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Recursive Decomposition

Is a method for inducing concurrency in 
problems that can be solved using the 
divide-and-conquer strategy. 

A problem is solved by first dividing it into a 
set of independent subproblems.
Each one of these subproblems is solved 
by recursively applying a similar division 
into smaller subproblems followed by a 
combination of their results. 
The divide-and-conquer strategy results in 
natural concurrency, as different 
subproblems can be solved concurrently.

Example: Quicksort. 
Sorting a sequence A of n elements using 
the commonly used quicksort algorithm. 
We define a task as the work of partitioning 
a given subsequence. 
Fig also represents the task graph for the 
problem. 



Recursive decomp.: finding the minimum

Sometimes, it is possible to restructure a 
computation to make it amenable to 
recursive decomposition even if the 
commonly used algorithm for the 
problem is not based on the divide-and-
conquer strategy. 
Example:  the problem of finding the 
minimum element in an unordered 
sequence A of n elements. 

The serial algorithm for solving this 
problem scans the entire sequence A, 
recording at each step the minimum 
element found so far as illustrated in the 
following serial algorithm. 
Once we restructure this computation as a 
divide-and-conquer algorithm, we can use 
recursive decomposition to extract 
concurrency. 
A recursive program for finding the 
minimum in an array of numbers A of 
length n:

procedure RECURSIVE_MIN (A, 
n)

begin
if (n = 1) then
min := A[0];
else
lmin := RECURSIVE_MIN (A, n/2);
rmin := RECURSIVE_MIN 

(&(A[n/2]), n - n/2);
if (lmin < rmin) then
min := lmin;
else
min := rmin;
endelse;
endelse;
return min;
end RECURSIVE_MIN



Recursive decomp.: finding the minimum

In this algorithm, 
A is split into two subsequences, 
each of size n/2, 
find the minimum for each of these 
subsequences by performing a 
recursive call. 
Now the overall minimum element is 
found by selecting the minimum of 
these two subsequences. 
The recursion terminates when there 
is only one element left in each 
subsequence. 

It is easy to construct a task-
dependency graph for this problem. 
Fig. illustrates a task-dependency 
graph for finding the minimum of 
eight numbers where each task is 
assigned the work of finding the 
minimum of two numbers.

The task-dependency graph for 
finding the minimum number in the 
sequence {4, 9, 1, 7, 8, 11, 2, 12}.
Each node in the tree represents the 
task of finding the minimum of a pair 
of numbers.



Data Decomposition

Is a powerful and commonly used method for deriving concurrency in 
algorithms that operate on large data structures.
The decomposition of computations is done in two steps. 
1. The data on which the computations are performed is partitioned,
2. This data partitioning is used to induce a partitioning of the computations into 

tasks. 
The operations that these tasks perform on different data partitions are 
usually similar (e.g., matrix multiplication that follows) or are chosen 
from a small set of operations (e.g., LU factorization).
One must explore and evaluate all possible ways of partitioning the 
data and determine which one yields a natural and efficient 
computational decomposition.
Partitioning Output Data. 

In many computations, each element of the output can be computed
independently of others as a function of the input. 
In such computations, a partitioning of the output data automatically induces 
a decomposition of the problems into tasks

each task is assigned the work of computing a portion of the output.



Example 1 for partitioning the output data

Matrix multiplication 
Consider the problem of 
multiplying two n x n matrices A 
and B to yield a matrix C. 
Fig. shows a decomposition of 
this problem into four tasks. 
Each matrix is considered to be 
composed of 4 blocks or sub-
matrices defined by splitting 
each dim. of the matrix into half. 
The 4 submatrices of C, roughly 
of size n/2 x n/2 each, are then 
independently computed by 4 
tasks as the sums of the 
appropriate products of 
submatrices of A and B.

(a) Partitioning of input and output 
matrices into 2 x 2 
submatrices. 

(b) A decomposition of matrix 
multiplication into four tasks 
based on the partitioning of the 
matrices 



Example 1 for partitioning the output data

Most matrix algs, including matrix-vector and 
matrix-matrix multiplication, can be formulated 
in terms of block matrix operations. 

The matrix is viewed as composed of blocks or 
submatrices and the scalar arithmetic ops on its 
elements are replaced by the equivalent matrix 
ops on the blocks. 
The results of the element and the block versions 
of the algorithm are mathematically equivalent. 
Block versions of matrix algorithms are often used 
to aid decomposition.

Data-decomposition is distinct from the 
decomposition of the computation into tasks.

Although the two are often related, a given data-
decomposition does not result in a unique 
decomposition into tasks. 
Example, Fig. shows two other decompositions of 
matrix multiplication, each into eight tasks, 
corresponding to the same data-decomposition as 
used in previous Fig.



Example 2 for partitioning the output data
Computing frequencies of itemsets in a 
transaction database. 
Given a set T containing n transactions and a set I 
containing m itemsets. 
Each transaction and itemset contains a small no. 
items, out of a possible set of items. 
Example: T is a grocery stores database of 
customer sales with each transaction being an 
individual grocery list of a shopper &  itemset could 
be a group of items in the store. 

If the store desires to find out how many customers 
bought each of the designated groups of items, then it 
would need to find the no. times that each itemset in I 
appears in all the transactions (the no. transactions of 
which each itemset is a subset of)

Fig. (a) shows an example 
The database shown consists of 10 transactions, and 
We are interested in computing the frequency of the 8 
itemsets shown in the second column. 
The actual frequencies of these itemsets in the 
database (output) are shown in the third column. 
For instance, itemset {D, K} appears twice, once in the 
second and once in the ninth transaction.

Fig. (b) shows how the computation of frequencies 
of the itemsets can be decomposed into 2 tasks 

by partitioning the output into 2 parts and having each 
task compute its half of the frequencies. 



Partitioning input data
Remark: Partitioning of output data can be performed only if each output can 
be naturally computed as a function of the input. 

In many algorithms, it is not possible or desirable to partition the output data.
For example:

While finding the minimum, maximum, or the sum of a set of numbers, the output is a 
single unknown value. 
In a sorting algorithm, the individual elements of the output cannot be efficiently 
determined in isolation. 

It is sometimes possible to partition the input data, and then use this 
partitioning to induce concurrency.

A task is created for each partition of the input data and this task performs as much 
computation as possible using these local data. 
Solutions to tasks induced by input partitions may not directly solve original probl.

In such cases, a follow-up computation is needed to combine the results. 
Example: finding the sum of N numbers using p processes (N > p): 

we can partition the input into p subsets of nearly equal sizes. 
Each task then computes the sum of the numbers in one of the subsets. 
Finally, the p partial results can be added up to yield the final result.



Example for input data partitioning
The problem of computing the 
frequency of a set of itemsets
Can also be decomposed based 
on a partitioning of input data. 
Fig. shows a decomposition 
based on a partitioning of the 
input set of transactions. 

Each of the two tasks computes 
the frequencies of all the 
itemsets in its respective subset 
of transactions. 
The two sets of frequencies, 
which are the independent 
outputs of the two tasks, 
represent intermediate results.
Combining the intermediate 
results by pairwise addition 
yields the final result.



Partitioning both Input and Output Data

In some cases, in which it is 
possible to partition the output data, 
partitioning of input data can offer 
additional concurrency. 
Example: consider the 4-way 
decomposition shown in Fig. for 
computing itemset frequencies.

both the transaction set and the 
frequencies are divided into two 
parts and a different one of the four 
possible combinations is assigned to 
each of the four tasks. 
Each task then computes a local set 
of frequencies. 
Finally, the outputs of Tasks 1 and 3 
are added together, as are the 
outputs of Tasks 2 and 4.



Partitioning Intermediate Data
Partitioning intermediate data can sometimes 
lead to higher concurrency than partitioning 
input or output data. 
Often, the intermediate data are not 
generated explicitly in the serial alg. for 
solving the problem

⇒ Some restructuring of the original alg. may 
be required to use intermediate data 
partitioning to induce a decomposition.
Example: matrix multiplication

Recall that the decompositions induced by a 2 
x 2 partitioning of the output matrix C have a 
maximum degree of concurrency of four. 
Increase the degree of concurrency by 
introducing an intermediate stage in which 8 
tasks compute their respective product 
submatrices and store the results in a 
temporary 3-d matrix D, as shown in Fig. 
Submatrix Dk,i,j is the product of Ai,k and Bk,j.



Partitioning Intermediate Data - example

A partitioning of the intermediate matrix 
D induces a decomposition into eight 
tasks. Decomposition (see Fig.)
After the multiplication phase, a 
relatively inexpensive matrix addition 
step can compute the result matrix C. 
All submatrices D*,i,j with the same 
second and third dimensions i and j are 
added to yield Ci,j. 
The eight tasks numbered 1 through 8 in 
Fig. perform O(n3/8) work each in 
multiplying n/2 x n/2 submatrices of A 
and B. 
Then, four tasks numbered 9 through 12 
spend O(n2/4) time each in adding the 
appropriate n/2 x n/2 submatrices of the 
intermediate matrix D to yield the final 
result matrix C. 
Second Fig.  shows the task-
dependency graph



Data decomp.: the Owner-Computes Rule

A decomposition based on partitioning output or input data is also 
widely referred to as the owner-computes rule. 
The idea behind this rule is that each partition performs all the 
computations involving data that it owns. 
Depending on the nature of the data or the type of data-partitioning, 
the owner-computes rule may mean different things:

When we assign partitions of the input data to tasks, then the owner-
computes rule means that a task performs all the computations that 
can be done using these data. 
If we partition the output data, then the owner-computes rule means 
that a task computes all the data in the partition assigned to it.



Exploratory Decomposition
Is used to decompose problems whose underlying computations correspond 
to a search of a space for solutions. 
Partition the search space into smaller parts, and search each one of these 
parts concurrently, until the desired solutions are found. 
Example: consider the 15-puzzle problem.

Consists of 15 tiles numbered 1 through 15 and one blank tile placed in a 4 x 4 grid. 
A tile can be moved into the blank position from a position adjacent to it, thus 
creating a blank in the tile's original position. 
Four moves are possible: up, down, left, and right. 
The initial and final configurations of the tiles are specified.
The objective is to determine any sequence or a shortest sequence of moves that 
transforms the initial configuration to the final configuration.
Fig. illustrates sample initial and final configurations and a sequence of moves 
leading from the initial configuration to the final configuration.



Ex. Exploratory Decomposition: puzzle
The puzzle is typically solved using tree-search techniques. 

Starting from the initial configuration, all possible successor configurations are generated. 
A configuration may have 2, 3, or 4 possible successor configurations, each corresponding to 
the occupation of the empty slot by one of its neighbors. 
The task of finding a path from initial to final configuration now translates to finding a path from 
one of these newly generated configurations to the final configuration. 
Since one of these newly generated configurations must be closer to the solution by one move 
(if a solution exists), we have made some progress towards finding the solution. 

The configuration space generated by the tree search is the state space graph. 
Each node of the graph is a configuration and each edge of the graph connects configurations 
that can be reached from one another by a single move of a tile.

One method for solving this problem in parallel:
First, a few levels of configurations starting from the initial configuration are generated serially 
until the search tree has a sufficient number of leaf nodes 
Now each node is assigned to a task to explore further until at least one of them finds a sol. 
As soon as one of the concurrent tasks finds a solution it can inform the others to terminate 
their searches. 

Figure illustrates 
one such decomposition 
into four tasks 
in which task 4 finds the solution.



Exploratory vs. data decomposition
The tasks induced by data-decomposition are performed in their entirety & 
each task performs useful computations towards the solution of the prob. 
In exploratory decomposition, unfinished tasks can be terminated as soon as 
an overall solution is found. 

Portion of the search space searched (& the aggregate amount of work performed) 
by a parallel formulation can be different from that searched by a serial alg. 
The work performed by the parallel formulation can be either smaller or greater than 
that performed by the serial algorithm.

Example: consider a search space that has been partitioned into four 
concurrent tasks as shown in Fig. 

If the solution lies right at the beginning of the search space corresponding to task 3 
(Fig. (a)), then it will be found almost immediately by the parallel formulation. 
The serial algorithm would have found the solution only after performing work 
equivalent to searching the entire space corresponding to tasks 1 and 2. 
On the other hand, if the solution lies towards the end of the search space 
corresponding to task 1 (Fig (b)), then the parallel formulation will perform almost 
four times the work of the serial algorithm and will yield no speedup.



Speculative Decomposition
Is used when a program may take one of many possible computationally significant 
branches depending on the output of other computations that precede it. 

While one task is performing the computation whose output is used in deciding the next 
computation, other tasks can concurrently start the computations of the next stage. 

This scenario is similar to evaluating one or more of the branches of a switch statement in 
C in parallel before the input for the switch is available. 

While one task is performing the computation that will eventually resolve the switch, other tasks 
could pick up the multiple branches of the switch in parallel. 
When the input for the switch has finally been computed, the computation corresponding to the 
correct branch would be used while that corresponding to the other branches would be discarded. 
The parallel run time is smaller than the serial run time by the amount of time required to evaluate 
the condition on which the next task depends because this time is utilized to perform a useful 
computation for the next stage in parallel. 

This parallel formulation of a switch guarantees at least some wasteful computation. 
In order to minimize the wasted computation, a slightly different formulation of speculative 
decomposition could be used, especially in situations where one of the outcomes of the 
switch is more likely than the others. 

In this case, only the most promising branch is taken up a task in parallel with the preceding 
computation. 
In case the outcome of the switch is different from what was anticipated, the computation is rolled 
back and the correct branch of the switch is taken.
The speedup due to speculative decomposition can add up if there are multiple speculative stages 



Example for Speculative Decomposition
Parallel discrete event simulation. 
Consider the simulation of a system that is represented as a network or a directed graph. 

The nodes of this network represent components. 
Each component has an input buffer of jobs. 
The initial state of each component or node is idle. 

An idle component 
picks up a job from its input queue, if there is one, 
processes that job in some finite amount of time, and 
puts it in the input buffer of the components which are connected to it by outgoing edges. 

A component has to wait if the input buffer of one of its outgoing neighbors if full, until that neighbor 
picks up a job to create space in the buffer. 
The output of a component (and hence the input to the components connected to it) and the time it 
takes to process a job is a function of the input job. 
The problem: simulate the functioning of the network for a given sequence or a set of sequences of 
input jobs and compute the total completion time and possibly other aspects of system behavior. 
Fig. shows a simple network for a discrete event solution problem.
Define speculative tasks that start simulating a subpart of the network, each assuming one of 
several possible inputs to that stage. 
When an actual input to a certain stage becomes available (as a result of the completion of another 
selector task from a previous stage), then all or part  of the work required to simulate this input 
would have  already been finished 
if the speculation was correct, 
or the simulation of this stage is restarted 
with the most recent correct input 
if the speculation was incorrect.



Speculative vs. exploratory decomposition
In exploratory decomposition

the output of the multiple tasks originating at a branch is unknown. 
the serial algorithm may explore different alternatives one after the 
other, because the branch that may lead to the solution is not known 
beforehand

⇒ the parallel program may perform more, less, or the same amount of 
aggregate work compared to the serial algorithm depending on the
location of the solution in the search space.

In speculative decomposition
the input at a branch leading to multiple parallel tasks is unknown 
the serial algorithm would strictly perform only one of the tasks at a 
speculative stage because when it reaches the beginning of that stage, 
it knows exactly which branch to take. 

⇒ a parallel program employing speculative decomposition performs more 
aggregate work than its serial counterpart. 



Hybrid Decompositions
Decomposition techs are not exclusive, and can often be combined together. 

Often, a computation is structured into multiple stages and it is sometimes necessary 
to apply different types of decomposition in different stages. 

Example 1: while finding the minimum of a large set of n numbers, 
a purely recursive decomposition may result in far more tasks than the number of 
processes, P, available. 
An efficient decomposition would partition the input into P roughly equal parts and 
have each task compute the minimum of the sequence assigned to it. 
The final result can be obtained by finding the minimum of the P intermediate results 
by using the recursive decomposition shown in Fig

Example 2: quicksort in parallel. 
Used a recursive decomposition to derive a concurrent formulation of quicksort. 

This formulation results in O(n) tasks for the problem of sorting a sequence of size n. 
But due to the dependencies among these tasks and due to uneven sizes of the tasks, the 
effective concurrency is quite limited.
For example, the first task for splitting the input list into two parts takes O(n) time, which puts 
an upper limit on the performance gain possible via parallelization. 

The step of splitting lists performed by tasks in parallel quicksort can also be 
decomposed using the input decomposition technique. 

The resulting hybrid decomposition that combines recursive decomposition and the input 
data-decomposition leads to a highly concurrent formulation of quicksort.



Orchestration by an example
Simplified version of a piece or kernel of Ocean problem: its equation solver. 
It uses the equation solver to dig deeper and illustrate how to implement a parallel 
program using the three programming models.
The equation solver kernel solves a simple partial differential equation on a grid, using 
what is referred to as a finite differencing method. 
It operates on a regular, 2-d grid or array of (n+2)-by-(n+2) elements, such as a single 
horizontal cross-section of the ocean basin in Ocean. 
The border rows and columns of the grid contain boundary values that do not change, 
while the interior n-by-n points are updated by the solver starting from their initial values. 
The computation proceeds over a number of sweeps. 
In each sweep, it operates on all the elements of the grid, for each element replacing its 
value with a weighted average of itself and its four nearest neighbor elements (above, 
below, left and right). 
The updates are done in-place in the grid, so a point sees the new values of the points 
above and to the left of it, and the old values of the points below it and to its right. 
This form of update is called the Gauss-Seidel method.
During each sweep the kernel also computes the average difference of an updated 
element from its previous value. 
If this average difference over all elements is smaller than a predefined “tolerance”
parameter, the solution is said to have converged & solver exits at the end of the sweep. 
Otherwise, it performs another sweep and tests for convergence again.



Example - decomposition

Sequential:

float diff = 0, temp;
while (!done) do 

/*outermost loop over sweeps */
diff = 0; /* initialize max.diff. to 0 */
for i >=1 to n do 
/* sweep over non-border points of grid */
for j >= 1 to n do
temp = A[i,j]; /* save old value of elem*/
A[i,j] <- 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 

A[i,j+1] + A[i+1,j]);
/*compute average */
diff += abs(A[i,j] - temp);
end for
end for

Decomposition
For programs that are structured in successive loops or 
loop nests, a simple way to identify concurrency is to 
start from the loop structure itself. 
Examine the individual loops or loop nests in the 
program one at a time, see if their iterations can be 
performed in parallel, & determine whether this exposes 
enough concurrency. 

Each iteration of the outermost loop, sweeps through the 
entire grid. 
These iterations clearly are not independent, since data that 
are modified in one iteration are accessed in the next. 

Look at the inner loop first (the j loop). 
Each iteration of this loop reads the grid point (A[i,j-1]) that 
was written in the previous iteration. 
The iterations are therefore sequentially dependent, and we 
call this a sequential loop. 
The outer loop of this nest is also sequential, since the 
elements in row i-1 were written in the previous (i-1th) 
iteration of this loop. 

So this simple analysis of existing loops and their 
dependences uncovers no concurrency in this case.



Example - decomposition approaches
An alternative to relying on program structure to find concurrency is to go back to the fundamental 
dependences in the underlying algorithms used, regardless of program or loop structure. 
Look at the fundamental data dependences at the granularity of individual grid points. 

Computing a particular grid point in the sequential program uses the updated values of the grid points directly 
above and to the left. 
Elements along a given anti-diagonal (south-west to north-east) have no dependences among them and can 
be computed in parallel, while the points in the next anti-diagonal depend on some points in the previous one. 

From this diagram, we can observe that of the work involved in each sweep, there a sequential 
dependence proportional to n along the diagonal and inherent concurrency proportional to n.
Decompose the work into individual grid points, so updating a single grid point is a task.
Approach 1: 

Leave the loop structure of the program as it is
Insert point-to-point synchronization to ensure that a grid point has been produced in the current sweep 
before it is used by the points to the right of or below it. 
Different loop nests and even different sweeps might be in progress simultaneously on different elements, as 
long as the element-level dependences are not violated. 
The overhead of this synchronization at grid-point level may be too high. 

Approach 2:
Change the loops: outer loop be over antidiagonals & inner loop be over elements within an anti-diagonal. 
The inner loop can now be executed completely in parallel, with global synchronization between iterations of 
the outer for loop to preserve dependences conservatively across antidiagonals.
Global synchronization is still very frequent: once per antidiagonal.
Also, the number of iterations in the parallel (inner) loop changes with successive outer loop iterations, 
causing load imbalances among processors especially in the shorter antidiagonals.

Because of the frequency of synchronization, the load imbalances, and the programming 
complexity, neither of these approaches is used much on modern architectures.



Example – red-black ordering
Approach 3:  exploiting knowledge of the problem beyond the sequential program itself. 
Gauss-Seidel solution: iterates until convergence, we can update the grid points in a 
different order as long as we use updated values for grid points frequently enough.
One such ordering that is used often for parallel versions is called red-black ordering. 

The idea here is to separate the grid points into alternating red points and black points as on a 
checkerboard, so that no red point is adjacent to a black point or vice versa.
To compute a red point we do not need the updated value of any other red point, but only the 
updated values of the above and left black points (in a standard sweep), and vice versa. 
We can therefore divide a grid sweep into two phases: first computing all red points and then 
computing all black points.
Within each phase there are no dependences among grid points, so we can compute all red 
points in parallel, then synchronize globally, and then compute all black points in parallel. 
Global synchronization is conservative and can be replaced by point-to-point synchronization at 
the level of grid points—since not all black points need to wait for all red points to be
computed—but it is convenient.

The red-black ordering is different from our original sequential ordering, and can 
therefore both converge in fewer or more sweeps as well as produce different final 
values for the grid points (though still within the convergence tolerance). 
Even if we don’t use updated values from the current while loop iteration for any grid 
points, and we always use the values as they were at the end of the previous while loop 
iteration, the system will still converge, only much slower. 

This is called Jacobi rather than Gauss-Seidel iteration. 



Example – assignment 

Static assignment:
The simplest option is a static (predetermined) assignment in 
which each processor is responsible for a contiguous block of 
rows: block assignment
Alternative: cyclic assignment in which rows are interleaved 
among processes. 

Dynamic assignment:
each process repeatedly grabs the next available (not yet 
computed) row after it finishes with a row task 
it is not predetermined which process computes which rows. 

Static block assignment. 
Exhibits good load balance across processes as long as the 
number of rows is divisible by the number of processes, since 
the work per row is uniform. 



Orchestration under the Data Parallel Model
Diff from sequential code:

Dynamically allocated shared data, are allocated with a 
G_MALLOC (global malloc) call rather than a regular malloc. 
Use DECOMP statement, 
Use of for_all loops instead of for loops, 
Use of a private mydiff variable per process, and 
Use of a REDUCE statement. 

for_all specify: iterations performed in parallel. 
DECOMP statement has a two-fold purpose.

assignment of the iterations to processes: 
[BLOCK, *, nprocs] assignment: the 1st dim (rows) is 
partitioned into contiguous pieces among the nprocs
processes, & 2nd dimension is not partitioned at all. 
[CYCLIC, *, nprocs] would have implied a cyclic or 
interleaved partitioning of rows among nprocs processes,
[BLOCK, BLOCK, nprocs] a subblock decomposition,
[*, CYCLIC, nprocs] interleaved partitioning of columns. 

specifies how the grid data should be distributed 
among memories on a distributed memory machine

mydiff variable is used to allow each process to 
first independently compute the sum of the 
difference values for its assigned grid points.  
REDUCE: directs the system to add all their partial 
mydiff values together into the shared diff variable. 

The reduction op may be implemented in a library in a manner 
best suited to the underlying architecture.

int n, nprocs; 
/* grid size (n+2-by-n+2) and number of processes*/
float **A, diff = 0;
main()
begin
read(n); read(nprocs);; /* read input grid size and no.processes*/
A <-G_MALLOC (a 2-d array of size n+2 by n+2 doubles);
initialize(A); /* initialize the matrix A somehow */
Solve (A); /* call the routine to solve equation*/
end main
procedure Solve(A) /* solve the equation system */
float **A; /* A is an n+2 by n+2 array*/
begin
int i, j, done = 0;
float mydiff = 0, temp;
DECOMP A[BLOCK,*];
while (!done) do /* outermost loop over sweeps */
mydiff = 0; /* initialize maximum difference to 0 */
for_all i >=1 to n do /* sweep over non-border points of grid */
for_all j >=1 to n do
temp = A[i,j]; /* save old value of element */
A[i,j] <- 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
A[i,j+1] + A[i+1,j]); /*compute average */
mydiff += abs(A[i,j] - temp);
end for_all
end for_all
REDUCE (mydiff, diff, ADD);
if (diff/(n*n) < TOL) then done = 1;
end while
end procedure



Orchestration under the Shared Address Space Model

Declare the matrix A as a single 
shared arra
Processes can reference the parts of 
it they need using loads and stores 
with exactly the same array indices 
as in a sequential program. 
Communication will be generated 
implicitly as necessary. 
With explicit parallel processes we 
now need mechanisms to:

create the processes,
coordinate them through 
synchronization, and 
control the assignment.

Differences from the sequential code 
are shown in italicized bold font
Comments: in the textbook

1. int n, nprocs; /* matrix dimension and number of processors to be used */
2a. float **A, diff; /*A is global (shared) array representing the grid */
/* diff is global (shared) maximum difference in current sweep */
2b. LOCKDEC(diff_lock); /* declaration of lock to enforce mutual exclusion */
2c. BARDEC (bar1); /* barrier declaration for global sync between sweeps*/
3. main()
4. begin
5. read(n); read(nprocs); /* read input matrix size and number of processes*/
6. A <-G_MALLOC (a two-dimensional array of size n+2 by n+2 doubles);
7. initialize(A); /* initialize A in an unspecified way*/
8a. CREATE (nprocs-1, Solve, A);
8 Solve(A); /* main process becomes a worker too*/
8b. WAIT_FOR_END; /* wait for all child processes created to terminate */
9. end main
10. procedure Solve(A)
11. float **A; /*A is a n+2-by-n+2 shared array,as in the sequential program */
12. begin
13. int i,j, pid, done = 0;
14. float temp, mydiff = 0; /* private variables/
14a. int mymin <-1 + (pid * n/nprocs); /*assume that n is divisible by */
14b. int mymax <- mymin + n/nprocs - 1; /* nprocs for simplicity here*/
15. while (!done) do /* outer loop over all diagonal elements */
16. mydiff = diff = 0; /* set global diff to 0 (okay for all to do it) */
17. for i >=mymin to mymax do /* for each of my rows */
18. for j >=1 to n do /* for all elements in that row */
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24. endfor
25a. LOCK(diff_lock); /* update global diff if necessary */
25b. diff += mydiff;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1,nprocs);/* ensure all have got here before checking if done*/
25e. if (diff/(n*n)<TOL) then done=1; /*check convergence;all get same answer*/
25f. BARRIER(bar1, nprocs); /* see Exercise c */
26. endwhile
27.end procedure



Orchestration under the Message Passing Model

1. int pid, n, nprocs; /* process id, matrix dimension & no. 
processors to be used */

2. float **myA;
3. main()
4. begin
5. read(n); read(nprocs); /* read input matrix size and number of 

processes*/
8a. CREATE (nprocs-1 processes that start at procedure Solve);
8b. Solve(); /* main process becomes a worker too*/
8c. WAIT_FOR_END; /* wait for all child processes created to 

terminate */
9. end main
10. procedure Solve()
11. begin
13. int i,j, pid, n’ = n/nprocs, done = 0;
14. float temp, tempdiff, mydiff = 0; /* private variables/
6. myA <-malloc(2d array of size[n/nprocs+2] by n+2);/*my 

assigned rows of A */
7. initialize(myA); /* initialize my rows of A, in an unspecified way*/
15.while (!done) do
16. mydiff = 0; /* set local diff to 0 */
16a.if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);
16b. if (pid = nprocs-1) then 

SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);
16c. if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-

1,ROW);
16d. if (pid != nprocs-1) then 

RECEIVE(&myA[n’+1,0],n*sizeof(float),pid+1,ROW);
/*border rows of neighbors have now been copied into myA[0,*] 

and myA[n’+1,*]*/

17. for i >=1 to n’ do /* for each of my rows */
18. for j >=1 to n do /* for all elements in that row */
19. temp = myA[i,j];
20. myA[i,j] <- 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]);
22. mydiff += abs(myA[i,j] - temp);
23. endfor
24. endfor
/* communicate local diff values and obtain determine if done; 

can be replaced
by reduction and broadcast */
25a. if (pid != 0) then /* process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF);
25c. RECEIVE(mydiff,sizeof(float),0,DONE);
25d. else
25e. for i >=1 to nprocs-1 do /* for each of my rows */
25f. RECEIVE(tempdiff,sizeof(float),*,DONE);
25g. mydiff += tempdiff; /* accumulate into total */
25h. endfor
25i. for i >=1 to nprocs-1 do /* for each of my rows */
25j. SEND(done,sizeof(int),i,DONE);
25k. endfor
25l. endif
26. if (mydiff/(n*n) < TOL) then done = 1;
27. endwhile
28. end procedure

Comments: in the textbook


