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Parallel computers



Parallel computer

 A parallel computer is a collection of processing 
elements that cooperate and communicate to solve 
large problems fast

=>Questions:
1. How large a collection are we talking about?

2. How powerful are the individual processing elements and can 
the number be increased in a straight-forward manner?

3. How do they cooperate and communicate?

4. How are data transmitted between processors, what sort of 
interconnection is provided, and what operations are available 
to sequence the actions carried out on different processors?

5. What are the primitive abstractions that the hardware and 
software provide to the programmer?

6. How does it all translate into performance?



General comments 

 parallel machines occupy a rich and diverse design space: from 
small to very large

 field of parallel processing: 
 concerned with architectural and algorithmic methods for enhancing 

the performance or other attributes (e.g. reliability) of computers 
through various forms of concurrency

 History changes:
 30 years ago: parallel computing has emerged from the enclaves of 

research institutions and cutting edge technology firms
 mid1990s: rare and for solving critical problems

 today most personal computers arrive prebuilt with multiple 
processing units:
 proliferation of 64 processor systems

 multiple processor cores on a single silicon die, parallel computers are 
becoming ubiquitous.



Term clarification

 Parallel processing, in the literal sense of the term, is used in virtually 
every modern computer:

 overlapping I/O with computation is a form of parallel processing, 

 the overlap between instruction preparation and execution in a 
pipelined processor. 

 use of multiple functional units (e.g., separate integer and floating-point 
ALUs or two floating-point multipliers in one ALU) 

 multitasking (which allows overlap between computation and memory 
load necessitated by a page fault). 

 Horizontal microprogramming, and its higher-level incarnation in very-
long-instruction-word (VLIW) computers, also allows some parallelism. 

 In this lecture, 

the term parallel processing is used in a restricted sense:

 of having multiple (usually identical) processors for the main 
computation and not for the I/O or other peripheral activities.



Why parallel computing?



Big effort

Development of parallel software has 

traditionally been thought of as time and 

effort intensive, due to:

 inherent complexity of specifying and coordinating 

concurrent tasks, 

 a lack of portable algorithms, standardized 

environments, and software development toolkits. 



Motivations for parallel processing

1. Higher speed, or solving problems faster. 

 This is important when applications have “hard” or “soft” 
deadlines. 

 For example, we have at most a few hours of computation time 
to do 24-hour weather forecasting or to produce timely tornado 
warnings.

2. Higher computational power, or solving larger problems. 

 Carry out simulation runs for longer periods of time (e.g., 5-day, 
as opposed to 24-hour, weather forecasting).

3. Higher throughput, or solving more instances of given 
problems. 

 Important when many similar tasks must be performed. 

 For example, banks and airlines, among others, use transaction 
processing systems that handle large volumes of data.



Ultimate figure-of-merit: speed-up

 The computation speed-up factor with respect to a uniprocessor.

 The ultimate efficiency in parallel systems is to achieve a computation 
speed-up factor of p with p processors. 

 Although in many cases this ideal cannot be achieved, some speed-up is 
generally possible. 

 The actual gain in speed depends on the architecture used for the system 
and the algorithm run on it. 

 For a task that is impossible to perform on a single processor in view of 
its excessive running time, the computation speed-up factor can rightly 
be taken to be larger than p or even infinite.

 Analogue of several men moving a heavy piece of machinery or furniture 
in a few minutes, whereas one of them could not move it at all, 

 Referred as parallel synergy.



Faster = better?

 Market advantage

 Save lives

 Make the impossible possible

 Environmental modeling

 Space exploration

 Biological reasearch



Moore’s law

 The growth of microprocessor speed/performance by 
a factor of 2 every 18 months (or about 60% per year) 
is known as Moore’s law. 

 This growth is the result of a combination of two 
factors:

1. Increase in complexity (related both to higher device 
density and to larger size) of VLSI chips

2. Introduction of, and improvements in, architectural 
features such as 

 on-chip cache memories, large instruction buffers, multiple 
instruction issue per cycle, multithreading, deep pipelines, out-
of-order instruction execution.



Moore’s law: based on empirics

 1965: reasoning was based on an empirical log-

linear relationship between device complexity and 

time, observed over three data points.

 the empirical relationship has been amazingly 

resilient over the years both for microprocessors as 

well as for DRAMs. 

 The law has been extrapolated to state that the 

amount of computing power available at a given 

cost doubles approximately every 18 months.



Limitations of Moore’s law

 physical limit is imposed by the finite speed of 

signal propagation along a wire:

 This is sometimes referred to as the speed-of-

light argument (or limit)

 In the context of parallel computing 

motivation, this is the computational power 

argument



Speed-of-light argument

 The speed of light is about 30 cm/ns.

 Signals travel on a wire at a fraction of the speed of light. 

 If the chip diameter is 3 cm, say, any computation that involves 
signal transmission from one end of the chip to another cannot 
be executed faster than 1010 times per second. 

 Reducing distances by a factor of 10 or even 100 will only 
increase the limit by these factors; we still cannot go beyond 1012

computations per second. 

 To relate the above limit to the instruction execution rate (MIPS 
or FLOPS), we need to estimate the distance that signals must 
travel within an instruction cycle. 

 We are in fact not very far from limits imposed by the speed of 
signal propagation and several other physical laws.



Consequence

 The speed-of-light argument suggests that once the above limit 
has been reached, the only path to improved performance is the 
use of multiple processors. 

 Of course, the same argument can be invoked to conclude that 
any parallel processor will also be limited by the speed at 
which the various processors can communicate with each 
other. 

 However, because such communication does not have to occur 
for every low-level computation, the limit is less serious here. 

 For many applications, a large number of computation steps can 
be performed between two successive communication steps, 
thus amortizing the communication overhead.



The Memory/Disk Speed Argument

 The overall speed of computation is determined not 
just by the speed of the processor, but also by the 
ability of the memory system to feed data to it. 

 While clock rates of high-end processors have 
increased at roughly 40% per year over the past 
decade, DRAM access times have only improved at 
the rate of roughly 10% per year over this interval.

 Coupled with increases in instructions executed per 
clock cycle, this gap between processor speed and 
memory presents a tremendous performance 
bottleneck.



The Memory/Disk Speed Argument

 The overall performance of the memory system is 

determined by the fraction of the total memory 

requests that can be satisfied from the cache.

 Parallel platforms typically yield better memory 

system performance because they provide 

(i) larger aggregate caches, and 

(ii) higher aggregate bandwidth to the memory system 

(both typically linear in the number of processors).

 The heart of parallel algorithms: locality of data 

reference



Data Communication Argument

 As the networking infrastructure evolves, the vision of using the 
Internet as one large heterogeneous parallel/distributed 
computing environment has begun to take shape.

 In many applications there are constraints on the location of data 
and/or resources across the Internet. 

 An example of such an application is mining of large commercial 
datasets distributed over a relatively low bandwidth network. 

 In such applications, even if the computing power is available to 
accomplish the required task without resorting to parallel 
computing, it is infeasible to collect the data at a central location.

 In these cases, the motivation for parallelism comes not just from 
the need for computing resources but also from the infeasibility or 
undesirability of alternate (centralized) approaches.



Application examples



There exists a need to solve large problems

 Earth environment prediction

 Nuclear weapons testing

 Quantum chemistry

 Computational biology

 Data mining for large and very large data sets

 Astronomy and cosmology

 Cryptography

 Approximate algorithms for NP-complete problems

etc



Computer animation

 rendering is the step where information from the animation files, such 
as lighting, textures, and shading, is applied to 3D models to generate 
the 2D image that makes up a frame of the film. 

 parallel computing is essential to generate the needed no. of frames 
(24 fps) for a feature length film. 

 1995 - Pixar:  Toy Story, the first completely computer generated 
feature length film, was processed on a "renderfarm" consisting of 100 
dual processor machines. 

 1999 – Pixar: Toy Story 2, a 1400 processor system with the 
improvement in processing power fully reflected in the improved 
details in textures, clothing, and atmospheric effects. 

 2001: Monsters, Inc. used a system of 250 enterprise servers each 
containing 14 processors for a total of 3500 processors. 



Biological sciences

 have taken dramatic leaps forward with the 
availability of DNA sequence information from a 
variety of organisms, including humans. 

 Celera Corp.: whole genome shotgun algorithm. 
 The idea is to break the genome into small segments, 

experimentally determine the DNA sequences of the 
segments, and then use a computer to construct the entire 
sequence from the segments by finding overlapping areas. 

 The computing facilities used by Celera to sequence the 
human genome included 150 four way servers plus a 
server with 16 processors and 64GB of memory. 

 The calculation involved 500 million trillion base to base 
comparisons.



Astrophysics

 explored the evolution of galaxies, 

thermonuclear processes, and the analysis of 

extremely large datasets from telescopes.

 analyzing extremely large datasets. 

 Sky Survey datasets (such as the Sloan Digital 

Sky Surveys) represent some of the largest 

scientific datasets.

 Effectively analyzing these datasets requires 

tremendous computational power



Numerical simulations – an example

 To learn how the southern oceans transport heat to 
the South Pole, the following model has been 
developed: 
 The ocean is divided into 4096 regions E–W, 1024 regions 

N–S, and 12 layers in depth (50 M 3D cells). 

 A single iteration of the model simulates ocean circulation 
for 10 minutes and involves about 30B floating-point 
operations. 

 To carry out the simulation for 1 year, about 50,000 
iterations are required. 

 Simulation for 6 years would involve 1016 floating-point 
operations.



Engineering and Design

 design of airfoils: optimizing lift, drag, stability, 

 internal combustion engines: optimizing charge 

distribution, burn, 

 high-speed circuits: layouts for delays and 

capacitive and inductive effects, 

 structures: optimizing structural integrity, design 

parameters, cost, 

 design of microelectromechanical and 

nanoelectromechanical systems



Commercial applications

 cost-effective servers capable of providing scalable performance. 
 Parallel platforms ranging from multiprocessors to Linux clusters 

are frequently used as web and database servers.

 Large brokerage houses on Wall Street handle hundreds of 
thousands of simultaneous user sessions and millions of orders. 

 While not highly visible, some of the largest supercomputing 
networks are housed on Wall Street. 

 The availability of large-scale transaction data has also sparked 
considerable interest in data mining and analysis for optimizing 
business and marketing decisions: 
 Geographically distributed nature of this data require the use of 

parallel algorithms for such problems as association rule mining, 
clustering, classification, and time-series analysis.



Computer Systems

 In the case of network intrusion detection, data is 
collected at distributed sites and must be analyzed 
rapidly for signaling intrusion. 

 The infeasibility of collecting this data at a central 
location for analysis requires effective parallel and 
distributed algorithms. 

 In the area of cryptography, some of the most 
spectacular applications of Internet-based parallel 
computing have focused on factoring extremely 
large integers.

 A modern automobile consists of tens of processors 
communicating to perform complex tasks for 
optimizing handling and performance. 



Short history



Ups and downs | The beginning

 The history of parallel processing has had its ups 
and downs (company formations and bankruptcies) 
with what appears to be a 20-year cycle. 

 Serious interest in parallel processing started in 
1960s:

 ILLIAC IV, 

 designed at the University of Illinois 

 later built and operated by Burroughs Corporation, 

 the first large-scale parallel computer implemented; 

 its 2D-mesh architecture with a common control unit 
for all processors was based ontheories developed in 
the late 1950s. 

 It was to scale to 256 processors (4 quadrants of 64 
procs each).

 Only one 64-processor quadrant was eventually built, 

 It clearly demonstrated the feasibility of highly parallel 
computers  

 revealed some of the difficulties in their use.



Commercial interest

 resurfaced in the 1980s:
 Driven primarily by contracts from the defense establishment and 

other federal agencies in USA, numerous companies were 
formed to develop parallel systems. 

 Three factors led to another recess:
1. Government funding in the United States and other countries 

dried up, in part related to the end of the cold war.

2. Commercial users in banking and other data-intensive industries 
were either saturated or disappointed by application difficulties.

3. Microprocessors developed so fast in terms of performance/cost 
ratio that custom designed parallel machines always lagged in 
cost-effectiveness.

=> Many of the newly formed companies went bankrupt or shifted 
their focus to developing software for distributed (workstation 
cluster) applications.



Turning points 

 Latest 60s: remarkable turnover of vendors, architectures, technologies, 
and systems usage.

 Second half of 70s: introduction of vector computer systems marked the 
beginning of modern supercomputing

 First half of the 1980s the integration of vector systems into 
conventional computing environments

 Late 1980s: “attack of the killer micros” => usage of “off-the-shelf” 
microprocessors instead of custom processors for massively parallel 
systems

 Early 1990s, a new generation of massively parallel processor (MPP) 
systems came on the market, claiming to equal or even surpass the 
performance of vector multiprocessors.

 June 1993: Top500 list was begun to provide a more reliable basis for 
statistics on high-performance computers

 1994: SGI, Digital & Sun began selling symmetric multiprocessor (SMP) 
models in workstation families for industrial customers (e.g. IBM SP2)



Now we are in an up period!

 Driven by the Internet revolution and its associated 
“information providers,” a 3rd resurgence of parallel 
architectures is currently present. 

 Centralized, high-performance machines may be 
needed to satisfy the information processing/access 
needs of some of these providers.

 Parallel computing is more than just a strategy for 
achieving high performance— it is a compelling 
vision for how computation can seamlessly scale 
from a single processor to virtually limitless 
computing power.



To port or not to port



Porting a code to parallel architectures 

 is more than simply bringing up an existing 

code on a new machine.

 parallel machines are fundamentally different 

from their vector predecessors, 

 porting presents an opportunity to 

1. reformulate the basic code and data structures 

2. reassess the basic representation of the 

processes or dynamics involved.



Difficulty of the parallel programming task 

 the expression of an explicitly parallel program is difficult

 The developer must specify

 the computation and how it is to be partitioned among processors, 

 the synchronization and data movement needed to ensure that the 
program computes the correct answers and achieves high 
performance.

 the nature of high-end computing systems changes rapidly =>

 must be possible to express programs in a reasonably machine-
independent way, 

 In other words, parallel programs should be portable between 
different architectures. 

 this is a difficult ideal to achieve because the price of portability is 
often performance



Complexity of the problem

 A complicating factor for parallel computing 

 This complexity requires 

 extraordinary skill on the part of the application developer

 extraordinary flexibility in the developed applications. 

 Often this means that parallel programs will be 

developed using multiple programming paradigms 

and often multiple languages. 

 Interoperability is thus an important consideration in 

choosing the development language for a particular 

application component.



Portability is elusive

 At the beginning of parallel computing era, every vendor of 
parallel systems offered a different API

 This made it extremely difficult for developers of parallel 
applications (work repeated for each new parallel architecture). 

 The Message Passing Interface (MPI) standard

 Portability is not just a matter of implementing a standard 
interface: most users are interested in portable performance:

 the ability to achieve a high fraction of the performance possible 
on each machine from the same program image. 

 implementations of standard interfaces are not the same on each 
platform, portability, even for programs written in MPI, has not 
been automatically achieved. 

 The implementor must spend significant amounts of time tuning 
an application for each new platform. 



Algorithms are not always portable

 An algorithm does not always work well on every 

machine architecture. 

 The differences arise because of 

 the number and granularity of processors, 

 connectivity and bandwidth, and 

 the performance of the memory hierarchy on each 

individual processor. 

 Portable algorithm libraries must be parameterized 

to do algorithm selection based on the architecture 

on which the individual routines are to run



Parallelism isn’t everything

 The principal problem on scalable machines, 

other than parallelism, is data movement. 

 Second problem: the bandwidth from main 

memory of shared-memory multi-processors

 Algorithms and software have had to 

increasingly deal with memory hierarchy 

issues, which are now fundamental to parallel 

programming.



Community acceptance

 Technical excellence alone cannot guarantee that a 
new software approach will be successful. 

 To achieve widespread use, there has to be the 
expectation that a software system will survive the 
test of time. 

 Standards are an important part of this, but cannot 
alone guarantee success. 

 A case in point is HPF. 
 HPF failed to achieve the level of acceptance of MPI 

because the commercial compilers did not mature in time 
to gain the confidence of the community.

 OpenMP has succeeded because it targets the market, 
while HPF was focused on the high end.



Performance of parallel 

systems



Performance Metrics for Parallel Systs.

1. Basic raw performance

2. Machine efficiency

3. Hockney’s and Jesshope’s model for vector 

processing

4. Performance measurements and Top 500



Basic raw performance - Flops

 The processing speed of computers involved in scientific calculations is 
usually expressed in terms of a no. of floating-point operations 
completed per second, 
 a measure used to describe the computational power of the world’s largest 

supercomputers. 

 For a long time, the basic measure was Mflops expressed as: r =N / t 
Mflops where N represents a number of floating-point operations 
executed in t seconds. 
 When N floating-point operations is executed with an average speed of r 

Mflops, the execution time of a given algorithm can be  expressed as: t = N/r.

 The Mflop measure has been superseded by higher-order measures: 
 Gflops (gigaflops), 

 Tflops (teraflops), 

 Pflops (petaflops) = 1015 floating-point operations per second. 

 The floating-point operations rate can be used to characterize an 
algorithm executing on a given machine independently of the particular 
characteristics of the hardware, on which the algorithm is executed, as 
well as to describe the hardware itself. 



Raw performance in 2025

Your 

laptop

Today’s

supercomputers



Basic raw performance – Peak performance

 Many vendors of parallel computers advertise a 
theoretical peak performance for their machines

 This is the maximum speed with which any 
algorithm can be potentially executed on their 
hardware. 

 In computational practice (outside of special 
simplified cases, such as matrix multiplication), this 
performance is unattainable. 

 At the same time, however, it indicates what 
performance can potentially be expected from a 
given machine.



Basic raw performance – Benchmarks

 There are several industry standard benchmark programs 
 Such as Whetstone, ScaLAPACK and LINPACK benchmarks. 

 Used extensively in all advanced computer system evaluations.

 Specific benchmarks have been developed to evaluate shared, 
distributed, and hybrid memory parallel computers: - vary from:
 simple parallel loops to measure the ability of parallelizing 

compilers 

 PERFECT benchmark which consists of thirteen programs 
including several fluid dynamics programs, 

 Genesis consisting of FFTs, partial differential equations, 
molecular dynamics, and linear algebra. 

 Particularly popular set of benchmarks developed at NASA: 
 the NAS parallel benchmarks: a suite of 8 programs with 3 versions 

for serial, machine-dependent, and MPI-based implementations 

 http://www.nas.nasa.gov/Software/NPB.



Machine efficiency – theoretical performance

 The runtime measurements described above give an absolute 
measurement of the computation time used by the program. 

 interesting to know how efficient these computations actually are!

 The efficiency is the ratio between the actual performance and the 
theoretical performance of a system.

 The theoretical performance of a superscalar computer is 
calculated as follows: Rpeak = ncores · nFPU · f , where 

 ncores is the number of computing cores of the computer, 

 nFPU is the number of floating-point units per core, and 

 f is the clock frequency. 

 Example: for a Pentium D 830 with 2 cores, 2 FPUs per core, clock 
frequency 3 GHz, Rpeak = 2 · 2 · 3 · 109 FLOPS = 12 GFLOPS



Machine efficiency – practical performance

 For a dense matrix-matrix operation (m x k vs. k x n matrix) the 
number of floating-point operations required is nflop = 2mnk,

 Performance can then by calculated by R = nflop/wall_time, 

 Efficiency by calculating the ratio R/Rpeak.

 For Intel CPUs, Intel provides a performance measurement tool 
called VTUNE, 

 free of free of charge for non-commercial purposes on Linux 

 offers the functionality of a profiler, 

 can also measure the no. of integer and floating point operations 
during a program call

 Many supercomputers come with integrated counters for 
measuring performance. 

 These make it very simple to assess performance.



Hockney’s & Jesshope’s Model for Vector Processing

 Actual model? 
 applicability has been revived with the development of the 

Earth Simulator, which was built by the NEC Corporation out 
of proprietary vector processors.

 most modern processors consist of multiple pipelines
 performance of each such pipeline can be conceptualized in terms 

of the vector performance model

 Performance rN of a vector-processing loop of length N 
can be expressed in terms of two parameters:

1. r∞ - represents the performance in Mflops for a very long loop

2. n1/2 the loop length for which a performance of about r∞/2 is 
achieved. 

rN = r∞ / (n1/2/N + 1) Mflops.



Hockney’s & Jesshope’s Model for Vector Processing

 Example: vector update 
 in the form x ← x + αy (the AXPY operation) 

 can be expressed as a loop of the length N in which each 
repetition consists of two floating-point operations. 

 execution time: 

TAXPY(N) = 2N / 106, rN = 2 × 10−6 (n1/2 + N) / r∞ secs.

 This model can be applied not only to predict the 
execution time of vectorized programs but also to 
develop optimal vector algorithms. 
 several algorithms (e.g. divide-and-conquer algs) consist of 

loops of different lengths, which are related to each other and 
can be treated as parameters of a vectorized program.



Performance Measurements and Top 500

 Performance of parallel computers – comments:

 there is no universal yardstick to measure it, 

 the use of a single number to characterize performance such as the peak 
performance quoted by the manufacturer is often misleading. 

 It is common to evaluate performance in terms of benchmark runs 
consisting of kernels, algs, & appls so that different aspects of the 
computer system are measured. 

 Still dependent on the quality of software rather than just hardware 
characteristics. 

 The controversy over performance evaluation methods has been 
recognized by the CS community & there have been several recent 
attempts to provide objective performance metrics for parallel computers.

 Good basis for performance evaluation is provided in the Top500 list:

 Performance on a LINPACK benchmark –

 measure used to rank the computers

 code that solves a sys.of linear eqs, using the best software for each platform.
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