, thus reducing virtual memory paging,
 - Multiple processors each with its own cache may allow much more of the problem to remain in the cache.
- Amdahl's law assumes that for any given input, the parallel and serial implementations perform exactly the same no. of computational steps.
 - If the serial algorithm being used in the formula is not the best possible algorithm for the problem, then a clever parallel algorithm that structures the computation differently can reduce the total number of computational steps.

Gustafson's law

- Rather than asking how fast a given serial program would run on a parallel machine, he asks how long a given parallel program would have taken to run on a serial processor.
- $T_{total}(1) = T_{setup} + pT_{compute}(p) + T_{finalization}$
- Scaled serial fraction: $\gamma_{scaled} = (T_{setup} + T_{finalization})/T_{total}(p)$
- Then $T_{total}(1) = \gamma_{scaled} T_{total}(p) + p(1 \gamma_{scaled}) T_{total}(p)$.
- Rewriting the equation for speedup and simplifying: scaled (or fixed time) speedup: S(P)=P+(1-P) γ_{scaled}.
- This equation is known as Gustafson's law
- Since γ_{scaled} depends on *p*, the result of taking the limit isn't obvious, but would give the same result as the limit in Amdahl's law.
- We take the limit in *p* while holding $T_{compute}$ and thus γ_{scaled} constant.
 - The interpretation is that we are increasing the size of the problem so that the total running time remains constant when more processors are added.
 - This contains the implicit assumption that the execution time of the serial terms does not change as the problem size grows.
- => In this case, the speedup is linear in P ! => if the problem grows as more processors are added, Amdahl's law will be pessimistic!

Other laws

- 1. **Grosch's law:** economy of scale applies, or computing power is proportional to the square of cost
 - If this law did in fact hold, investing money in p processors would be foolish as a single computer with the same total cost could offer p^2 times the performance of one such processor.
 - Grosch's law was formulated in the days of mainframes and did hold for those machines.
- 2. *Minsky's conjecture:* S is proportional to the logarithm of p
 - Roots in an analysis of data access conflicts assuming random distribution of addresses.
 - These conflicts will slow everything down to the point that quadrupling the number of processors only doubles the performance.
 - Be However, data access patterns in real applications are far from random.
 - Real speed-up can range from log p to p (p/log p being a reasonable middle ground).
- 3. **The software inertia:** billions of \$ worth of existing software makes it hard to switch to parallel systs; the cost of converting the "decks" to parallel programs and retraining the programmers is prohibitive.
 - not all programs needed in the future have already been written.
 - new appls will be developed & new probls will become solvable with increased performance.
 - Students are being trained to think parallel.
 - Tools are being developed to transform sequential code into parallel code automatically.

Asymptotic Analysis of Parallel Programs

Evaluating a set of parallel programs for solving a given problem

- Example: sorting
- The fastest serial programs for this problem run in time O (*n* log *n*).
- Let us look at four different parallel algorithms A1, A2, A3, and A4, for sorting a given list.
- Objective of this exercise is to determine which of these four algorithms is the best.

	A1	A2	A3	A4
p	<i>n</i> ²	log n	n	Ön
T _P	1	n	Ön	Ön log n
S	n log n	log <i>n</i>	Ön log n	Ön
E	Log n /n	1	Log n/ Ön	1
pT _P	n ²	n log n	n ^{1.5}	n log n

Sorting example

- The simplest metric is one of speed
 - the algorithm with the lowest T_P is the best.
 - □ by this metric, algorithm A1 is the best, followed by A3, A4, and A2.
- Resource utilization is an important aspect of practical program design
 - We will rarely have n^2 PEs as are required by algorithm A1.
 - This metric of evaluating the algorithm presents a starkly different image: algs A2 and A4 are the best, followed by A3 and A1.
- Cost:
 - Last row of Table presents the cost of the four algorithms.
 - The costs of algorithms A1 and A3 are higher than the serial runtime of n log n and therefore neither of these algorithms is cost optimal.
 - Algorithms A2 and A4 are cost optimal.
- Conclusions:
 - Important to first understand the objectives of parallel algorithm analysis and to use appropriate metrics, because use of different metrics may often result in contradictory outcomes