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Models & Data parallel model
An algorithm model is typically a way of structuring a parallel alg.

by selecting a decomposition and mapping technique and 
by applying the appropriate strategy to minimize interactions

The data-parallel model is one of the simplest algorithm models. 
the tasks are statically or semi-statically mapped onto processes and 
each task performs similar operations on different data. 
This type of parallelism that is a result of identical operations being 
applied concurrently on different data items is called data parallelism. 
The work may be done in phases and the data operated upon in 
different phases may be different.
Typically, data-parallel computation phases are interspersed with 
interactions to synchronize the tasks or to get fresh data to the tasks. 
Since all tasks perform similar computations, the decomposition of 
the problem into tasks is usually based on data partitioning 

because a uniform partitioning of data followed by a static mapping is 
sufficient to guarantee load balance



Data parallel model
Data-parallel algorithms can be implemented in both shared-address-
space and message-passing paradigms.

The partitioned address-space in a message-passing paradigm may 
allow better control of placement, and thus may offer a better handle 
on locality. 
Shared-address space can ease the programming effort, especially if 
the distribution of data is different in different phases of the algorithm.

Interaction overheads in the data-parallel model can be minimized 
by choosing a locality preserving decomposition 
by overlapping computation and interaction and 
by using optimized collective interaction routines. 

A key characteristic of data-parallel problems is that for most 
problems, the degree of data parallelism increases with the size of the 
problem, making it possible to use more processes to effectively solve 
larger problems.
An example of a data-parallel algorithm is dense matrix multiplication.



Task Graph Model
The task-dependency graph may be either trivial, as in the case of matrix
multiplication, or nontrivial. 

In certain parallel algorithms, the task-dependency graph is explicitly used in 
mapping

In the task graph model, the interrelationships among the tasks are utilized to 
promote locality or to reduce interaction costs. 
Employed to solve probls in which the amount of data associated with the 
tasks is large relative to the amount of computation associated with them
Work is more easily shared in paradigms with globally addressable space, but 
mechanisms are available to share work in disjoint address space.
Typical interaction-reducing techniques applicable to this model include 

reducing the volume and frequency of interaction by promoting locality while 
mapping the tasks based on the interaction pattern of tasks, and
using asynchronous interaction methods to overlap the interaction with computation.

Examples of algorithms based on the task graph model include 
parallel quicksort, 
sparse matrix factorization, 
parallel algorithms derived via divide-and-conquer decomposition. 

This type of parallelism that is naturally expressed by independent tasks in a 
task-dependency graph is called task parallelism.



Work Pool Model (Task Pool Model) 
Characterized by a dynamic mapping of tasks onto processes for load balancing in 
which any task may potentially be performed by any process. 
There is no desired premapping of tasks onto processes. 
The mapping may be centralized or decentralized. 
Pointers to the tasks may be stored in a physically shared list, priority queue, hash table, 
or tree, or they could be stored in a physically distributed data structure. 
Work may be statically available in the beginning, or could be dynamically generated;

i.e., the processes may generate work and add it to the global (possibly distributed) work pool. 
If the work is generated dynamically and a decentralized mapping is used, 

then a termination detection alg. would be required so that all processes can actually detect the 
completion of the entire program and stop looking for more work.

In the message-passing paradigm, the work pool model is typically used when the
amount of data associated with tasks is relatively small compared to the computation 
associated with the tasks. 

tasks can be readily moved around without causing too much data interaction overhead. 
Granularity of the tasks can be adjusted to attain the desired level of tradeoff between 
load-imbalance & overhead of accessing the work pool for adding and extracting tasks.
Parallelization of loops by chunk scheduling or related methods is an example of the use 
of the work pool model with centralized mapping when the tasks are statically available. 
Ex. work pool model where the tasks are generated dynamically: 

Parallel tree search where the work is represented by a centralized or distributed data structure 



Master-Slave Model (Manager-Worker)
One or more master processes generate work and allocate it to worker processes. 

the tasks may be allocated a priori if the manager can estimate the size of the tasks or 
if a random mapping can do an adequate job of load balancing. 
In another scenario, workers are assigned smaller pieces of work at different times. 

preferred if it is time consuming for the master to generate work and hence it is not desirable to make all 
workers wait until the master has generated all work pieces. 

In some cases, work may need to be performed in phases, and work in each phase must 
finish before work in the next phases can be generated.

In this case, the manager may cause all workers to synchronize after each phase. 
Usually: no desired premapping of work to processes; any worker can do any job assigned.
The model can be generalized to hierarchical or multi-level manager-worker model

the top-level manager feeds large chunks of tasks to second-level managers, who further subdivide 
the tasks among their own workers and may perform part of the work themselves. 

This model is generally equally suitable to shared-address-space or message-passing 
paradigms since the interaction is naturally two-way; 

the manager knows that it needs to give out work and 
workers know that they need to get work from the manager.

Care should be taken 
to ensure that the master does not become a bottleneck (may happen if tasks are too small/fast) 
granularity of tasks: cost of doing work >> cost of transferring work & cost of synchronization. 
asynchronous interaction may help 

overlap interaction and the computation associated with work generation by the master. 
It may also reduce waiting times if the nature of requests from workers is nondeterministic.



Pipeline or Producer-Consumer Model
A stream of data is passed on through a succession of processes, each of which perform 
some task on it. 
This simultaneous execution of diff.progrs on a data stream is called stream parallelism.
With the exception of the process initiating the pipeline, the arrival of new data triggers 
the execution of a new task by a process in the pipeline. 
The processes could form such pipelines in the shape of linear or multidimensional 
arrays, trees, or general graphs with or without cycles. 
A pipeline is a chain of producers and consumers. 

Each process in the pipeline can be viewed as 
a consumer of a sequence of data items for the process preceding it in the pipeline and 
as a producer of data for the process following it in the pipeline. 

The pipeline does not need to be a linear chain; it can be a directed graph. 
The pipeline model usually involves a static mapping of tasks onto processes.
Load balancing is a function of task granularity. 
The larger the granularity, the longer it takes to fill up the pipeline, 

for the trigger produced by the first process in the chain to propagate to the last process, thereby 
keeping some of the processes waiting. 

Too fine a granularity may increase interaction overheads because processes will need 
to interact to receive fresh data after smaller pieces of computation. 
The most common interaction reduction technique applicable to this model is overlapping 
interaction with computation.
An example of a two-dimensional pipeline is the parallel LU factorization algorithm.



Hybrid models

In some cases, more than one model may be applicable to the 
problem at hand, resulting in a hybrid algorithm model. 
A hybrid model may be composed 

either of multiple models applied hierarchically 
or multiple models applied sequentially to different phases of a
parallel algorithm. 

In some cases, an algorithm formulation may have characteristics of 
more than one algorithm model. 

For instance, data may flow in a pipelined manner in a pattern guided 
by a task-dependency graph. 
In another scenario, the major computation may be described by a
task dependency graph, but each node of the graph may represent a 
supertask comprising multiple subtasks that may be suitable for data-
parallel or pipelined parallelism. 

Parallel quicksort is one of the applications for which a hybrid model 
is ideally suited.



Applying Data Parallel Model - 1st example
Consider the problem of constructing the list of all prime numbers in the interval [1, n] 
for a given integer n > 0.
A simple algorithm that can be used for this computation is the sieve of 
Eratosthenes. 

Start with the list of numbers 1, 2, 3, 4, . . . , n represented as a “mark” bit-vector initialized to 
1000 . . . 00.
In each step, the next unmarked number m (associated with a 0 in element m of the mark 
bit-vector) is a prime. 
Find this element m and mark all multiples of m beginning with m².
When m² > n, the computation stops and all unmarked elements are prime numbers. 

The list of numbers and the current prime are stored in a shared memory that is 
accessible to all processors. 
An idle processor simply refers to the shared memory, updates the current prime, 
and uses its private index to step through the list and mark the multiples of that 
prime. 
Division of work is thus self-regulated.
We next examine a data-parallel approach in which the bit-vector representing the n 
integers is divided into p equal-length segments, with each segment stored in the 
private memory of one processor. 

All of the primes whose multiples have to be marked reside in Processor 1, which acts as a 
coordinator: 
It finds the next prime and broadcasts it to all other processors, which then proceed to mark 
the numbers in their sublists



Applying Data Parallel Model – 1st example
The overall solution time now consists of two components: 

the time spent on transmitting the selected primes to all processors 
(communication time) and 
the time spent by individual processors marking their sublists (computation time).

Typically, communication time grows with the number of processors, though 
not necessarily in a linear fashion.
Because of the above-mentioned communication overhead, adding more 
processors beyond a certain optimal number does not lead to any 
improvement in the total solution time or in attainable speed-up.
Finally, consider the data-parallel solution, but with data I/O time also 
included in the total solution time.

Assuming for simplicity that the I/O time is constant and ignoring communication 
time, the I/O time will constitute a larger fraction of the overall solution time as the 
computation part is speeded up by adding more and more processors. 
If I/O takes 100 seconds, say, then there is little difference between doing the 
computation part in 1 second or in 0.01 second. 

We will later see that such “sequential” or ““unparallelizable” portions of 
computations severely limit the speed-up that can be achieved with parallel 
processing.



Applying Data Parallel Model – 2nd example

problem of distributing a 
vector x with n elements x0, 
x1, . . . , xn−1 on p 
processors.
Cyclic distribution

0 : x0 x5 x10 x15 x20
1 : x1 x6 x11 x16 x21
2 : x2 x7 x12 x17
3 : x3 x8 x13 x18
4 : x4 x9 x14 x19

Block distribution
0 : x0 x1 x2 x3 x4
1 : x5 x6 x7 x8 x9
2 : x10 x11 x12 x13 x14
3 : x15 x16 x17 x18 x19
4 : x20 x21

Block-cyclic distribution
It improves upon the badly 
balanced block distribution,
Restores some locality of 
reference memory access 
of the cyclic distribution.

0 : x0 x1 x10 x11 x20 x21
1 : x2 x3 x12 x13
2 : x4 x5 x14 x15
3 : x6 x7 x16 x17
4 : x8 x9 x18 x19



Applying Data Parallel Model – 3rd example
Data mining differs from standard database queries in that its goal is to 
identify implicit trends and segmentations, rather than simply look up 
the data requested by a direct, explicit query.

For example, finding all customers who have bought cat food in the last 
week is not data mining 
however, segmenting customers according to relationships in their age 
group, monthly income, preferences in pet food, cars, is.

A particular, quite directed type of data mining is mining for 
associations. 

the goal is 
1. to discover relationships (associations) among the information related to 

different customers and their transactions, and 
2. to generate rules for the inference of customer behavior. 
For example, the database may store for every transaction the list of 
items purchased in that transaction. 

The goal of the mining may be to determine associations between sets of 
commonly purchased items that tend to be purchased together; 
for example, the conditional probability that a certain set of items is found in 
a transaction given that a different set of items is found in that transaction.



Applying Data Parallel Model – 3rd example
Given a database in which the records correspond to customer purchase transactions
Each transaction has a transaction id & a set of attributes or items, e.g. the items 
purchased. 
The first goal in mining for associations is to examine the database and determine which 
sets of k items, say, are found to occur together in more than a given threshold fraction 
of the transactions. 

A set of items (of any size) that occur together in a transaction is called an itemset, 
An itemset that is found in more than that threshold percentage of transactions is called a large 
itemset. 

Once the large itemsets of size k are found with their frequencies of occurrence in the 
database of transactions, determining the association rules among them is quite easy. 
The problem we consider therefore focuses on discovering the large itemsets of size k 
and their frequencies.
A simple way to solve the problem is 

to first determine the large itemsets of size one. 
From these, a set of candidate itemsets of size two items can be constructed and their 
frequency of occurrence in the transaction database counted

using the basic insight that if an itemset is large then all its subsets must also be large
This results in a list of large itemsets of size two.
The process is repeated until we obtain the large itemsets of size k. 

There is concurrency in examining large itemsets of size k-1 to determine candidate 
itemsets of size k, and in counting the number of transactions in the database that 
contain each of the candidate itemsets.



Fundamental Building-block Computations

five fundamental building-block computations:
1. Semigroup (reduction, fan-in) computation
2. Parallel prefix computation
3. Packet routing
4. Broadcasting, and its more general version, 

multicasting
5. Sorting records in ascending/descending 

order of their keys



Semigroup Computation

Let o be an associative binary operator;
i.e., (x o y ) o z= x o (y o z ) for all x, y, z in S.

A semigroup is simply a pair (S, o), where S is a set of elements on 
which is defined. 
Semigroup (also known as reduction or fan-in ) computation is 
defined as: 
Given a list of n values x0, x1, . . . , xn–1, compute x0 ox1 o. . . o xn–1 . 
Common examples for the operator o include +, *, ∩, max, min. 
The operator o may or may not be commutative, 

i.e., it may or may not satisfy x o y = y o x
all of the above examples are, but the carry computation, e.g., is not 
while the parallel algorithm can compute chunks of the expression 
using any partitioning scheme, the chunks must eventually be 
combined in left-to-right order.



Parallel Prefix Computation & Packet Routing
Parallel Prefix Computation. 
Same assumptions as in the preceding paragraph, 
A parallel prefix computation is defined as simultaneously evaluating 
all of the prefixes of the expression x0 ox1 o. . . o xn–1

i.e., x0, x0 o x1, x0 o x1 o x2, . . . , x0 ox1 o. . . o xn–1 . 
The ith prefix expression is si = x0 ox1 o. . . o xi. 

Packet Routing. 
A packet of information resides at Processor i and must be sent to 
Processor j. 
The problem is to route the packet through intermediate processors, if 
needed, such that it gets to the destination as quickly as possible. 
The problem becomes more challenging when multiple packets reside 
at different processors, each with its own destination. 
In this case, the packet routes may interfere with one another as they 
go through common intermediate processors. 
When each processor has at most one packet to send and one packet 
to receive, the packet routing problem is called one-to-one 
communication or 1–1 routing.



Broadcasting & Sorting
Broadcasting. 

Given a value a known at a certain processor i, disseminate it to all 
p processors as quickly as possible, so that at the end, every 
processor has access to, or “knows,” the value. 
This is sometimes referred to as one-to-all communication. 
The more general case of this operation, i.e., one-to-many 
communication, is known as multicasting. 
From a programming viewpoint, we make the assignments xj: = a 
for 1 ≤j ≤p (broadcasting) or for j in G (multicasting), where G is the 
multicast group and xj is a local variable in processor j.

Sorting. 
Rather than sorting a set of records, each with a key and data 
elements, we focus on sorting a set of keys for simplicity. 
Our sorting problem is thus defined as: Given a list of n keys x0, x1, 
. . . , xn–1, and a total order ≤on key values, rearrange the n keys 
as xi non-descending order.
We consider only sorting the keys in converted, in a straightforward 
manner, to one for sorting the keys in nonascending order or for 
sorting records.



Algorithms for linear array – semigroup computat.
Linear interconnection
A special case of semigroup computation, namely, that of maximum finding. 

Each of the p processors holds a value initially and our goal is for every processor to 
know the largest of these values. 
A local variable, max-thus-far, can be initialized to the processor’s own data value. 
In each step, a processor sends its max-thus-far value to its two neighbors. 
Each processor, on receiving values from its left and right neighbors, sets its max-thus-
far value to the largest of the three values, i.e., max(left, own, right). 
In the worst case, p – 1 communication steps (each involving sending a processor’s 
value to both neighbors), and the same no three-way comparison steps, are needed. 
This is the best one can hope for, given that the diameter of a p processor linear array 
is D = p – 1 (diameter-based lower bound).

For a general semigroup computation, 
the processor at the left end of the array (the one with no left neighbor) becomes active 
and sends its data value to the right (initially, all processors are dormant or inactive). 
On receiving a value from its left neighbor, a processor becomes active, applies the 
semigroup operation o to the value received from the left and its own data value, sends 
the result to the right, and becomes inactive again. 
The wave of activity propagates to the right until the rightmost processor obtains the 
desired res. 
The computation result is then propagated leftward to all processors. In all, 2p – 2 
communication steps are needed.



Algorithms for linear array – parallel prefix
Assume that the ith prefix result obtained at the ith processor, 0 ≤i ≤p – 1. 
The general semigroup algorithm described in the preceding paragraph 

performs a semigroup computation first and 
then does a broadcast of the final value to all processors. 
Thus, we already have an algorithm for parallel prefix computation that takes p – 1 
communication/combining steps. 

A variant of the parallel prefix computation, in which Processor i ends up with the prefix 
result up to the (i – 1)th value, is sometimes useful.

This diminished prefix computation can be performed just as easily if each processor holds 
onto the value received from the left rather than the one it sends to the right

Thus far, we have assumed that each processor holds a single data item. 
Extension of the semigroup and parallel prefix algorithms to the case where each processor
initially holds several data items is straightforward. 

In a parallel prefix sum computation with each processor initially holding two data items, 
the algorithm consists of 

each processor doing a prefix computation on its own data set of size n/p (this takes n/p – 1 
combining steps), 
then doing a diminished parallel prefix computation on the linear array as above ( p– 1 
communication/combining steps), and 
finally combining the local prefix result from this last computation with the locally computed 
prefixes (n /p combining steps). 

In all, 2n/p + p– 2 combining steps and p – 1 communication steps are required.



Algorithms for linear array – packet routing & broadcasting
Packet Routing. 

To send a packet of information from Processor i to Processor j on a 
linear array, we simply attach a routing tag with the value j – i to it. 
The sign of a routing tag determines the direction in which it should 
move (+ = right, – = left) while its magnitude indicates the action to be 
performed (0 = remove the packet, nonzero = forward the packet).
With each forwarding, the magnitude of the routing tag is -- by 1. 
Multiple packets originating at different processors can flow rightward 
and leftward in lockstep, without ever interfering with each other.

Broadcasting. 
If Processor i wants to broadcast a value a to all processors, it sends an 
rbcast(a) (read r-broadcast) message to its right neighbor and an 
lbcast(a) message to its left neighbor. 
Any processor receiving an rbcast(a ) message, simply copies the value 
a and forwards the message to its right neighbor (if any). 
Similarly, receiving an lbcast(a) message causes a to be copied locally 
and the message forwarded to the left neighbor. 
The worst-case no. communication steps for broadcasting is p – 1.



Algorithms for linear array – sorting
If the key values are already in place, one per processor, then an algorithm known as 
odd–even transposition can be used for sorting. 

A total of p steps are required. 
In an odd-no. step, odd-no. processors compare values with their even-no. right neighbors. 
The two processors exchange their values if they are out of order.
Similarly, in an even-numbered step, even-numbered processors compare–exchange values 
with their right neighbors. 
Worst case: largest key value in P0 and must move all the way to the other end of the array. 

This needs p – 1 right moves. 
One step must be added because no movement occurs in the first step.
Of course one could use even–odd transposition, but this will not affect the worst-case time 
complexity of the algorithm.

Note that the odd–even transposition algorithm uses p processors to sort p keys in p 
compare–exchange steps.
In most practical situations, the number n of keys to be sorted (the problem size) is 
greater than the number p of processors (the machine size). 
The odd–even transposition sort algorithm with n/p keys per processor is as follows.

First, each processor sorts its list of size n/p using any efficient sequential sorting algorithm.
Next, the odd–even transposition sort is performed as before, except that each compare–
exchange step is replaced by a merge–split step in which 

the two communicating processors merge their sublists of size n/p into a single sorted list of size 2n/p and
then split the list down the middle, one processor keeping the smaller half and the other, the larger half.



Algorithms for binary trees
Semigroup Computation. 

Each inner node receives two values from its children (if each of them has already 
computed a value or is a leaf node), 
applies the operator to them, and passes the result upward to its parent. 
After ceil(log2 p) steps, the root processor will have the computation result. 
All procs are then notified of the result through a broadcasting operation from the root. 
Total time: 2ceil(log2p) steps.

Parallel Prefix Computation. 
Can be done optimally in 2ceil(log 2 p) steps 
Consists of an upward propagation phase followed by downward data movement. 
The upward propagation phase is identical to the upward movement of data in 
semigroup computation. 
At the end of this phase, each node will have the semigroup comp.res.for its subtree. 
The downward phase is as follows. 

Each processor remembers the value it received from its left child. 
On receiving a value from the parent, a node passes the value received from above to its left 
child & the combination of this value and the one that came from the left child to its right child. 

The root is viewed as receiving the identity element from above and thus initiates the 
downward phase by sending the identity element to the left & the value received from 
its left child to the right. 
At the end of the downward phase, the leaf processors compute their respective res.



Algorithms for binary trees - sorting
We can use an algorithm similar to bubblesort that 

allows the smaller elements in the leaves to “bubble up” to the root processor first, 
thus allowing the root to “see” all of the data elements in nondescending order. 
the root then sends the elements to leaf nodes in the proper order. 

Before describing the part of the algorithm dealing with the upward bubbling of data, let 
us deal with the simpler downward movement. 

This downward movement is easily coordinated if each node knows the number of leaf nodes in 
its left subtree. 
If the rank order of the element received from above (kept in a local counter) does not exceed 
the number of leaf nodes to the left, then the data item is sent to the left. 
Otherwise, it is sent to the right. 

Note: implicitly assumes that data are to be sorted from left to right in the leaves.
The upward movement of data in the above sorting algorithm can be accomplished:

Initially, each leaf has a single data item and all other nodes are empty. 
Each inner node has storage space for 2 values, migrating upward from its left & right subtrees.
if you have 2 items
then do nothing
else if you have 1 item that came from the left (right)

then get the smaller item from the right (left) child
else get the smaller item from each child

The above sorting algorithm takes linear time in the number of elements to be sorted. 
A more efficient sorting algorithm can be developed? 

The answer, unfortunately, is that we cannot do fundamentally better than the above.



Algorithms for 2d meshes  
Semigroup Computation. 

Do the semigroup computation in each row and then in each column. 
For example, in finding the maximum of a set of p values, stored one per processor, 

the row maximums are computed first and made available to every processor in the row. 
Then column maximums are identified. 

The same process can be used for computing the sum of p numbers. 
Note that for a general semigroup computation with a noncommutative operation, the 
p numbers must be stored in row-major order for this algorithm to work correctly.

Parallel Prefix Computation. 
Can be done in three phases, assuming that the processors (and their stored values) 
are indexed in row-major order: 
1. do a parallel prefix computation on each row, 
2. do a diminished parallel prefix computation in the rightmost column, and 
3. broadcast the results in the rightmost column to all of the elements in the respective rows 

and combine with the initially computed row prefix value. 
For example, in doing prefix sums, 

first-row prefix sums are computed from left to right. 
the processors in the rightmost column hold the row sums. 
A diminished prefix computation in this last column yields the sum of all of the preceding 
rows in each processor. 
Combining the sum of all of the preceding rows with the row prefix sums yields the overall 
prefix sums.



Algorithms for 2d meshes
Broadcasting. 

In two phases: 
1. broadcast the packet to every processor in the source node’s row and 
2. broadcast in all columns. 

If multiple values are to be broadcast by a processor, then the required data 
movements can be pipelined, such that each additional broadcast requires only one 
additional step.

Sorting. 
the simple version of a sorting algorithm known as shearsort. 
The algorithm consists of ceil(log 2r)+ 1 phases in a 2D mesh with r rows. 
In each phase, except for the last one, all rows are independently sorted in a 
snakelike order: 

even-numbered rows 0, 2, … from left to right, 
odd-numbered rows 1, 3, . . . from right to left. 

Then, all columns are independently sorted from top to bottom. 
In the final phase, rows are independently sorted from left to right. 
The shearsort algorithm needs compare exchange steps for sorting in row-major 
order.



Sorting Network

Circuit-level designs for parallel processing are necessarily problem-
specific or special-purpose. 
A sorting network is a circuit that receives n inputs, and permutes them to 
produce n outputs, such that the outputs satisfy y0 ≤y1 ≤ y2 ≤. . . yn–1.
Refer to such an n-input n-output sorting network as an n-sorter
Just as many sorting algorithms are based on comparing and exchanging 
pairs of keys, we can build an n-sorter out of 2-sorter building blocks. 
A 2-sorter compares its two inputs (call them input0 and input1) and orders 
them at the output, by switching their order if needed, putting the smaller 
value, min(input0, input1), before the larger value, max(input0, input1).



Hardware realization of a 2-sorter
If we view the inputs as unsigned integers that are supplied to the 2-sorter 
in bit-parallel form, then the 2-sorter can be implemented using a 
comparator and two 2-to-1 multiplexers, as shown in left fig. 
When the keys are long, or when we need to implement a sorting network 
with many inputs on a single VLSI chip, bit-parallel input becomes 
impractical in view of pin limitations.
Right fig. also depicts a bit-serial hardware realization of the 2-sorter using 
two state flip-flops. 

The flip-flops are reset to 0 at the outset. 
This state represents the two inputs being equal thus far. The other two states 
are 01 (the upper input is less) and 10 (the lower input is less). 
While the 2-sorter is in state 00 or 01, the inputs are passed to the outputs 
straight through. 
When the state changes to 10, the inputs are interchanged, with the top input 
routed to the lower output and vice versa.



Correctness of a n-sorter 

Fig depicts a 4-sorter built of 2-sorter building blocks: block diagram 
and the schematic representation. 
The schematic representation of the 4-sorter shows the data values 
carried on all lines when the input sequence 3, 2, 5, 1 is applied.
How do we verify that the circuit is fact a valid 4-sorter? 
The zero–one principle allows us to do this with much less work.

An n -sorter is valid if it correctly sorts all 0/1 sequences of length n.
Using the zero–one principle, the correctness of the 4-sorter can be 
verified by testing it for the 16 possible 0/1 sequences of length 4. 

The network clearly sorts 0000 and 1111. 
It sorts all sequences with a single 0 because the 0 “bubbles up” to the 
top line. 
Similarly, a single 1 would “sink down” to the bottom line. 
The remaining part of the proof deals with the sequences 0011, 0101, 
0110, 1001, 1010, 1100, all of which lead to the correct output 0011.



Best n-sorter?

what we mean by “the best n-sorter”? 
Cost: the total number of 2-sorter blocks used in 
the design
Delay: the number of 2-sorters on the critical path 
from input to output

1) Minimizing cost x delay would be appropriate.
If we can redesign a sorting network so that it is 
10% faster but only 5% more complex, the 
redesign is deemed to be cost-effective and the 
resulting circuit is said to be time-cost-efficient (or 
at least more so than the original one.



Examples:
Low cost sorting 
networks

Fast sorting networks



General best n-sorter?
lowest-cost designs are known only for small n and as yet there 
is no general method for systematically deriving low-cost designs
The fastest possible designs are also known only for small n; 
time-cost-efficient sorting networks are even harder to come by.
There are many ways to design sorting networks, leading to 
different results with respect to the figures of merit.

For example, Fig. shows a 6-sorter whose design is based on the 
odd–even transposition sorting algorithm discussed in connection 
with sorting on a linear array of processors. 

This “brick wall” design offers advantages in terms of wiring ease 
(because wires are short and do not cross over). 
It is quite inefficient as it uses n x floor(n/2) modules and has n units 
of delay. 
Its cost x delay product is O(n³). 



Sorting network by recursive design?

One way to sort n inputs is 
to sort the first n – 1 inputs, 
say, and then insert the last 
input in its proper place.
Ex: 

insertion sort (Fig. left) 
Selection sort (Fig. right) –
bubblesort

Inefficient: 
cost O(n2)
(> O(n log n) by splitting)  
delay O(n)
(> O(log n) by slitting)

Sorting network based on insertion 
or selection sort + recursivity



Practical sorting networks: Batcher’s netws

Suboptimal: Cost x delay = O(n log4 n)
But Batcher’s sorting networks are quite efficient. 
Attempts at designing faster or less complex 
networks for specific values of n have yielded only 
marginal improvements over Batcher’s 
construction when n is large.
Examples:

1. Sorting based on even-odd merging technique
2. Sorting based on bitonic sequences



Odd-even merging technique
An (m ,m' )-merger is a circuit that 
merges two sorted sequences of 
lengths m and m' into a single sorted 
sequence of length m + m'. 
Let the two sorted sequences be 
x0<=x1<=…xm-1, y0<=y1<=…ym’-1
The odd–even merge is done by 
merging the even- and odd indexed 
elements of the two lists separately  :

x0,x2,… x2ceil(m/2)-2 and y0,y2,…y2ceil(m’/2)-2
are merged to get v0,v1,…vceil(m/2)+ceil(m’/2)-1
x1,x3,… x2ceil(m/2)-1 and y1,y3,…y2ceil(m’/2)-1
are merged to get 
w0,w1,…wceil(m/2]+ceil(m’/2)-1

If we now compare–exchange the pairs 
of elements w0:v1, w1:v2, w2:v3,…. the 
resulting sequence v0w0v1w1v2w2… will 
be completely sorted. 
Note that v0, which is known to be the 
smallest element overall, is excluded 
from the final compare–exchange 
operations
Ex: final (4, 7)-merger in Fig. uses 16 
modules and has a delay of 4 units

The three circuit segments, 
separated by vertical dotted lines, 
correspond to a (2, 4)-merger for even-indexed inputs, 
a (2, 3)-merger for odd-indexed inputs, 
and the final parallel compare–exchange operations.

Each of the smaller mergers can be designed recursively
For example, a (2, 4)- merger consists of two (1, 2)-
mergers for even- and odd-indexed inputs, followed by 
two parallel compare– exchange operations. 



Recursive sorter based on odd-even merging
Armed with an efficient merging circuit, 
we can design an n-sorter recursively 
from two n/2-sorters and an (n/2, n/2)-
merger, as shown in Fig. 1
The 4-sorter from previous slide is an 
instance of this design: 

it consists of two 2-sorters 
followed by a (2, 2)-merger 
in turn built from two (1, 1)-mergers and 
a single compare–exchange step. 

A larger example, corresponding to an 
8-sorter: Fig. 2. 

4-sorters are used to sort the first and 
second halves of the inputs separately, 
The sorted lists then merged by a (4, 4)-
merger composed of an even (2, 2)-
merger, an odd (2, 2)-merger, and a 
final stage of three comparators.



Delay and costs of Batcher’s sorting netw.

Batcher’s (m, m) even–odd merger, when m is a 
power of 2, is characterized by the following delay 
and cost recurrences:

C(m)=2C(m/2)+m-1=(m-1)+2(m/2-1)+4(m/4-1)+…. = m log 
m +1
D(m)=D(m/2)+1=log m+1
Cost x delay = O(m log2 m)

Batcher sorting networks based on the even–odd 
merge technique are characterized by the following 
delay and cost recurrences:

C(n)=2C(n/2)+(n/2)(log(n/2))+1=n (log n)2/2
D(n)=D(n/2)+log(n/2)+1=D(n/2)+log n=log n (log n+1)/2
Cost x delay = O(n log4 n)



Bitonic sequences
A bitonic sequence is defined as one that 

“rises then falls” x0<=x1<=…<=xi>=xi+1>=xi+2>=…>=xn-1, 
“falls then rises” x0>=x1>=…>=xi<=xi+1<=xi+2<=…xn-1)
or is obtained from the first two categories through 
cyclic shifts or rotations. 

Examples include
1 3 3 4 6 6 6 2 2 1 0 0 Rises then falls
8 7 7 6 6 6 5 4 6 8 8 9 Falls then rises
8 9 8 7 7 6 6 6 5 4 6 8 The previous sequence, right-
rotated by 2

Batcher observed that if we sort the first half and 
second half of a sequence in opposite directions, as 
indicated by the vertical arrows in Fig, the resulting 
sequence will be bitonic and can thus be sorted by a 
special bitonic-sequence sorter. 
It turns out that a bitonic-sequence sorter with n 
inputs has the same delay and cost as an even–odd 
(n/2, n /2)-merger. 
Therefore, sorters based on the notion of bitonic
sequences (bitonic sorters) have the same delay 
and cost as those based on even–odd merging.



Bitonic-sequence sorter
A bitonic-sequence sorter can be 
designed based on the assertion that: 

If in a bitonic sequence, we compare-
exchange the elements in the first half 
with those in the second half, as indicated 
by the dotted comparators in Fig.1, 
Then 

each half of the resulting sequence will be 
a bitonic sequence and 
each element in the first half will be no 
larger than any element in the second half.

Thus, the two halves can be 
independently sorted by smaller bitonic
sequence sorters to complete the sorting 
process. 

Note that we can reverse the direction of 
sorting in the lower n-sorter if we 
suitably adjust the connections of the 
dotted comparators in Fig. 1. 
A complete eight-input bitonic sorting 
network is shown in Fig. 2



Periodic balanced sorting networks
A class of sorting networks that possess the 
same asymptotic delay and cost as Batcher 
sorting networks
An n-sorter of this type consists of log n identical 
stages, each of which is a (log n)-stage n-input 
bitonic-sequence sorter. 
Thus, the delay and cost of an n-sorter of this 
type are (log n)2 and n (log n)2/2.
Fig. shows an eight-input example 

larger delay (9 vs. 6) and higher cost (36 vs. 19) 
compared with a Batcher 8-sorter
but offers the following advantages:

1. The structure is regular and modular (easier VLSI 
layout).

2. Slower, but more economical, implementations are 
possible by reusing the blocks

3. Using an extra block provides tolerance to some 
faults (missed exchanges).

4. Using two extra blocks provides tolerance to any 
single fault (a missed or incorrect exchange).

5. Multiple passes through a faulty network can lead to 
correct sorting (graceful degradation).

6. Single-block design can be made fault-tolerant by 
adding an extra stage to the block.


