Bruno Buchberger

LOgic for

Computer Science

©1891 Bruno Buchberger and Springer Publishing Company, New York -
Vienna. All rights reserved.

1. Motivation

There are two main sources of motivation for studying logic, the traditional
motivation by the foundational questions of mathematics, and the recent mo-
tivation by the practical needs of computer science.

The motivation for studying logic in the context of mathematics is based on
the observation that reasoning about what one is doing is useful for improving
the efficiency and quality of one's actions and it may be even necessary when in
the course of action one is stiick at a point from which, at first sight, there seems
to be no escape. Logic is reasoning about reasoning. It is useful for improving
the quality of reasoning and it became an absolute necessity when reasoning
was stuck at apparently unresolvable paradoxa and contradictions, specifically,
in the last century.

The motivation for studying logic in the context of computer.science is based
on the insight that, essentially, automation of problem sclving on computers
1s automation of reasoning and, hence, logic is the key technique for advances
in our computer-based problem solving capability. This insight may be gained
by a thorough analysis of the past “history” of computer science and may
be used for an extrapolation of future trends. We expect that mathematics
and cornputer science will more and more be seen as just the one science of
automated intellectual problem solving and logic is the underlying domain-
independent technique.

We expand these ideas in some more detail in the subsequent sections.
For this we have to start with an informal explication about the nature of
mathematics and {mathematical) logic.

1.1 Mathematics, Reasoning, Logic

1.1.1 What is Mathematics?

One may draw a dynamic and a static picture of mathematics. In a dynamic
picture, mathematics is the technigue of problem solving in models. In a static
picture, mathematics is the technique of obtaining information in models.

In both pictures. working in models is the characteristic feature of mathe-
matics. In fact the two pictures are only the two sides of one coin. Problem
solving depends crucially on obtaining useful new information and. conversely,
obtaining new information must be directed towards “goals” (resolution of pro-
blems) in order to avoid useless combinatorial explosion.

Traditionally, 1.e. 1n the tradition of “pure mathematics” over the last fifty
years (“Bourbakism”}, the static picture of mathematics was emphasized. In
this introduction. we start from the dynamic picture of mathematics because

4 . 1. Motivation

we feel that this picture is ancient and modern at the same time. In human
history, the first mathematical ideas seem to have emerged from the necessity
of simple technical problem solving (e.g. the problem of constructing big buil-
dings like the pyramids) and 1n the present time the computational power of
modern computers leads us to a renaissance of the problem solving aspect in
mathematics. .

The human intellect (mind), refined and extended by external means like
pencil and paper, computer memory and processors, is the sand-table®on which
models can be built and explored. Exploring intellectual models is called “ree-
soning” (“deduction”, “inference”).

Reasoning is at the heart of technical (intellectual) problem solving. A pro-
blem is a situation in which a desired object is not immediately available. A
solution to a problem is an action that produces the desired ob ject. Problem
solving based on mathematics (i.e. on reasoning in intellectual models) has
three steps:

World With Problem = : Model With Problem
Observation
(Model Construction)

J Reasoning .
(Operating in the M odel)

World With Solution <= Model with Solution
Action :
(Interpretation)

The first step is the construction of models by observation. For observing,
the senses (eye, ear, ...), often refined by instruments (microscope, earphone,
..), must be brought into contact with the objects. Refined observation n
various areas of the real world is the realm of the natural sciences. A given
problem in real world is reflected by a model problem in the model.

The second. step is reasoning in the model. This is the proper realm of ma-
thematics. By reasoning, new features (statements, insights) of a model car be
constructed from known features without involving the senses. The instrument
for reasoning in models is the mind whose physical carriet is the brain. nften
refined by instruments (pencil. paper, computer. ...). By reasoning, a solution
to the model problem, i.e. an action in the model that produces the desired
object in the model, may be found.

The third step is action, ie. interference with the outside world (“inter-
pretation”, “realization”) for materializing the solution found in the model in
order to establish a solution to the original problem. Oversimplifving, one could
say that action [based on observation and rgasoninéis the realm of the technical
sciences. The original instrument for transmitting model solutions to real world
solutions is the hand. In modern times this instrument is refined by “machines”.

(Depending on the situation. the view of natural sciences. mathematics, and
technical sciences can be broader. Sometimes. one may want to include model

® Sorcthpglin

1.1 Mathematics, Reasoning, Logic 5

construction and interpretation into mathematics. Sometimes one will prefer
natural sciences to encompass reasoning and interpretation. Also, technical
sciences may be viewed as embracing observation and reasoning. For the sake of

' clarity, we oversimplified the situation in our explication above. Thus, the above
explication should clarify the specific flavor of natural sciences, mathematics,
technical sciences and their mutual distinction.)

The technique of reasoning in models has matured in the evolution of life
from the zero stage in primitive creatures where observation and reaction is
“spontaneous” (with no “model” of the outside world acting as a buffer and
playing-ground) through many intermediate stages to the present stage of hu-
man/computer reasoning in extremely complicated models. :

1.1.2 Fundamental Properties of Reasoning

Reasoning is

dntnoduk)
1. abstract . & :
3 2 correct,,, (()WWUJ % £ &
2 X cenmtrollable EV(‘EM : ?’7f/l)
4. general. Vv B) _

1.1.2.1 Reasoning Is Abstract

Reasoning proceeds totally within intellectual models. By definition, no contact
or interaction with the “outside world” is taking place during reasoning. We say,
“reasoning is abstract” (Latin “abstrahere” = pulling away {from the outside
world)) or also “formal”.

Paradoxically, the ebsiractness of reasoning is the source of its practical
usefulness, or, as some people put it, “there is nothing more practical than a
good theory”. Problem solving by reasoning in models is a dramatic advantage
over “spontaneous” problem solving by trial and error (immediate reaction
and observation of results) in the outside world. Interaction with the outside
world by action and observation can consume a lot of energy, may be quite,
slow and even can produce irreversible negative effects on the outside world.
By contrast, reasoning needs little energy, is fast and reversible. Only the best
solution gained by reasoning in the model will be used as the basis for action
in the outside world. _ | '

However, the abstractness of reasoning 1s also iis weakness. Since reasoning
is cut off the outside world, it runs risk to “lose contact with reality”. Further-
more, models are always simplified views that concentrate on a few interesting
aspects of “real world” and forget about other aspects. Hence. a problem solu-
tion based on reasoning in a given model. while optimizing one aspect of real
world, may well lead to undesirable side-effects with respect to other aspects.
These negative effects of technical problem solving based on reasoning have
lead to the technological crisis mankind faces today. :

When we say that reasoning is abstract we are describing the final outcome
of the mathematical problem solving activity. Classically. the outcome is a

I)
RS i T -t ; , ! B
LG ot ,.'5 = ¥ RO LTS PINPIIY LT A

6. 1. Motivation

complete proof for a new “theorem” (knowledge) or an algorithm (“process”).
Of course, we are aware that, in the creative process of finding proofs, looking
backward to the special situation from which the model was abstracted, is one
of the most important-heurnstic techniques. Anyway, in mathematics, an idea
obtained from “observation” must be cross-checked by abstract reasoning in
the above sense.

voipiett (Ve rih 'z,zf-ré)
1.1.2.2 Reasomng Must Be Cont ble

Reasoning in models must proceed in steps. Each step should be controllable in
the sense that the step is so simple that “anyone” could repeat it and, starting
from the same initial situation, would arrive at the same resuit. This vague
notion of “controllability” today can be made very precise by saying that we
require the individual steps of reasoning to be so simple that even a computer
can be programmed to execute or check them.

Controllable patterns for steps in intellectual reasoning are called rules of
inference. In fact, the evolution of inteilectual reasoning over the centuries has
lead to a number of quite general, albeit simple, such rules. These rules form an
extremely powerful body of techniques by which intellectual: problem solving
can be made “intersubjectively controllable”. The creative part remaining is
finding the right sequence of inferences that leads to a desired knowledge (in the
static picture of mathematics) or the desired problem solution (in the dynamic
picture of mathematics).

In terms of language, an inference rule is an algorithm {mechanism, proce-
dure} that receives a statement as an input and produces a new statement by
parsing the given statement and composing the new statement by composing
the constituents of the given statement in a new way. For example,

not for all = (A4) -» there. exists z such that (mot A4)

Morynn s

is an inference nflee thar‘ a.lﬁws us to take any statement of the form not for
all z (A), to decompose it into = and A, and to composé the new statement
there exists z such that {(not A).

“Controllability” on ths side of reasoning has a counterpart on the side of
observation. It is the obj]ect‘lve of the natural sciences to establish observations
that can be confirmed by “anyone” when applying the same means?

In fact, the combination of “intersubjectively controllable” (“objective”)
observation and “intersubjectively controllable” reasoning, over the centurnes
has evolved as the supreme 1deal of ratioral thinking in particular in the “We-
stern”, technically oriented, culture. Starting from facts whose truth can be
determined by intersubjectively controllable observations and proceeding to
new facts whose truth is inferred by intersubjectively controtlable reasoning is
the basic rthythm of intellectual activity. It is'this interplay between controllable
observation and reasoning that is called “science” in the Western tradition.

B T T L T I A R

1.1 Mathematics, Reasoning, Logic 7
1.1.2.3 Reasoning Must be Correct

In order to make this technique of combined observation and reasoning useful
for real world problem solving, reasoning must have one more fundamental
property, namely “correciness”. This means that the inference rules must be
such that, whenever a statement B is inferred from a statement A by the
application of an inference rule, and A is a true description of a situation 1n the
reality considered (in the “universe of disc’:gﬁ'rse"], then B should also be a true
description of a situation in the same universe. Hence, if the initial statements
in a reasoping sequence are true in a given universe and all inference rules
applied in the sequence are correct then it is clear that the resulting statement
will also be true in the given universe. Briefly, one says that by the inference
rules “truth must be transported” from the initial statements to the statements
inferred.

The truth of the initial statements may have been determined by observa-
tion. For mathematics, this is not relevant. Mathematics is a “relative” science.
It is only concerned with deriving new facts from given facts by correct reaso-
ning or, stated diffferently, mathematics is concerned with determining truth
relative to initial statements. Mathematics is not concerned with the determi-
nation of the truth of the initial statements.

How can the correctness of inference rules be established? The evolutionary
approach explains the correctness of (our usual set of) inference rules, for ex-
ample in in predicate logic, as an accumulation of experience. For example, the
correctness of the inference rule

not for all z (A) -» there exists z such that (not 4)

is observed by any individual in hundreds of situations in changing “univer-
ses”. (Universe:= all dogs; A := z is black; we observe not for all z (z
is black), we also observe there exists z such that (mot z is black).
Universe:= all natural numbers; 4 := z is divisible by three; we ob-
serve {or prove) not for all z (z is divisible by three); we also ob-
serve there exists z such that (not z is divisible by three). Etc.).
After many observations (and accumulating the experience over generations
through education), we rely on the correctness of the rule. In this evolutio-
_ nary view, reasoning and, in particular, mathematics can also be conceived as
the accumulated and condensed experience of mankind in observing (finite)
universes. : '
Alternatively, in mathematical logic, for establishing the correctness of in-
ference rules, one presupposes mathemaetics as ¢ metalenguage for the study of
reasoning. One gives a mathematical definition of what is meant by a “universe
of discourse” {a “structure”} and by the “validity™ (truth) of a statement in
a universe. Then one can show (!} in the frame of the metalanguage that, for
example, the above inference rule is correct. Namely, one can show that, in
any universe in wich not for all z (d)is valid, also there exists z such
that (not A) i1s valid. This is an example for taking a crude tool, namely
naive mathematical reasoning, for refining (‘another‘cop_\r of) itself.

8 1. Motivation

Here one should pause for a moment and consider the following fact that
gives another argument why and how it is possible to use a tool for refining
itself. For proving on the metalevel that, for example, the above inference is
correct in all (infinitely many) possible instances of application it is necessary
to apply certain inference rules, on the metalevel, only finitely many times.
Each of these finitely many instances of application can also be viewed as
an observation {imsight, “intuition”) in the particular situation. In short, by
bringing together finitely many observations on the metalevel we can establish
a rule that governs infinitely many instances on the ob Ject level.

Mathematics can now be characterized as the science that aims at establis-
hing, by finite chains of reasoning, i.e. finitely many applications of (formal,
controllable, and correct) inference rules, that a statement B follows from a
statement A. Here, “B follows from A” (or “B is a semantical consequence of
A”) is defined to mean that “B is valid in all universes in which 4 is valid”.
Note that in general it is not possible to algorithmically determine whether a
formula B follows from a formula 4 by just applying this definition of “follows”
because, for doing so, one would have to check all possible universes and, in
each universe, one would have to check the validity of 4 and B, wich again may
be a non-constructive process. The aim of mathematics can, therefore, also be
rephrased by saying that it aims at establishing that a formula B follows from
a formula A by finding a chain of reasoning (a “proof”) consisting of individual
steps governed by (algorithmically controllable) inference rules. Very concisely,
mathematics 1s the science that esiablishes semantical consequences by formal
TEQSOTINgG.

1.1.2.4 Reasoning Must Be General

In the preceeding subsection we have already seen that inference rules are meant

to be applicable in a wide range of situations. Whereas an observation refers

to one particular situation and one observation is independent of the other,

reasoning aims at being general, i.e. applicable in whole classes of situations.

Actually, the evolution of logic has lead to universal reasoning systems that

can be applied in all possible universes and situations. vick wﬁﬁ%fﬁf’"ﬁﬁfﬁfﬂ;ﬁj
In fact, a rule of inference that would be applicable in only one instance is 4° ;”,‘:'3'

essentially an observation. Hence, generality is crucial for reasoning. Otherwise

the purpose of reasoning, to establish truth without observation. could not be

achieved. -

1.1.2.5 Reasoning Versus Being

“Intellectual problem solving” as described above as a specific combination
of observation, reasoning, and action is onlv one aspect of human existence.
Intellectual problem solving should be considered as a tool that can be taken
and also be put aside. When used in the right wayv. the use of this tool should
not create bondage but freedom. The tool should never be our master.

1.1 Mathematics, Reasoning, Logic g

The art of using the tool of intellectual problem solving without being de-
ceived by its usage and bound by its effects is, by itself, not a theme that can
be treated by intellectual means. Other layers of human conscicusness must be
invoked in order to set the frame for an appropriate use of the tool in freedom
from bondage. _'

Action in freedom is the supreme ideal of “Eastern” consciousness-oriented
culture, see for example the Bhagavad Gila, a part of the Vedas. It starts from
the insight that a man mustlearn to sink back, any¥ time, into the unified field
at the basis of subject and object, rcammught,
knower and known in order to remain stable, free and evolutionary while acting.
The technique of experiencing the unified field at the basis of sub Ject and object
is called “meditetion”.

The integration, in one’s life, of the power of the “Western” intellectual
technology of real world problem solving, and the “Eastern” meditative tech-
nology of IMM while acting, is the true challenge

of our generation.

1.1.3 What is (Mathematical) Logic?

Logic is the science of reasoning. As in any science. knowledge in logic can be
obtained by obervation and by reasoning, '

Mathematical logic uses the method of mathematics, i.e. reasoning, for stu-
dying mathematical reasoning. In the authors view. mathematics cannot be
defined by the classes of objects studied but only by its method, namely re-
asoming. Therefore, there is no distinction between “mathematical reasoning”
and “non-mathematical reasoning”. Thus, in short, one could also say that
mathematical logic is reasoning about reasoning.

There are other terms that have a meaning similar to “mathematical logic”,
namely “formal logic, “symbolic logic”, and “metamathematics”. In fact, these
terms are used quite interchangeably. “Symbolic” and “formal” stress the fact
that reasoning in abstract models is studied. However, we just explained above
that this is the fundamental characteristic of reasoning. “Metamathematics™
stresses the fact that mathematics is studied by mathematical methods. Histo-
rically, maybe “metamathematics” is slightly more restricted than “mathema-
tical logic” because metamathematics sometimes refers to a certain school of
thought in the foundation of mathematics that emphasizes constructive {algo-
rithmic) methods for studying reasoning.

1.1.4 Is Reasoning About Reasoning Possible?

Reasoning about reasoning seems to be a contradiction in itself. How can a tool
work on itself? There is nothing mysterious about that. however. Sharpening a
tool by applying the tootl is as old as mankind and. in fact, this self-referential
process seems to be the very motor of intellectual evnlution.

10 1. Motivation

Example1.1.(A Movie About an Early Ancestor at Work)

Scene 1: There are two stones Sy and S3. In no respect is S; more “refined”
than S5. Our ancestor takes both stones and hits with S; on top of S2. 52
breaks intwo two parts. We observe a sharp edge at one of the two pieces, Sy

sf‘,.S*ksel-ne 9. Our ancestor takes Sy and applies it to a cane C for producing a
cusp.

/W |
5 o tid B Sz
Eﬂ}.&k

Sy

ottt t5-
S?' T — e) C

What can we learn from this little story?

First, we see that something that is crude (51) when apphed to something
that is also crude (S7) may well produce something that is refined (S2). In
short, ¢ crude tool may produce a refined working part. “Corollary”: Crude
reasoning may well produce refined reasoning.

Second, we observe that something that was process-ed in the first stage
(S2) is process-ing in the subsequent stage, i.e. ¢ working part may become a
tool. “Corollary”: Reasoning refined by reasoning should achieve better results
in problem solving. O

We repeat the idea behind the above little story mn a modern version.

Example 1.2.(A Modern Version of the Movie)

Scene 1: A compiler {which is a program) P; works on a program F; as input
and produces a new version Py of it that 1s “refined” in some way (namely it
can be executed by a machine}.

Scene 2: Py can now be taken and applied to input data D.

Again. we see that an object from a certain class (a program) can be applied
to an object of the same class producing something refined.

Also. what is a working part (input data for a compiler) in one phase may
become a tool (a program) in the subsequent phase. &

- e

it
§tuo

,;./AJ'&G

1.1 Mathematics, Reasoning, Logic 11

Summarizing, we see that the transition of an object (the working part) from
the stage where it is processed to the stage where it is itself processing (i.e. 15 a
tool) is at the core of technological evolution. By iteration, this process has le/a./d
from the early beginning of human “engineering” to the amazing achievements
of present “high-tech” and reflects the self-evolutionary power of the intellect.

Reasoning about reasoning is just one instance of this self-referential process
and, in fact, the most fundamental and powerful one.

1.1.5 Language and Logic
1.1.5.1 Paraphrasing Models and Reasoning in Terms of Langunage

Language in terms of written and spoken words and thoughts is the traditional
carrier of intellectual models, i.e. the material from which intellectual models
are constructed. Reasoning is, hence, operation on linguistic objects. With the
evolution of science and, in particular, the advent of computers our concep-
tion of language must be drasticaily broadened and, in fact, any collection
of building blocks from which models can be formed should be conceived as
“language”.

In a language-onented terminology, the above picture of modeling real or
abstract domains and reasoning in models can be paraphrased in the following
way. A language consists of individual ezpressions (sentences, terms, statements
etc.}. The expressions are models (pictures) of entities (situations, processes
etc.) in the domains, (structures, realities, universes of discourse) one is intere-
sted in. The interest, normally, stems from a problem that should be resolved
in the given domain. The entities (situations, ...) described by the expressions
of a language is called the “meaning” of the expressions.

The structure (external form) of the expressions of a language is called
the “syntaz” of the language. The meaning of the expressions of a language s
called the “semantics” of the language. {One also uses the words “syntax” and
“semantics” in a shghtly different way: syntax 1s also the science of external
structure and semantics is the science of meaning.) :

In fact, normally, the expressions of a language are formed from elementary
expressions by rules (syntactic rules). In some way, these rules reflect (aften
in a very abstract form) the way the objects (situations. ...) in the descn-
bed domains are composed from simpler objects. The elementary objects, the
construction rules and, hence, compound expressions of a language should be
“finitary” (manageable, algorithmic, simple}. This corresponds to the overall
objective of models. Models should be manageable pictures of the world mo-
delled. Otherwise there would be no point for using models.

Reasoning, then, is operating on the expressions of the language with the
goal of arriving at new expressions with'an “interesting” meaning, e.g. at ex-
pressions that descnibe the solution to a problem in the described domain. The
reader 1s encouraged to paraphrase the fundamental properties of reasoning
(abstractness. controllability, correctness . and generahty) in inguistic terms.

.12 ‘1. Motivation

1.1.5.2 Some Distinctions

We introduce a couple of distinctions that are important when speaking about
languages.

Descriptive and Algorithmic Languages “Descriptive” languages describe ob-
jects, situations, relations between objects etc. in contrast to the “algorithmic”
(“imperative”) languages that prevail in computer science. Imperative langua-
ges describe processes, activities, functions, commands, procedures. Descriptive
languages are the languages of traditional mathematics and, in fact, logic in
the traditional semse treats only descriptive languages. Predicate logic is the
most prominent example of a descriptive language. In a broad sense, logic is
concerned with syntax, semantics of and “reasoning” in arbitrary languages
and there is a continuous transition between the broad and the restricted use
of the term “logic”. In computer science, the theory of algorithmic languages
(programming languages) is also cailed “theory of formal languages”. The latter
term, however, for a long time was only restricted to the syntax of programmung
languages. There is also the term “computational logic”, which is used either
in the sense of logic (theory) of syntax and semantics of algorithmic languages
or in the sense of logic of automated reasoning or in both senses together. All
this shows that people more and more are aware that, essentially, the treat-
ment of (descriptive and imperative) languages and reasoning {(computing) in
these languages is an integrated body of knowledge that cannot be separated
in independent parts without losing its power.

Universal and Special Languages Reasoning and computing aims at genera-
lity. Most of the prominent descriptive and algorithmic languages of mathema-
tics and computer science can even be shown to be “yniversel” in a very precise
sense. For example, first order predicate logic 1s “nniversal” in the practical
sense that all of mathematics can be described in it and also in the theoretical
sense that the reasoning system of this language is so powerful that anvthing
that is “true’ in a semantical sense can be derived by applying the reasoning
rules. .
Universal languages are in contrast to “speczal’ languages as. for example,
the CSG (“constructive solid geometry™) language that allows to descnbe cer-
tain classes of geometrical objects. or the “language of switching circuits” that
describes certain hardware-constructs, or “propositional logic” that allows to

formulate certain simple compound facts etc.

Natural Languages and Formal Languages *“Vaturel” languages as. for ex-
ample, English or German are learned by “traning in context”. This means
that the syntactically correct expressions of these languages and the meaning
of these expressions are established by repeated use in the situations the ex-
pressions describe. This 1s in contrast to “formal” languages. Their syntax and
cemantics is “defined” by definitions formulated in a “metalanguage’. ie. 2
language that describes the svntactical objects (expressions) of the language,

1.1 Mathematics, Reasoning, Logic 13

the objects that are described by the expressions of the language, the relation
between the syntactical objects and the objects described (the semantics of the
language), and the rules of reasoning.

Note that the property of being “formal” has nothing to do with the syntac-
tical appearance of a language. Being “formal” does not necessarily mean that
the language is written with many symbols. It could equally well be written in
(a subset) of plain English or any other “natural” language. The point is that,
in a formal language, we do not rely on learning the concepts of the language by
experiments in contexts (with the danger of ambiguity by non-identical experi-
ence from non-identical experimenters) but on defining them usmg an already
available (natural or formal) language.

Conversely, a “natural” language can be quite “symbolic” and, still, is lear-
ned by experience in semantical contexts. For exampie, the magma of every-day
mathematical language, though sometimes overloaded with symbols, 1s nor-

mally learned as a “natural” language, i.e. by training in semantical context.
Thl vt Bnd Geptif fuol Mooy Bt Ageplet dnon foraed ,&«TMP...(:'}V-Q fh.bu._&h.«b-...d_.wng
! Before THnEl %ha I},

Metalanguage and Object Language In the definition of a formal language,
the syntax, semantics, and reasoning system of the language is defined in an
already available (natural or formal) language. In this context, the language
being defined is called the “object langucge” and the language used for defining
it 15 called the “meialanguage”.

Note that the terms “metalanguage” and “object language” are no abso-
lute terms?It depends on the situation whether a given language is an object
language or a metalanguage. For example, set theory (in the language of first
order predicate logic) is a metalanguage when used for defining, formally, first
order predicate logic. it can be an object language when it is being defined
as a special theory of formal first order predicate logic. This 1s confusing for
beginners of logic and should be thoroughly understood. It can be easily made
clear by looking at our little story about the stone that may be used for refining
another stone.

1.1.6 The Notion of Model in Logic

We said that mathematics is operating in (linguistic) models of real (or ab-
stract) domains.

In the technical terminology of mathematical logic, however, the term “mo-
del” is just used the other wayv around: A “model” is a domain about which all
statements of a given set of statements are true.

Hence, we say in the context of mathematics that “some set of statements
1s a model of a real world domain™ whereas in mathematical logic we say that
“some domain 1s a model for a set of statements”. [t is important to be aware
of this conflicting use of the term “model” in order not to be confused by the
discussions 1n the technical parts of this book. '

14 1. Motivation
1.1.7 Some Elementary Notions Connected with Reasoning

In this subsection we give an informal explication of the notions “aziom”, “theo-
rem”, “definition”, “theory” and of two approaches to the notion of a “formal
system”.

Reasoning can derive new statements from given ones. If the initial state-
ments are true in a certain domain then the derived ones are also true in the
same domain. Azioms are statements that are taken as initial statements in
logical derivations. Mathematics does not ask about vvfzthcr these statements
are true or not. Rather, mathematics derives statements from axioms with the
intention that, if somebody (for example, 2 physicist) finds a domain in which
the axioms are true (i.e. a “model” for the axioms in the terminology of logic),
then he already has an enormous body of derived staternents at his disposal.
The statements derived from axioms are called “theorems”. A set of axioms
together with all derived statements is called a “theory”.

in fact, also abstract domains of mathematics may be “models” for axiom
systems. For example, each “group” is a model for the axioms of “group theory”.
The “axiomatic method” opens a very powerful means for economical thinking:
Instead of investigating the truth of certain statements for each individual
domain, certain statements can be proven correct for a whole class of domains
that satisfy certain axiorns.

A “definition” is an axiom that describes how a new notion is connected
with notions already introduced. Definitions must possess certain formal pro-
perties. First, it must be clear how each statement involving the new notion
can be replaced by another (probably more complicated) statement that does
not involve the new notion. Second, definitions must have a syntactical struc-
ture that guarantees that by adding definitions to a non-contradictory axiom
system the theory stays non-contradictory.

Roughly, there are two approaches to formulating systems of inference rules
(“logical caleuls”, “formal systems”): Systems of the “Hilbert type” and systems
of the “Gentzen type". Both approaches are equivalent.. However, they have a
different flavor.

In Hilbert systems an inference rule describes how a new statement can be
derived from given statements of a certain form. For example,

~vz{A)

dz(-A)
is a typical inference rule in a Hilbert svstem. A proofis a sequence whose state-
ments are either axioms or statemnents that are derived from earlier statements
in the sequence by application of an inference rule. This notion is simple and
1s often used in a context where one is more interested in the metamathemati-
cal results but not so much in the application of logic to actual mathcmat:cal
proving.

Practical proving is not arranged in the way Hilbert systems describe it.
Rather, it follows the following scheme. We consider “proof situations”. A proof
situation 1s characterized by a set of statements that are “known” in the par-
ticular situation and a set of statements that still have to be proven (“goals”).

1.1 Matkematics, Reasoning, Logic 15

An inference rule, then, describes how certain proof situations can be replaced
by certain other proof situations. For exampie,

A BFC
AH(B = C)

1s a typical inference rule in a Gentzen system. Here. M F N describes the proof
situation where all statements in the set M are known and the statements in the
set N have to proven. A proof in a Gentzen system is a tree of proof situations
where each proof situation at a node can be derived from the proof situations
at the predecessor nodes by application of an inference rule. '

This article was processed using the BTEX macro package with LTMP sivie Version: 8-FEB-
1990 - ' '

16 1. Motivation

1.2 Logic Motivated by Mathematics

1.2.1 The Refinement of Mathematical Reasoning

The refinement of maethematical reasoning is one of the two main motivations
for studying logic. In fact, over the centuries, by the seif-referential process
of reasoning about reasoning, the technique of intellectual problem solving by
reasoning has reached an incredible sophistication and power.

In history, humans started from a stage where observation and reasoning
was almost indistinguishable and, hence, results obtained by reasoning were
only slight generalizations of observed facts. We are now in a situation where
reasoning is understood so clearly that big parts of reasoning can be fully
automated on computers and for the remaining parts it is clear why they cannot
be automated or why they can be automated only at an enormous expense of
time and space.

In practical terms, it can be observed that the study of logic has an extre-
mely purifying and improving effect on the intellectual ‘potential of students
of mathematics. Some people believe that, for students of mathematics, it is
useless to study logic because “one either has logic built in” or there is no way
to remedy this. They admit that the study of logic is interesting in itself as a
“philosphical” discipline but they do not see any practical value in the course
of a regular mathematics curriculum. :

In some sense they are right because most probably the “brainware” that
underlies reasoning cannot be changed very much (although even this can be
doubted because it seerns that in the brain much depends on — early — lear-
ning). Also, mathematical logic mostly is presented only as the metascience
of mathematics but its results are never applied for improving the style and
quality of mathematics. This is deplorable, however. For changing this situa-
tion, mathematicians should learn from computer scientists. By the “software
crisis”, computer scientists have learned in a most painful way that style and
formal quality is not only a matter of aesthetics but rather a practical necessity.
To computer scientists, this lesson was taught by the fact that programs must
run on machines and the deficiencies of software become readily apparent by
failure and bad performance. The machine is brusque in rejecting bad software.

By contrast, the paper on which mathematicians write their proofs is pa-
tient. It does not reject anything. Therefore bad technical quality can persist
* much longer and, in fact, unitelligibility is sometimes confused with ingenuity.
There i1s no apparent “proof crisis” in contemporary mathematics or, at least,
mathematicians would not admit any. (A “proof crisis” could be inferred from
the fact that, on average, mathematical papers are only read 1 1/2 times each.
The proof crisis in the last century was different in nature. see next subsection.)
Personally, I believe that it is high time that, in the math curricula, logic guides
practical proving similarly as “software science” does guide programming.
 Itis true that, when studying logic, it is difficult to treat the actual results
of mathematical logic together with the practical implications and applications
these results have for every-day proving in mathematics. However. in the view

1.2 Logic Motivated by Mathematics i7

of the author, it is absolutely urgent that the study of logic in math curricula is
augmented by courses that aim at practical proof training. In fact, this training
should happen as early as possible in the curricula. An attempt in this direction
(albeit devoted to first semester computer science rather than math students)
is (Buchberger, Lichtenberger 1980).

The integration of logic and proof training into the curricula seems to be
overdue in particular in view of the advent of a general science of automated
problem solving that could be called “compumathics” or “mathformatics” and
is nothing else than the implementation of the original spirit of mathematics as
the technique of problem solving in models in the presence of powerful machines
that allow to quickly implement any model.

1.2.2 The Solution of Foundational Problems

Improvement of the practice of mathematical reasoning is one motivation for
studying logic. The other one is the solution of contradictions and deficiencies
in certain advanced reasoning techniques that became apparent in the last
century. '

In fact, by the dramatic advancement and achievements of mathematics the
last century did experience a “proof crisis” similar to the recent “software cHi-
sis” in computer science. Some of the difficuities seemed to be insurmountable
and attracted the most brlliant minds. The combined effort of these mathe-
maticians has lead to a body of knowledge in logic that is surely one of the
most exciting achievements of mankind. The explosive effect, both in quality
and quantity, of the foundational questions raised in the last hundred years can
be felt.

We give just one example of a paradox that puzzled mathematicians in the
last century.

Example1.3. (Russell’s Antinomy) It is well known that the length of the dia-
gonal of a square whose edges have length 1is not a rational number. Of course,
1t must be a goal of mathematics to provide a “model” for everything that oc-
curs in nature. Thus, the domain of rational numbers must be expanded by a
suitable construction. One possibility is to take certain pairs of sets of rational
numbers, called “Dedekind cuts”. The collection of these cuts is a domain (the
domain of real numbers) that is strictly bigger than the domain of ratinnal
numbers and, in fact, contains also a number that faithfully describes the dia-
gonal in the above square. {A “cut” is a pair (4, B) of sets of rational numbers
such thatforallz € 4,y € Bz « y. Note that this notion makes it possible,
for example, to speak about numbers less and greater than the number that
should measure the above diagonal without actually mentioning this number.)

In the exact definition of a cut, one needs the notjon of a “set”. This no-
tion goes beyond the notion of a number. Intuitively this new notion has one
characteristic property:

For all “properties” E there exists the “set” of all objects z that
possess property £ k '

18 1. Motivation

Hence, it is near at hand that the theory of sets should contain the following
axiom for every property F Wlth a free vanable = that can be formulated in
set theory:

there exists M such that for all z (z € M iff FE),

where M is a vaniable that does not occur “free” in E.
Assumption of these axioms, however, readily leads to the following contra-
diction. We consider the following property

x &€ x
Applying the corresponding axiom we obtain

there exists M such that for all x (x € M iff x ¢ x).
For this M we have

for all x (x € M iff x ¢ x).
In particular, for x := M we obtain the contradiction

MeMiff M & M.

Thus, we have a situation where we have added somei;h.ing to our mathe-
matical knowledge that seems totally plausible but leads to a contradiction.
In fact, this particular contradiction is removed in modern set theory by re-
stricting the above set of axioms in the following way. For every property (i. e. (=
formula of set theory) E with free variable z and every variable B not occurring / /<

free in E one stipulaies® ‘"(“fr“” g, J’,'rw—-'g\?duij éM(588 { i)

> e brefan,
for all B there exist M such that for all z
ze M iff (E and z € B).

However, how can we be sure that from this restricted set of axioms no
other contradiction can be inferred? This was one of the questions that sti-
mulated modern research in mathematical logic. In the case of this particular

question, the answer is negative in the sense that one can show that a proof =
that establishes that a given axiom system for set theory, on the metalevel, ‘o
needs more powerful methods than are available on the object level. Still, work 2x

on this question has not only legd to exciting insights into the technique of re-
asoning but, interestingly enough, long before the advent of the first computer
the analysis of this question has produced an exact notion of what should be
called “algonthmically computable”. O

L]

Here are some examples of basic problems in the foundation of mathematics
that arose in the last century and have lefd to the present body of knowledge
in mathematical logie: o e
/. - (qu_“yau{ / W‘ E? /’ ey oy fooptiie
QThe Problem of Freedom from Contradiction, Gwen an axiom system for an

area of mathematics. Question: Can reasoning ever deduce a contradiction from

these axioms?

So thers arl phdeecliut 1.2 Logic Motivated by Mathematics 19

' -7
@) Mechanizability of Reasoning Can the activity of reasoning be decomposed
1nto 50 small and simple pieces that each individual step can be realized by a
machine (a computer)?
A positive answer to this question was an early by-product of the funda-
mental analyses in modern mathematical logic.

e f""’f‘"z of - pref s

(D Completeness of Reasoning Starting in the time of the ancient Greeks rules
of inference where formulated more or less explicitly. Some of these rules were
quite universal as, for example, the rules of propositional logic (covering the
use of the connectives “not”, “and”, “or” etc.) and the rules of syllogistics
(covering the use of the construct “all ... are”, “some ... are”). Other reasoning
techniques were only applicable in certain domains as, for example, induction

in the domain of natural numbers. :
Adding more and more techniques of reasoning expands the domain of theo-

rems that can be inferred from basic facts. Given a particular system of infe-

the set of derivable sentences? Or is the system “complete™?

It was one of the significant achievements of thjs century to establish that,
in fact, for the important system of first order predicate. logic there exists a
complete set of inference rules (Completeness Theorem by Gadel, 1930).

PR R O a7 O ftdag Ly ?Lﬁﬂ’“ﬁﬁrﬁiﬁ;

@ Completeness of Axiom Systems For various fundamental mathematical do-
mains one ¢an try to establish systems of axioms (basic facts) from which,
hopefully, all other sentences that are true in the domain can be inferred by
reasoning. Question: Is a given axiom system powerful enough (” complete”)
for establishing all true sentences in the domain? Can we construct a “simple”
complete axiom system? Here, “simple” could mean, for example, that at Jeast

it must be “decidable” whether or not a given sentence is_am axjofh T4V !
It was another of the fundamental results by Godel {1931) that, for example,

for the domain of natural numbers the construction of a “simple” axiom system
1s impossible. 5- =@ "wienp bloam foron fhact o),

oy de e o wo oo
(26 Decidabﬂty of Truth Can the work of mathematicians be fully automated
In the sense that one can construct an algorithm that decides. in finite time.
whether or not a given sentence follows from given axioms. Or more spectfically,
can such an algorithm be constructed at least for certain areas of mathematics
as, for example, the theory of real numbers under some simple operations like
addition and multiplication. '

Again, it was one of the dramatic advances in mathematical logic in the
thirties to show that there cannot exist an algorithm that decides arbitrary
sentences of first order predicate logic (Undecidability Theorem by Church,
1936). There are a number of deep recent results that show that. by contrast,
there exist (complex) algorithms for deciding the truth of sentences in various
extremely interesting restricted areas of mathematics (for example, Collins’
algorithm for the theory of real closed fields, 1973).

20 L. Motivation p Jrgee s of mun ennicom pelin

Z<)Categoricity of Axiom Systems In the case, where it is possible to derive all
sentences that are valid in a certain domain from a set of axioms it is interesting
to know whether, by the set of axioms, the domain is completely characterized.
Stated differently, given a set of axioms, is it possible to construct two or more
“essentially different” (non isomorphic) domains that satisfy all axioms?

Amazing results have been achieved in pursuing this question. For example,
domains can be constructed that satisfy all axioms of the well known Peano
axiomatization of natural numbers but still are not isomorphic to the “ordi-
nary” domain of natural numbers.

1.3 Logic Motivated by Computer Science

1.3.1 The Automation of Problem Solving

In Subsection 1.1.1 we have sketched the three steps of intellectual problem
solving. Problem solving can be automated by delegating part of observation,
reasoning and action to machines.

Computer science aims ¢t automating reesoning. In its simplest form, ope-
rations in numerical models (“computations”) are automated. This was and is
the traditional scope of using computers. Probably, it is one of the most pro-
found practical insights of this century that any systematic intellectual activity
(reasoning) can be viewed as a kind of “computation” and hence, in principle,
can be automated by using a computer.

The “history” of computer science can be characterized by increasing le-
vels of automation in the transition from problem specification to solutions
(“algorithms”, “programs”) in the world of models.

For exemplifying this view, we draw a slightly more detailed picture of the
transition from problem specification to program: :

1.3 Logic Motivated by Computer Science 21

Problem Specification
i Proving

Mathematical Knowledge that is Useful
for an Algorithmic Solution of the Problem

4 Programming
Program for Abstract Machine
I Compilation
Program for Runtime Machine
i Interpretation (Run-Time System)

Program for Hardware Machine

“According to the four steps in the above picture, there are four possibilities
for automating problem solving. On the one hand, one can try to automate
proving and programming for bridging the gap between problem and program.
On the other hand, one can try to establish higher and higher abstract machines
by having more sophisticated compilers and run-time interpreters. Doing so.
the gap between problem and program is not bridged but made smaller.

All these possibilities for automating problem solving have been amply pur-
sued in computer science and the general tendency is towards higher sophisti-
cation. We sketch some land-marks in this evolutionarv process.

22 1. Motivation

1.3.2 Increasing Automation in the History of Computer Science

1.3.2.1 Raising the Level of the Abstract Machine

[Programming Style | Capabilities of the Abstract Machine ||
programming on the operations on 0, l-sequences,
hardware level stored program
assembler prograrmming symbolic addresses
procedural languages nested expressions, blocks,

. procedures

recursion procedure stacks
dynamic data structures garbage collection
functional programming program = data

abstract data programming | general unification,

: direct implementations of
_ term algebras
object ortented programming | generic dispatch

relational data base predicate logic operations
programming _ on finite sets

expert system shells propositional theorem proving
logic programming resolution theorem proving

constraint logic programming | special unification

1.3.2.2 Bridging the Gap Between Problem and Program

" Transition Paradigm | Techniques 1

program synthesis extraction of algorithms from proofs,
inference rules

program transformation | inference rules

program verification verification condition generation.
simplification of logical expressions,
automated proofs of verification conditions |

1.3.3 The Central Role of Logic for the Automation of Problem Sol-
ving

From the techniques listed in the preceding two subsections one sees that the
direction computer science takes is towards more sophistication in the automa-
tion of problem solving by the use of more and more sophisticated techniques
from mathematical logic.

Therefore, mathematical logic becomes more and more the mathematical
basis for computer science. This is reflected even in some recent computer
science curricula. see (Buchberger, Lichtenberger 1980) for the first radical
approach in this direction. The role of logic for computer science was aiso
concisely summarized in the recent book (Manna. Waldinger 1985): “Logic
plavs a fundamental role in computer science similar to that played by calculus

1.4 A Synopsis 23

in physics and traditional engineering. A knowledge of logic is becoming a
practical necessity for the computer professional.”

1.3.4 Logic, Automated Reasoning and Symbolic Computation

Symbolic computation is the branch of mathematics and computer science that
studies algorithms on symbolic objects, i.e. “finitary” (computer-representable,
“simple”} objects that represent (are “symbols”, symbolic representations for)
infinite or, at least, “complicated” objects. Problems in the abstract mathema-
tical domains of non-finitary objects are (partially) reflected by problems in the
finitary representation domains and the algoritfimc solution of these problems
is the scope of symbolic computation.

Expressions in the language of mathematics are, of course, symbolic ob-
jects. They are “finitary” but represent non-finitary situations in non-finitary
domains. They have “meaning”. Operation on these expressions is reasoning.
We have seen that mathematical logic is the basis for the automation (algorith-
mization) of reasoning (“automated reasoning”, “automated theorem proving”,
“computer-aided demonstration”). Automated reasoning is, hence, a branch of
symbolic computation and, in fact, an important and basic one. And mathema-
tical logic is, hence, one of the important foundations of symbolic computation.

1.4 A Synopsis

We have seen that the study of mathematical logic is motivated by the desire for
improving the quality of mathematical reasoning and the necessity to overcome
apparent difficulties that arise in a sloppy application of intuitively correct
reasoning techniques. Furthermore, for computer science, mathematical logic is
the fundamental tool that leads to progressive antomation of problem solving.

Essentially, all these sources of motivation are just one: Reasoning is the
fundamental basis of intellectual problem solving. Mathematical logic improves
this tool and thereby improves human intellectual problem solving, makes it
untversally applicable and, finally, establishes the basis and explores the inher-
ent imits for the complete automation of problem solving. .

We have seen that mathematical reasoning is the essential :ngredlent in the
intellectual problem solving technique on which our Western civilization is ba-
sed. Mathematical logic is the instrument for purifying mathematical reasoning.
Thus, studying mathematical logic is like polishing a mirror that reflects the
accumulated and concentrated problem solving experience of our civilization.

We have also seen that intellectual problem solving based on logic is not
an aim in 1tself but a tool that must be embedded into and governed by a
wholistic experience of the unified field that lies at the basis of and goes bevond
intellectual reasoning. :

24

2. The Language of Predicate Logic

2.1 The Importance of Predicate Logic

In this chapter we define the language of predicate logic, in particular first
order predicate logic. This language is of central importance for human problem

solving because

1. 1t is general enough to be a formal frame for all of mathematics,

2. it can serve as a formal freme for computer science, and

3. it is the language on which, during the past decades, most of the founda-
tional research effort concentrated, and which, probably for a long time,
will be a primary model for the rigorous study of formal languages both in
mathematics and computer science.

2.1.1 Predicate Logic as a Frame for Mathematics

Predicate logic, as a means for expressing facts, is so universal that all results
of mathematics can be conveniently described and proved in it. The existence
of such a language is by no means trivial In fact, it needed the effort of the
most brilliant minds over more than two thousand years to expand the first
tentative approaches to logic into the full universality of predicate logic. In
particular, neither propositional logic nor Aristotelian logic is powerful enough
to express and prove all facts of modern mathematics. The full expansion of
predicate logic and its foundational analysis showing fundamental properties
like “completeness” {Kurt Gédel 1930) and “undecidability” (Alonzo Church
1936) was achieved only in this century after a crucial contribution by Gottlob
Frege in the last century (1879, “Begriffschrift” the first complete syntactical
presentation of predicate logic).

Predicate logic is a universal frame for matbematics even in the restrictive
form of “first order predicate logic”. First order predicate logic does not allow
function and predicate varigbles but only function and predicate constdnts.
In particular, ro quaniifiers ranging over function and predicate variables are
allowed.

At first sight, in mathematics, function and predicate variables and quanti-
fiers over function and Predicate variables seem to be unavoidable. For example,
in the definition

¥ i8 continuous at point x iff
for all ¢ there exists a § such that
for all y with [y - x| < § we have | £(y) -~ f(x)| < ¢

“£” is a function variable In the sentence

2.1 The Importance of Predicate Logic 25

for all £
if f is differentiable then f is continuous

the function variable “f” is quantified by the “for all” quantifier. Similarly,
in the definition '

P is bounded iff
there exists a B such that
for all x with p(x) we have |x|] < B

“p” is a predicate variable. In the sentence

for all p
if p is bounded then p possesses an upper limit

the predicate variable “p” is quantified, again, by the “for all” quantifier. In
these and other typical examples, it seems that we need higher order predicate
logic (i.e. predicate logic with various layers of variables and corresponding
layers of quantifiers) in order to express these more complex mathematical
facts. :

This apparent difficulty in using first order predicate logic as a universal
language for mathematics can be resolved by formulating, in first order predi-
cate logic, the theory of “sets”. In this theory, one introduces, first, a binary
function constant “application” (let us write “f = x” for “f applied to x”)
and a binary predicate constant “s element of " (one writes “x € $” for “x is
element of S”). Second, one formulates a number (in fact, an infinite num-
ber) of axioms that describe the basic properties of “C” and “€”. (Usually,
only “€” is introduced as a basic concept and “>” is then reduced to “g”
by a definition.) All variables in this theory range over one iype of “objects”
(“sets”}. Functions and predicates are now Just special sets, namely “relations”
(i-e. sets of “tuples”) and no extra variables for functions and predicates nor
quantifiers over function and predicate symbols are needed.

Everything that can be expressed in higher order predicate logic can now
be expressed in the special first order predicate logic language involving the
“non-logical” constants “%” and “€”, i.e. in “first order set theorv” (or. more
specifically, in “Zermelo-Fraenkel set theory”)(’D For example, the ab.ve defini-
tions become

f is continmous at point x iff
for all e there exists a é such that
for all y with | y -x [< 8 we have | f © y - £. x [<e

and

P is bounded iff
there exists a B such that
for all x with x € p we have x| < B.

260 2. The Language of Predicate Logic

In these definitions, the variables “f, x, €, 4, vy, p”, and “B” are all of the
same, namely first, “order”, none of them is of higher order. They all range
over the same universe of “objects” or “sets”. “. " gnd “€” are comstants and
are never quantified! “f” and “p”, however, are quantified for example in

for all1 ¢
if f is differentiable then f is continuons

and in

for all p
if p is bounded then P has an upper limit.

However, now, this quantification does not lead outside first order predicate
logic because “£” and “p” are of the same order as all the other variables. (For
a practical understanding and training in the subtle difference between having
function (predicate) variables and using “2” (“€”) together with first order
variables, see (Buchberger, Lichtenberger 1981, pp. 112)).

Thus, from a Practical point of view, first order predicate logic plus the
axioms of set theory and higher order predicate logic have the same expressive

first order predicate logic has advantages because the language and its proof
mechanisms are simpler. Therefore, I think that staying within first order pre-
dicate logic by using set theory as ¢ “universal lenguage environment” js a good
choice for practical mathematics because it is powerful and well understood at
the same time. In fact, the cooperative work of the “Bourbakj” group of ma-
thematicians in the past few decades shows that it is conventently possible to
formulate the existing body of mathematical knowledge in the uniform frame
of first order set theory.

2.1.2 Predicate Logic as a Frame for Algorithmic Problem Solving

As we have seen, (first order) predicate logic is a universal frame for expressing
and proving mathematical concepts and facts. It is therefore also a universal

frame for specifying problems.
Recently, based on earlier work on the completeness of first order inference

mechanisms, it has been shown how Proving in first order predicate logic can
be automated (John Alan Robinson 1965 and subsequent research) and that,
in fact, proving the existence of solutions o problems for concrete mput para-
eters is equivalent io computing.

First order predicate logic can therefore provide a uniform frame for -
gorous problem specification and algorithmic problem solving. The feasibility
of the predicate logic approach as a common basis for problem specification
and- solution has been impressively demonstrated by the success of the logic
programmang (PROLOG) approach to programming.

2.1 The Importance of Predicate Logic 27

Furthermore, predicate logic has equally well shown its unifying potential
and practical power in the area of data design and analysis (abstract detq ty-
pes, relational databases). Structuring problem spectfications, structuring algo-

three of them.

Still, it may well be possible in the future that formal languages based on
fundamentat concepts other than the concept of “set” will turn out to be more
appropriate. For example, when speaking about “algorithmic domains” in the
area of generic algorithms and data types the set theoretic notion of a function
is too coarse for capturing the idea that two domains with identical operations

alternative to predicate logic and set theory, extended versions of the A-caleulus
promise to give a more natural frame for the evolving integration of “static”
(“descriptive”) and “dynamic” (“algorithmic”) mathematics or, oversimplified,
of mathematics and computer science. In fact, A—calculus can be viewed as
a theory whose basic concept is “DH”, application, whereas set theory is the

theory whose basic concept is “€”, membership. ,

However, I guess it will still take some time untj] alternatives to predi-
cate logic will be mature enough to replace it. Also, it is' too early to make
a prediction whether a complete replacement is really desirable and possible.
Because of its practical importance, power, and maturity, we will make first
order predicate logic the main topic in this book.

gained by these investigations.

Many fundamental problems, concepts, approaches, and intellectual tech ni-
ques evolved, for the first time jn history, in the foundational research on pred;-
cate logic: The subtle distinction between language layers (the “meta” and the
“object” layer), the careful distinction between syntactical and semantical con-
cepts, the fundamental interplay between semantics and formal manipulation
~ on language constructs (proving), the clear formulation of problems relating
syntax, semantics and proving (for example, “completeness”, “categoricity”,
“definability”, “decidability”), the technique of inductive definition of syntax
and semantics, the technique of constructing semantical models from syntac-
tical material, the technique of bootstrapping powerful languages from small
kernels and many, more refined, techniques. These achievements of predicate
logic research provide now a sound and sophisticated technology for the design

28 2. The Language of Predicate Logic

and analysis of many other formal languages, in particular, in computer sci-
ence. In a slight oversimplification, computer science may also be characterized
as “automation of problem solving by language design and implementation”.
The role of predicate logic as a basis for computer science can, therefore, not
be overestimated. '

2.2 Characteristics of (First Order) Predicate Logic

Predicate logic is a descriptive language. The main constructs { “formulae”,
“propositions”, “statements”) of the language of predicate logic describe facts
about objects in various domains of discourse. Auxiliary constructs (the “terms”)
describe objects. Predicate logic is, hence, essentially a “descriptive” language.
However, the logic programming approach teaches that, in fact, predicate lo-
gic can also be viewed as an algorithmic language. (In this approach, problem
specifications are “programs” that initiate proofs. The proofs are the “com-
- putations” in the corresponding abstract machine, which essentially is a first

order theorem prover.)

Predicate logic is a universal language. As explained in Section 2.1.1, pre-
dicate logic is suitable for any domain of discourse.)

Predicate logic, as treated in this book, is a formal language, i.e. its syntax
and semantics is defined in a metalanguage whose availability is presupposed.

It turns out that, as a metalanguage for defining (first order) predicate logic,
we need some formulation of set theory. In this book, we use Zermelo-Fraenkel
set theory (viewed as a natural or a formal language) as the metalanguage for
the study of predicate logic, i.e. we use a special first order theory as a meta-
language for the study of first order predicate logic. For keeping the metalevel
and the object level apart, we use the following notational convention in this
book: All symbols of the ob Ject language are written in typewriter notation.
For example, “f” is a symbol of the object language whereas “f” and © f" are

symbols of the metalanguage.

2.3 Informal Syntax and Semantics of First Order Predi-
cate Logic

The language of predicate logic has “variables” (“individual variables”, “ob ject
variables”) like “x”, “y” .. that range over arbitrary elements in a “universe
of discourse”, for example the set of natural numbers or the set of screws in a
box etec.

Furthermore, there are “function symbols” (“function names”, “function
constants”) that can denote functions (operations, processes) on the universe
of discourse. For example, “+” and “.” are frequently used function symbols
that, most times, denote addition and multiplication. However, in other uni-
verses of discourse they may well denote other operations, for example, “+”
may stand for “union”. Some of the function symbols may denote “0-ary”
functions, 1.e. functions with no arguments. These function symbols are often

2.3 Informal Syntax and Semantics of First Order Predicate Logic 29

called “constants” or, more specifically, “individual constants”. The 0-ary func-
tions denoted by constants produce exactly one valuye. Hence, they are in 1-1

Similarly, there are “relation symbols" (“predicate symbols”} that denote
relations (predicates, atiributes, properties) between (of) elements in the unj-
verse of discourse. For example, “<” and “/” are often used as predicate symbols
and, usually, denote the “less-than” and the “is-divisible” telation, respectively.

In general, we are totally free in choosing function and predicate symbols
and in attributing functions and relations as “denotation” (“interpretation”,
“meaning”, “semantics”) to these symbols.

From the variables and the function symbols, one can build more com-
plicated language constructs, called “terms”. The “nesting” of terms can be
arbitrarily deep. For example, “x”, “x+y” “x | 9 4 (x -y} . (x)}” are ne-
sted terms. A term does not denote any particular element in the universe of
discourse. Only after assigning “values” (objects in the universe of discourse)
to the variables occurring in a term, the term denotes a particular ob Jject. For
example, after assigning 2 to “x” and —2 to “y”, “x + y” denotes 0.

Terms are only auxiliary constructs in first order predicate logic. The
main constructs are the “formulae” (“propositions”, “assertions”, “sentences”,
“statements”).

The simplest type of formulae are the “ctomic formulae”. An atomic formula
consists of a predicate symbol and several terms. For example “n.n > 2.p

terms and atomic formulae. For example, Bina.ry function and predicate sym-
bols are mostly written “infix” (e.g “x < 7”), others are written “prefix” (e.g.
“GCD(m,n)”), unary function symbols are sometimes written “postfix” (eg.
“at?), :

Given formulae 4 and B, more complicated formulae can be built up by
connecting formulae with the “propositional connectives” “not”, “and”, “or”.

“if ... then”, and “if and only if”. Again, manv different notations are
) : Again,]

I use for these connectives. For example, a? | “27, “implies”,

“from ... follows” etc. are some of the notatjons in use for the “if ... then”

connective. Formulae of the forms “‘not 4”, “A and B”, “4or B” “if A then
B” “Ad if and only if B” are called “negations”, “conjunctions”, “disjunc-
tions”, “implications” and “equivalences”, respectively. In a given universe of
discourse and under a given assignment of objects to variables, “4 and B” ;s
true iff both A4 is true and B is true. “d or B” is true iff at least one of the
two, 4 or B, is true. “if A then B” is true iff at least one of the two, “not
A” or B is true. The latter stipulation may seem to be “unnatural”. Consi-

der, however, the case of a formula of the form “for a1l (if 4 then B)”"

30 2. The Language of Predicate Logic

where 4 and B may contain the variable z. In this case, depending on the
assignment of objects to the variable z, A may become true or false. “for all
z (if A then B)” is true iff, for any assignment, 4 becomes false (in this
case we do not care about B} or A becomes true, in which case B must be true
also. This is equivalent to saylng “not A” is true or B is true. “4 if and only
if B” is true iff both, 4 and B, are true or both are false.

Finally, given a variable z and a formula A, one can form the formulae “for
all z A” and “there exists an z such that A”. Such formulae are called
“universal formulae” and “existentjal formulae”, respectively. “for all” and
“there exists ... such that” are called the “universal quantifier” and the
“existential quantifier”, respectively. The variable z becomes “bound” by the
universal or existential quantifier. ‘*for all z 4” 1s true i, for all assignments
of objects to the variable €, A becomes irue. “there exists an r such that
A” is true iff there exists an assignment of an object to the variable z such that
A becomes true.

Here is a.n'cxa.mple of a predicate logic formula in one of the many notations

in use:
VedéVy(ly-x| <= |ty - fOxf <e).

The variables “x” and “f” are “free” (not bound) in this formula. All the
other variables are bound by quantifiers.

In a formal treatment of first order predicate logic, one must unambiguously
define a specific syntax for the formulae. In this book, we will choose a par-
ticular syntax that allows easy typing of the formulze on a keyboard and, in
fact, is very close to natural language syntax. However, the particular choice
of a particular syntax has no theoretical importance. The really important in-
formation contained in the syntax is the specification of the distinct “types” of
linguistic objects contained in the language, the specification of “constructors”
by which more complex linguistic objects can be built from elementary ones,
and the specification of “selectors” by which complex linguistic ob jects can be
decomposed into more elementary ones.

Therefore, in modern approaches to syntax, instead of giving one concrete
syntax axioms are formulated that describe the properties of the types, con-
structors, and selectors of the language (“abstract ayntaz”)?)This has the advan-
tage that assertions about the syntax of the language are valid for all possible
realizations of the language, e. & 1In a computer, and are completely indepen-
dent of notation, data structures etc. In order not to confuse the reader by
too much abstraction, we prefer to pursue the concrete syntax approach in this
chapter. However, the definitions will be structured in such a way that the es-
sential structural information that would form the body of the abstract syntax
can be extracted easily from the concrete syntax.

For putting first order predicate logic to practical work in mathematics and
computer science, it is absolutely necessary to acquire fluency in formulating
facts and proving theorems in the language of predicate logic. Except for some
simple exercises, we cannot spend much space in this book on achieving this
important goal. The reader who does not feel at ease with the practical use of

2.3 Informal Syntax and Semantics of First Order Predicate Logic 31

predicate logic as a language is referred to (Buchberger, Lichtenberger 1980),
where ample space 1s devoted to training the use of predicate logic in very many
different syntactical representations including those that, in their appearance,
do not differ very much from plain English. The main part of (Buchberger,
Lichtenberger 1980), then, treats the technique and art of practical proving.

Let us, finally, make a remark about the usage of the expression “language
of (first order) predicate logic”. When we say “the language of first order predi-
cate logic” we mean the language that is built up from variables and arbitrary
(or “all conceivable”) function and predicate symbols by forming terms, ato-
mic formulae, propositional formulae and quantifier formulae. When we say “q
first order predicate language” we mean a particular instance of “the language
of predicate logic” that is characterized by the particular (few) function and
predicate symbols needed to speak about the given universe of discourse. For
example, for speaking about natural numbers, in some situations we may con-
fine ourselves to using only “47, “." and “<”. In other situations we may wish
to include also the symbols “1” and “I” in our language. These are different
“languages of first order predicate logic”. Thus, “a language” of predicate logic
1s determined by its function and predicate symbols (the “non-logical symbols”)
whereas “the language” of predicate logic is the general linguistic frame for all
these specific languages. . '

This article was processed using the KWTgX macro package with LTMP Style Version: 8-FEB-
1990 .

2.4 A Particular Formai Syntax for First Order Predicate Logic 33

2.4 A Particular Formal Syntax for First Order Predicate
Logic

In this section, we will define one particular syntactical representation of first
order formulae. In this syntax, formulae are special “strings” (or “expressions”),
1. e, sequences of “symbols”. We will need some symbols as “variables”, some
symbols as “function constants” and “relation constants”, some other symbols
as “connectives” and “quantifiers” and finally some auxiliary symbols like “,
“)” and “,”. A sequence consisting of the symbols s1,3;..., s, is written in the
form sy 57... s, with spaces between the individual symbols. (Formally, o is a
string over a set § of symbols iff o: {1,... ;} -+ S for somen € N, Thus, the
notation s; s3...s, is only an abbreviation for describing a particular func\‘.ion.)
Some of the “symbols” used in our syntactical representation of predicate logic
will actually be English words like “sinus” Or even groups of words like “for
all”. We consider such words and groups of words as atomic symbols whose
Possible decomposition into individual letters is irrelevant. If there is danger
of ambiguity we sometimes will write ‘for all’ instead of for all etc. in
order to emphasize that ‘for all’ is to be considered one symbol. Thereby
we will be able to distinguish between, for example, not less (x,y), where not
is a connective and less is a binary relation constant, and ‘not lessg’ (x,y),
where ‘not less’isa binary relation constant. However, most times, we omit
the quotation marks because we can safely trust that the “reader” (which can
be a machine) is able to parse the strings correctly (in the “scanning” phase of
analyzing the string).

In fact, any object can be used as a symbol and we will need this view in

the letters and digits of a few alphabets. :

The version of predicate logic defined in the first subsection will be called
“kernel language”. It is the actual object of study in this baek. The number ~f
language constructs of the kernel language will be kept small in order to make
studying the language easier.

For practical purposes, i. e. for using the language, the kernel language is
not suitable because the formulae of the kernel language tend to be complex
and hard to read® Therefore we extend the language in a number of ways in
the subsequent subsection. However, the formulae of the extended language
are only viewed as abbreviations of the longer, and less readable, formulae of

’I A A . - ‘ - .
b ik Mgy, shedl G Rt entcd foomae of Wndt e Rl b D en el oy Ta T e
hog M
-~ SO e fe £
AT
KW Gl B A L N T
i -

T T I

- 34 2. The Language of Predicate Logic

2.4.1 The Kernel Language

The symbols not, or, and ‘for some’ {and some other symbols of the extended
language) are called “special symbols”. They will not be used as variables or
constants. '

Definition 2.1. (Variables) V is a set of variables iff V" is a denumerable infinite
set of words consisting of an English letter and subsequent letters and or digits
and disjoint from the set of special symbols.

Example 2.2. (Variables) The following symbols may be elements in a set of
variables: x, y, F, F’, epsilon, epsi.

Let now some set V of variables be fixed.
Definition 2.3. (Constants) oo B et e it e (k2 r0

(F,R, A) is a domain of constants iff
F' is a set of symbols (“the set of function constants”),
R is a set of symbols (“the set of relation constants”),
A: (F U R) — Ny (“the arity function”),
=€ R, A(=) = 2,
F and R are disjoint, :
F and R are disjoint from V and
the set of special symbols. ad

In the above definition we require that the binary equality symbol “=” is
always among the relation constants. This variant of the predicate logic is
called “predicate logic with equality”. The equality symbol will be treated in
a special way both in the definition of semantics and in the inference rules. It
would also be possible to study “predicate logic without equality”. However,
most of the mathematical theories are more naturally described in predicate
logic with equality. On the other hand, logic programming in its elementary
form, is based on predicate logic without equality. The inclusion of “=” as
a special concept into predicate logic has advantages and disadvantages. We
decide to present the variant with equality in this book.

Let now (F, R, A) be a domain of constants. e o &J,p,,_@'mﬁ-q_g P

Definition 2.4. (First Order Terms) The set of {first order) terms (over (F. R)}
is the smallest set of strings that satisfies the following conditions:

Ifv €V then » is a term.

If feF, A(f) =n,and t;,... ¢, are terms
then ft1...¢, is'a term. .0

The specific syntax we are using here is called “Polish notation” or “prefix
notation™ I avoids®the use of parentheses. For theoretical purposes prefix
notation is nice because it concentrates on the essential structural information
and omits all “syntactic sugar”. It is the type of concrete syntax that is closest
to “abstract syntax”. '

“
£ ,LH:A‘.’?» L {.{J.'tv_f(¥
- ! v

. £ K CEL e T
Ty

2.4 A Particular Formal Syntax for First Order Predicate Logic 35

Definition 2.5. (Atomic Formulae) The set of (first order) etomic formulae
(over {F, R, A)) is the smallest set of strings that satisfies the following condi-
tions ' '

Ifre R, A(r) =n,and t;,...,t, are terms
then r £;...t, is an atomic formula.

Definition 2.6. (First Order Formulae) The set of (first order) formulae (pro-
positions, or statements (over (F, R, A)) is the smallest set of strings that sa-
tisfies the following conditions: -

If a is an atomic formula then q is a formula.
If p is a formula then not p is a formula.
If p; and po are formulae then or P1 p2 1s a formula.

If v is a variable and p is a formula then for some v p is a formula.

Example 2.7. (Terms and Formulae) Let V cotain the symbols x, y, £23, f,
g Let F:={+ 1} R:={<, ‘is bounded’}, A(+) := 2, A(1) := 1, A(<) :=2,
A(‘is bounded’) :=1.

The following strings are terms over (F,R, A):

*xy,
+ '+ xyx,
! £23.

The following strings are atomic formulae:

‘is bounded’ + f g,
<+ ! +xyx! £

‘The following strings are formulae:

not ‘is bounded’ + f g
for some f not ‘is bounded’ + f g,
or for some f not ‘is bounded’ + f g < T g

If not otherwise stated, we will let range “v,w” over variables, “f” over
w_»n

function symbols, “s,#” over terms, “r” over relation symbols, “a” over atomic
formulae, and “p, ¢” over formulae (propositions).

Exercise 2.8. (Unique Parsingof Polish Expressions) Show that terms and for-

mulae of the kernel language can be uniquely parsed. Hw & oo o ctinc fie
Ll = 2N ‘B\@ ;I,w et fcw:«f’t,

2.4.2 Extensions of the Kernel Language

We will now introduce some extensions of the kernel language that make for-
mulae easier to read and more compact. Since the extended language is only

36 2. The Language of Predicate Logic

used in example formulae we will not bother with defining a complete syntax
for the extended language. Rather we will informally, and sometimes only by
examples, specify some classes of admissible formulae in the extended language
and specify which formulae of the kernel language they abbreviate.

First, we introduce the parentheses “(” and “)” and the comma “,” for
structuring terms and atomic formulae. For example,

+ { x, ¥y) stands for + x y, and

<(x,y)standsfor < x y.

Some of the unary function and relation constants may be declared “post-
fix”. For example,

2 tstandsfor! (2).

Some of the binary function and relation symbols may be declared “infix”.
For example, '

x + ystandsfor+ (x , y).

Some of the binary function and relation symbols may be declared “embra.
cing”. For example,

| x | stands for || (_x).

(So far we used spaces between symbols for separating them. From now on
we will often omit the spaces as long as it is clear what constitutes a symbol.)
Furthermore, we use English words for the propositional connectives and
the existential quantifier. Also we introduce new connectives and guantifiers
and different words for existing connectives and quantifiers. Parentheses are
also used in more complex formulae for determining grouping of subformulae.

(p1 or pa) stands for or 71p2,

(p1 and p») stands for not (not P1 or not py),

(p1 implies p,) stands for (not py or p,y),

(p1 1ff p2) stands for ((p; implies p;) and (p; implies p;)),
for all v pstands for no.t for some v (not p),

x A y stands for not x o y {where o is some binary relation constant),

(p1 and p; and P3) stands for)
(p1 and (p; and r3)),

(p1 or p; or pi) stands for

2.4 A Particular Fermal Syntax for First Otder Predicate Logic 37
(p1 or (p2 or ps)),
(Pr, P2, p3) stands for (p, and 72 and p3).
if p1 then p; stands for p; implies pz;

if p then ¢ else g, stands for _
((if p then ¢1) and (if not p then q2)).

Conjunctions of atomic formulae involving infix relation constants can be
contracted. For example,

X <y <z <tstandsforx < y and y < z and z <1.
Another form of contraction is as follows:

X, ¥, 2 < 1standsforx < 1 and y < 1 and z.< 1.

Here are some more variants for quantifiers. For example,

for all », w p stands for
for all v for all w p,

for all v with p; we have p; stands for
for all v (p; implies py),

for some v with p; we have p2 stands for for some v (p, and 2),

for some v < 1 we have p stands for
for some v with v < 1 we have o,

there exists v such that p stands for for some v p.

In fact, we will allow a number of different forms of the “key words” for
all, there exists, etc. to resemble natural language grammar. For example,
sometimes we may want to use there exists a or there exists an instead
of there exists etc. :

Furthermore, we normally present complex formulae using indentation fr
Increasing readability and also for saving some parentheses. Moving to the next
line and going to the right (left) by one tabular position corresponds to one
left (right) parenthesis. At the end of such a formula we tacitly assume that
all parentheses are closed, ie. that we go back to the left margin. Also, by
using identation, we sometimes may save words like we have in connectinn
with quantifiers etc. o

- Given a formula p of the extended language, p* will denote the correspon-
ding formula in the kernel language for which pis an abbreviation.

Ex.'imple(A Formula in the Extended Language) Here is the definition of

“Is continuous” in the extended language of predicate logic:

38 2. The Language of Predicate Logic

T 'is continuous at’ x iff
for all epsilon > 0
there exists a delta > 0 such that
for all y with |y - x| < delta ve have
| £y - £-x | < epsilon

Note that a couple of function and relation constants are used in this formula:
=, & are binary function constants, || is a unary function constant, 0 is a
0O-ary function constant and ‘is continuous’ » >, and < are binary relation
constants. f, x, epsilon, delta, ¥ are supposed to be in V in this example.

Exercis@Polish Notation) For some part f of the formula in Example 2.9

determine F¥.
Solution: We consider, for example, the formula

there exists a delta > 0 such that
for all y with iy - x| < delta we have
| £Cy - £Gx | < epsilon.

In Polish notation it reads

‘for some’ delta not or not > delta O not -
not ‘for some’ y not or not < || - ¥y x delta
<1l -2 fy . fx epsilon.

Exercise@(;rammar for Predicate Logic) Formulate a BNF-grammar for
part of the above syntax of the predicate logic extended language. Use the non-
terminals “F”, “Q” etc. for the set of formuale, quantifier formulae etc. “V”
may be used for the set of variables and “A” for the set of atomic formulae. Try
to present a grammar that saves parentheses in formulae by exhibiting different
“binding strength” for connectives ete. A grammar for the complete extended
language would be a major project.
Solution:

F=Q

Q=P |for all V Q| for some V Q

P=1|Piff]

I=D|Iimplies D

D=C|DorC o :

C=B|Cand B :

B=A|not B|(Q) , O
: /bw‘)-‘v‘

For practical purposes, it is also very-important to have “typed variables”
available. A typed variable is a variable for which a “type” (a property of
the objects over which the variable ranges) is declared. Typed variables allow
to shorten formulae because, by just mentioning a typed variable at a given

2.4 A Particular Formal Syntax for First Order Predicate Logic 39

position in a formula, the complete type information is supposed to be inserted

at this position.
For example, after having introduced the type declaration

typed variables epsilon, delta with range epsilon, delta € 3
the formula

for all epsilon :
there exists a delta such that rel(epsilon, delta)

1s an abbreviation for

for all epsilon € =
there exists a delta € X such that rel(epsilon, delta).

A type declaration has a certain “scope”. All formulae in the scope of a de-
claration abbreviate formulae in the untyped language according to the trans-
lation process sketched above. In our sloppy version of the extended langnage
we do not introduce a syntax for indicating scopes but assume that the scope
extends over all subsequent formulae. '

The basic syntax of a type declaration is as follows

typed variable v; with range pp,
‘typed variable vy with Tange ps,

typed variable v, with range p,.

We will also admit several variants of such declarations, for example
typed variables v,w with range p
as an abbreviation for

typed variable v with range p,
typed variable w with range 2

In the scope of the type declaration
typed variable v with range p;
the following rules must be applied

for all v p; stands for for all v with p1 we have p,,
for some v p; stands for for some v with P1 we have ps,

p2 (with “free variable” v) stands for if p; then.po.

40 2. The Language of Predicate Logic

(The notion of a “free variable” will be explained in the next subsection).

In the sequel we will define many notions for terms and formulae. It is
understood, that these notions when applied to terms ¢ and formulae p of the
extended language refer to the abbreviated terms ¢* and formulae p* of the
kernel language. For example, when we have defined what it means that a
variable v 1s free in a formula p of the kernel language then “v is free in the
formula p of the extended language” actually means that “v is free in p*”.

2.4.3 Free and Bound Variables and Substitution

We will first formally define the concept of “free” and “bound” variables for
formulae in the kernel language. This definition and, in fact, most of the sub-
sequent definitions, are “inductive” (“recursive”) over the structure of terms
and formulae in correspondence to the inductive nature of the definition of the

concepts “term” and “formula”.

Definition 2.12. (Free and Bound Variables) “v is free (bound) in t (p)” is in-
ductively defined as folows: '

@ v is free in w iff v is-distinct from w. (o ot of et okion)

_ or ar
2) wvisireein ft;...t,iffvisfreein ¢, and ... ard ¢,..

.) . . . or or-
() vxsfreemrt;...tﬂlﬁ'vxsfreelntla,u.d...yadt,..

v} v is not bound in t.

v} v is not bound in a. Ao wet Booe guomifion]

(mgy v 1s free (bound) in not p iff v is free (bound) in p.

i) v is free (bound) in or p; pg iff
v is free (bound) in py or v is free (bound) in pj.

(¥ v is not free in for some v p.
(% v is bound in for some v p.

{mas) H w is distinct from v then
v is free (bound) in for some w p iff v is free (bound) in p.

Exampl@(h‘ee and Bound Variables) The variable y is bound in for some

¥ contrast, x is free in for some y > y x. Note that x is both free

Yy > ¥y X
and bound in or for some y > y x for some x = x x. B nets T e~ .
In the formula ' A P e zec Mk
_ ; ' S el M contion,
there exists a delta > 0 such that hot! Tt

for all y with ly - x| < delta we have
| £2y -~ £7x | < epsilen

2.4 A Particular Formal Syntax for First Order Predicate Logic 41

the variables delta and y are bound and the vanables x, f and epsilen are
free. O

Substitution of terms for free variables is an elementary process for deriving
new formulae from given ones. It will be important in the formulation of the
“ rules of inferences for predicate logic.

" Definition 2.14.(Substitution) s,[t] (“the term resulting from s by substituting
t for v”) and p,[t] (“the formula resulting from p by substituting t for v”) are
inductively defined as follows:

Er

v“[] = & Coe B¢ olifest Shaighd “furpend i
wor theccime oh o

If w is distinct from v then wy[t] = 2 pollm bnbiniy (Biprpssime moy &

oo, et ward oo foru-ad ch.g}_

* i T el p-Lga—.é‘"ﬂ’gJ‘t odane

(f 81 ... Sn)u[t] = f (Sl)v[t] . (sn)v[ﬂ. e it plonst v ox “salboder” g

il e ;’p—shk..-u‘# A&M.ﬂ‘.‘h
o yprpr ot portis Hllal).y oa

(r 81...8n)eit] =7 {(s1)u[t]. .. (sa)u[t)

(mot p)s[t] = not py[t].

Bt nok whien ¢

(or p1 p2)u[t] = or (p1)u[t] (P2)o[t]- FTn 3w o Lnmm, (0,247

fEnd il cvotmut. §
(for some v p),[t] = for some v P. (Je.e.,ﬁ!;f;;mm! go chnaters &
If w is distinct from v then (for some w p),[t] = for some w p,[t]. O

Similarly, for distinct variables v;,...,vn, one can define sy, _u. [t1,...,n]
and py, __u.(t15. -, ts] (“parallel substitution of ¢;,...,¢,").

Exercise 2.15. (Parallel and Sequential Substitution} Inductively define
Suy,.vn [ty -5 tn) .

and
Po;,..vnltts - - s tal.

Give an example where sy, ,,[t1,22] # (55, {1114, 22]-

Solution: The inductive definition of parallel substitution results from the
definition of s,{t] and py{t] by replacing “,[t]” by “4, . v.Mt1,...,vn]". Only the

clause for variable terms needs scme care?
74,4 and

I}A’ =v; then v, ,.[h,.. ..t =t
If, for all ¢ with 1 <i <n, v #v; then vy o [t1,... tal = v.
- An example where parallel substitution is different from “sequential” sub-

stitution is

1.‘&‘0 Fafa oa L (: o T,“ ik s L Aodiyast A e T N f‘,‘_) L n A
{f/‘.‘.{i’ IS O J'_:’ L L. ’

f‘il\

42 2. The Language of Predicate Logic _
g -3 2f gt 5t

(x < y)x,yly,2 = vy <2 freg iyl
. II" /_ }43 7 b'_,.,Ll- r““l’l(‘?'-x’-‘.
(x < yixlylyldl = 2 <2 ? -

We now must clarify a subtle point in the process of substitution. Cur intui-
tion about substitution is that the statement py{t] “says the same thing about
the individual denoted by t” as p says about the individual denoted by v. Ho-
wever, if we apply substitution without any precaution, this is not always the
case. For example, p = for some y (x = 2.y) (under the usual interpreta-
tion of the function symbol .) says that the individual denoted by x is even.
However, px [y+1], which is for some y (y*1 = 2.y), does not say that the
individual denoted by y+1 is even but asserts that thereis an individual that sa-
tisfies the equation y+1 = 2.y, i.e. the equationy = 1. This undesirable effect
results from the fact that the variable y that is free in y+1 becomes bound after
substitution into for some y (x = 2.y). The following definition determines
exactly in which situations we would like to allow substitution.

Definition 2.16. (Substitutible Terms) “tis substitutfble for vin p” is inductively
defined as follows:

t is substitutible for v in a.
¢ is substitutible for » in not piff tis substitutible for v in p.

t is substitutible for v in oxr p; pz iff
t is substitutible for v in p; and in p2.

1 is substitutible for v in for some v p. (B ow Lfate- of relbibe Fov, iy

Wl ooy
Z1\ If wis distinct from v “, 752 ‘,fJ f2ed
then t is substitutible for v in for some w p iff . b i
not (v is free in p and w is free in ¢) and T ey

i is substitutible for v in p.

o M

[2)
Exercis(Substituy{)le Terms) Determine whether or not the following

terms are Substitutible for the following formulae:

Term Variable Formula
(1) ¥ +1 X for some y (x = 2.y)
(2) y+ 1 5 for some y (x = 2.y)
(3) v.w x for some y

x < v.x implies for some W (w < v)

(4) v.w v for some y
x < v.x implies for some w (w < v)

p
A

Py mn)

2.4 A Particular Formal Syntax for First Order Predicate Logic 43

(8) v.w W for some y
X < v.x implies for some w (w < v)

Solution:
(1) No: xis freein x = 2.y and y is free in y +1.
(2) Yes: Any ¢ is substitutible for y in for some ¥ P
(3) Yes: x is free in x < v.x implies for some w (v < v) but y is not
free in v.w and v.w is substitutible for x in for some (w < v) because x is
not freein w < v, _
(4) No: vis freein w < v and w is free in v.v.
(5) Yes: wis not freein x < v.x implies for some w (¥ < v).

In the analysis of the cases (3) - (5) we used the straightforward extension
of substitutibility to formulae in the extended language, see next exercise.

Exercise 2.18. (Substitutibility in the Extended Language) Show the following
rules:

t is substitutible for v in p; and p, iff
¢ 1s substitutible for v in p; and in 2.

(Similazly for implies and iff.)
¢ 1s substitutible for v in for all v P

If w is distinct from v .
then ¢ is substitutible/ for v in for all w piff
not (v is free in p and w is free in t) and
t is substitutible for v in p.

Seolution: :
and: .

t 1s substitutible for v in p; and p,
iff
t is substitutible for v in not (not P1 or not pp)
iff
¢ is substitutible for v in (not p; or not pa2)
iff
t is substitutible for » in not p; and in not D2
iff
t 15 substitutible for v in p; and in py.

for all, equal variables:

44 .2. The Language of Predicate Logic

t 1s substitutible for » in for all v p

iff
t is substitutible for v in not for some v not p
- iff ‘
t is substitutible for v in for some v not p
iff

irue.

for all, distinct variables: Let w be distinct from v. Then

t is substitutible for v in for all w p

iff

t is substitutible for v in not for some w not p
iff

t is substitutible for v in for some w not p
iff

not (v is free in not p and w is free in) and
t is substitutible for v in not p
iff
not (v is free in p and w is free in t) and
t is substitutible for v in p.

In the sequel, if p,[t] appears somewhere in a statement we tacitly assume
that p,v,¢ represent expressions such that ¢ is substitutible for v in p.

The concept of substitutibility is important for all formal systems invoiving
variables. For example, it also plays an important role in Church’s “A-calculus”.
Since substitutibility is fairly complicated, some formal systems try to get along
without any variables at all, for example Curry’s “logic of combinators”. That
this is possible is a surprising result.

2.5 The Semantics of First Order Predicate Logic 45

2.5 The Semantics of First Order Predicate Logic

Given an interprefation of function and predicate symbols in a domain, a first
order variable-free term denctes an object in the domain (the object is the
“value” of the term) and a closed formula (i. e. a formula without free variables)
denotes a fact about the domain that can be true or false (“true” or “false” is
the “truth value” of the formula). In the subsequent subsections we will define
the concepts involved in this view of semantics, i.e. the concepts of

1. domain,
2. interpretation, and
3.-aad value {denotation).

This will finally enable us to define what it means that a formula is a logical
consquence of other formulae.

2.5.1 Domains

We assume that the concepts of “tuples” and “Cartesian product of sets” are ai-

ready available. Thus, we do not define these concepts here but only summarize

our notation, For arbitrary n € Np, we will write {my,...,my) for the n-tuple

formed from the objects m,,...,my,. In particular, () is the O-tuple. The Car-

tesian product of Mj,..., M,, 1e. the set {(m1,...,my) |m; € M),...,m, €

M_,}, is denoted by M; x ... x M,. M™ is an abbreviation for M x ... x M.
. n times

M? is the set {()}, a singleton.
Definition 2.19. (Functions and Relations)

¢: A — B (“¢ is a mapping from A {0 B} iff
(——{¢ C Ax B and
for all z € A there exists a unique y'€ B,such that (z,y) € ¢.
ade- it rww R L
fé: A B and zE A then q&(::) = the y such that (z,y) € ¢.

¢ is a mapping iff qS:/A — B for some A, B. . 7;)7

H ¢ is a mapping then
the domain of ¢ := {z | for some y,(z,y) € ¢},
the range of ¢ := {y | for some =z,(z,y) € ¢}.
gt

A mapping ¢ is‘injectiveff (’ $ lerjedkior (- B

for all 21, z3,y, if (z1,v),(z2,¥) € ¢ then z; = x,.
ok papn. bt (it gicd . b Gt Gad

¢ is an n—ary (total) functionon C-iff ¢: C™ — C.

¢ 1s a multi-ary function on C iff, for some n, ¢: C* = C.

L P T e VY R AN R PN PR

Ll P .(? Am) < 6

)

46 2. The Language of Predicate Logic

If ¢ is a multi-ary function on C
then arity(¢) := the n such that ¢: C™ — C.

p is an n—ary relation on C iff p C C™
p is a multi-ary relation on C iff, for some n, p C c".

K p is a multi-ary relation on C ,
then arity(p) := the n such that p C C™. a

Notation: We write ¢{cy, ..., cn) instead pf ¢{(cr,---,enl)

- o~ Pt ,
Definition2.20. (Domalne)) &t ot ecsm op 1t o
A<(T, &, P) is a (homogeneous) domain (or structure) iff f (YM D“"f“""f ‘nbtedzy
I is a non-empty set, (" toni”, Trpudn g w a olpuronin.

& is a set of multi-ary functions on I" and I
P is a set of multi-ary relations on.I". S - o

Note that a 0-ary function on' M has the form {({),)} where m is an
element in M. Thus, the O-ary functions on M are in 1-1 correspondence with
the elements in M.

Example@.21](A Finite Domain) Let I' := {1,2}, ¢; := {(1,2),(2,2)}, ¢z =

{(1,1,1),(T, ,1),(2,1,1),(2,2,2)}, p := {(1,2),(1,1),(2,2)}. #1 is a unary

function on’ M, ¢z is a binary function on and p is a binary relation on
M Let & := {¢, 92} and P := {p}. A:=(I,$,P) is a domain.

Example 2.22. (An Infinite Domain) Let A := (%, {sin,cos,-},{N, <,=}). Ais
a domain. sin and cos are unary functions on R, - is a binary function on R. N
is a unary relation and < and = are binary relations on .

Example 2.23. (A Heterogeneous Domain) Domains of non-logical symbols are
not homogeneous domains in the sense of the above definition. They are “he-
terogeneous” domains (having several carrier sets instead of just one). We dn
not consider the notion of heterogeneous domains any further here.

2.5.2 Interpretations

[

Definition 2.24. (Interpretations of First Order Constants) Let § = (F. R, 1)
be a domain of constants and A = (I, $, P) a domain. [is an interprelation of
Sin A

I. (FUR) = (¢UP), '
for all f,1(f) € ® and A(f) = arity((I(])),
* for all v, I(r) € P and =rityfr) = A(J(#)

AGH = o (20

[

2.5 The Semantics of First Order Predicate Logic 47

2.5.3 Name Generators

Given a domain of constants and a structure, for technical reasons we will need
an extra “name” for each individual in the domain. For this we have to extend
the domain of constants in a suitable way. We consider name generators that
produce sufficiently many names for individuals.

Definition 2.25. (Name Generators) Let (F, R, A) be a domain of constants and
(I',&, P) 2 domain. Then ' is a name generator for I'in (F, R, A) iff

! is an injective function,
the domain of ’ is I', and
the range of ! is a set (of symbols) disjoint from F'U R. o

 Notation: We will write ¢’ instead of '(c). Also, if I" and (F, R, A) is clear
from the context, ' will always be a name generator for I in (F, R, A). Further-

more, in such context, F' will denote F U {+|ve T} At vt b ety ol 42
/ ol oo cnl Hannable)

F = dasnd, v S atitoegh 1

ExamplA Name Generator) Let I = it and F := {0,+}, R and A wew o -
arbitrary. “THen / with 0' := zero, n' ;= the decimal number representation of 25 2.*

n in type writer notation (for n > 0) would be a possible name generator for
I in (F,R, A). (For example, 2' = 2). Note that we must not define 0’ := 0
because then the range of ' would not be disjoint from FU R.

Pob o 0 bivie Bt han e BRI B en oo o Oh et

2.5.4 Values of Terms and Formulae

We define now, first, the values of variable-free terms and the truth values of
closed formulae under a given interpretation and, then, the notion of validity
of arbitrary formulae under an interpretation.

Definition 2.27. (Variable-Free Terms and Closed Formulae)

A term ¢ over § is variable-free iff, for no v, v is free mn t.

A formula p over § is closed iff, for no v, v is free in p. o

Let V be a set of first order variables, § = (F, R, A) 2 domain of constants,
and A = (I',$, P) a domain. Let [be an interpretation of 5in A.

. Definition 2.28. (The Values of Terms) For all variable-free terms ¢ over S we
define {t); (“the value of 1" or “the value denoted by t under the interpretation
I”) inductively as follows:

If vy € I' then (v'}; = 7.

If A(f) = n then (f t1...ta)r = I(F)({t1)1, -, {ta)1)- -0

Once and for all, we choose now two distinct objects T and F (“true” and
“false”) called “iruth values”. '

[P}

48 Contents

" Definition 2.29. (Truth Functions) The following functions are called fruth func-
tions. P O

[[w] B%(») | Balv,w) | By(v,w) | Bo(v.w) | Bo(v,w) |
T|T[F T T T T
T|F F T F F
FIT[T F T T F
F|F ¥ F T T

a

The truth functions reflect the intuitive meaning of the propositional
connectives. In the following definition they are used for describing precisely
how the truth values of compound propositional formulae are determined from
the truth values of the constituents.

Definition 2.30. (The Truth Values of Closed Formulae Under Interpretatlons)
For all closed formulae p aver S we define (p)7 [“the truth value of p” or “the
truth value denoted by p under the interpretation I in A”) or, short, (p i1 Gf 4
is clear from the context) mductwely as follows:

{1 = L ST () ST

A F the’ Glirane O fe
If A(r) = n (and r # =) then _
(rty...ta)p =Tiff ({t1)r,....(ta)1) € I(r).

{not p)r = B-({p}1)-

A
]

(for some v p); = T iff, for somey € I', (pu[’ﬂ)[=T

Examplel2.31)(Values of Terms and Formulae) Let V := {x,y}, S :=(F, R, A),
where F :=1{+, .}, R:= {<}, A(.) := A(<):=2, A(+} =1 Let t :="+ . 2t v
and p:= ‘for some’ y < + . 2' y 2\
Let A be defined as in Example 2.21.
Let I(+) := ¢1, I(.) := ¢2, I(<)} = p. I is an interpretation of § m/B’
~ We have {t}; = ¢1(¢2(2,1)) = 2. Furthermore, (<+ .2 1 2); =T because
(2,2)-€ p. This shows that (p); = T because { < + . 2' y 231Ny =T,

{or py p2}1 = Bv({;m)1, {p2}1)-

2.5.5 Validity, Models, Logical Consequence, Equivalence, Satisfiabi-
lity :
Definition 2.32. (Validity Under Interpretations) Let p be a formula over S.

If p is closed then
p 1s valid under the interpretation I in the domain A lﬂ' {(pra=T.

a(.l.u’-lhcr‘
If p contains exactly the/free variables vy,..., v, then
p is valid under the interpretation I in A iff
forall v1,..., 92 € T, {Doy.ualtls- - cyhna="T.
7 .
et Balrg e

A

2.5 The Semantics of First Order Predicate Logic 49

" Example(2.33/(Valid Formulae under Interpretations) Let S, A and I be as
defined in the last example and let p := ‘for some’ y < x y. pis valid under
1 because {px{1']); = T and (px[2']); = T. (Note that (1,2} € pand (2,2) € p.)

Definition 2.34. (Logical Validity)

p is valid in predicate logic (or just valid or a predicate logical tauiology) iff,
for all domains A and for all interpretations [in A,

p is valid under I in A. '\ﬁ: 3 3*“_,_5::{_1-.:—“' O
Example@(Vaﬁd Formulae) (x = x) or not (x = x) is a logically valid
formula because, whatever the value v := ((x = x)x[v']}s is, the value {({x =
x) or not {x = x))x[¥])r = By(v,B-(v)) =T.

Exercise 2,36. (Truth Values for Extended Formulae) Show that
(and p1 p2)1 = Bal{p1)1. {P2}1)-

(implies py p2)r = B=({p1)1, (p2)1)-
(it p1 p2)1 = Bo{(m)1, (p2)1)-

(for allv p)y=Tiff, forall y e I, {p.[¥]}s = T.

Solution: :

and: 'ﬂf o L

a L
(and p1 p2); = g G, G

L
={not { not p; or not p2}); =
Loy Ay,

= BL(By(B-({p1}1), B-({p2)1))) &

= Ba({p1}1, (p2)1)-

The last equality in this derivation holds because for arbitrary truth values
v,w € {T,F} we have

P i= (wyi= | ur= .
v | w || Bo(v) | B-(w) | Bu{vi,w1) | B-(u) || Ba(v,w)
T|TjF F F T T
T{F|F T T F F
FIT]T F T JF ¥
FIF|T T T F F

The last two columnns are identical.
implies and iff: The proof is similar.

for all:

50 Contents

{(for allwp); =T

i o« pfog et
(not for somewvnot p)y=T

iff « &84, 4 et 7.
{(for some v not p); = F

i & Do of et
{({not plfy)y =T fornoye l

e b ke (B Horgens L) g wesben Bt Def.
{ not (poly']))y =Fforally el

A e 2o Laat D
((pely)r =T Horall ye I

Ak

-4
Definition 2.37. (Closure of Formulae)

of Bthltoe fonl®) 63

If all free variables of p are among the distinct variables vy,...,vn then
P is a closure of piff p = for allw,...,%a P

+ Exercise 2.38.(Closure and Validity) Let 5 be a closure of p. Show that
pis valid under [in Aff (Fyra =T (i. e pis valid under [in A).

Solution: We show the proposition for the case where p contains not more
than two free variables v; and v; and p = for all v;,v2 P
L ol v Brinisl emet (conplimtin = war. cammst- Saberd)
p is valid under [in A
iff < B of aetaihy,
for all 71,72 € T, (o[, 12ll1a =T

iff o B o ont Soteds

for all 71,72 € T, {(Pw, [’Ti])v:[’ﬁ])!.n =T
HE e Ak for (e =t > (2 bemacie D ad,

for all 41 € I', { for all vz (pw,[11]))1a =T
: iff « Spilon af cobkimian (oo o&” ..} L)
forall 71 € T, {(for all v plulnira =T
i € Bt fo Ly Y [meerccye 218
{ for all v for all v; pra=T
iff « 24 o A
Pra=T.

In this derivation it is important to note that, since 7 is a constant, parallel
substitution has the same effect as sequential substitution. Also note that the
proposition is also true in the case where v} or v2 does not actually occur in p.
)

The last proposition shows that, in the formulation of predicate logic we
consider here, free variables “have the same meaning” as universally quantified

variables.
ke colibel "o

Definition 2.39. (Models) Let I be an interpretation in a domain Aand Q aset
of formulae. :

5 5 The Semantics of First Orger Predicate Logic 51

A is a model of Q under the interpretation I iff
all g € Q are valid under [in A. : 0

Convention: We say “A is a model for p under [” instead of “A is a model
for {p} under I".

Exampl@(Models) Let Q consist of the three formulae

x.ly.22=.7) .32
1. x=1x,
x? . x =1

where ., ?, and 1 are binary, unary and O-ary function symbols respectively.
These formulae are called the group axioms.

Let A = (Rnm, {" Enn,~' },{}), where Rap is the set of all regular n by n
matrices over R, - is matrix multiplication, En a is the n by n unity matrix, and
-1 is matrix inversion, Let furthermore I(-) = ., I{Ea,n) = 1, and (="
Now, A is a model of the set of group axioms under the interpretation I. O

We now proceed to the rigorous definition of the notion of “logical conse-
quence” that goes back to (Tarski 1935). Intuitively, the main idea in the notion
of “logical” consequence is that a formula p is considered to follow “logically”
from a set Q of formulae if p is valid whenever @ is valid, independent of the
meaning one attaches to the symbols occurring in p and @. Differently stated,
p should be valid for all possible meenings of the symbols for which @ becomes
valid. (Carefully think about this kind of paraphrasing “independent” by “for
all”! By analogy, consider a real function that “does not depend” on its argu-
ment, i.e. a constant function, i.e. a function that, “for all input values”, yields

the same output.)
L eodd b & l-"il‘.‘"J-L

Definition 2.41. (Predicate Logical Consequences) Let Q be a set of formulae.

QEp e
(“p is a predicate logical consequence of Q" or
“p is valid in the theory Q") iff :
for all domains A and for all interpretations [in A
if all ¢ € Q are valid under I 'in A
then p is valid under [in A
(i.e. if Ais 2 model for @ under [
then A is a model for p under I).]

Convention: We write “g |= p” instead of “{q} E p".

Example‘@(A Predicate Logical Consequence) Let @ be the set of group
axioms. THe models of Q umdertie are called “groups”. Then the formula

pp:=x .1=x

. is a predicate logical consequence of Q because p; 15 valid in all groups. By
contrast, the formula '

52 Contents

pri=%X . y=y .x ,
is not a predicate logical consequence of ¢} because there are groups that are

non-comimutative.

Exercise (Proof of a Predicate Logical Consequences) Of course, it is not
possible to verify that x . 1 = xis a predicate logical consequence of the group
axioms by “observing” its validity in all groups. Rather one must “prove” it.
Try to give a proof!

Solution: x . 1 =2 . (x? . x)=(x .x*) .x=1. x

For this derivation we used that x . x' = 1 is also a predicate logical
consequence of the group axioms. Here is the proof of this fact: x . x” =1
Lfx L x)={(x? . x*) . (x.x*)=x" . ({xX.x).x)=x"
(1. x)=x .x =1

Exercise 2.44. (Predicate Logical Consequence and Validity) Let ¢i,..., ¢,/ be
closures of g1, ..., ¢n. Show that

p is a predicate logical consequence of q), ... ;gn iff
(¢ ¢ and ... andﬁﬁ) implies p) is valid. “?
Solution: : 3a - %
p is a predicate logical consequence of g1,...,¢n
_ iff
for all A and I,
if q1,...,qn are valid under I ther p is valid under [
iff
for all A and I,
if {qiyy =...={gn}s =T then (p}); =T.
iﬁ .
for all A and I, .
B:;.(BA((Q-I)I, @R (P) =T
iff
for all A and I, I
{({ ¢y and ... and ¢y} implies f)); =T
iff

((g1 and ... and 9/) implies p) is vahd. h

Exercise 2.45. {Semantical Modus Ponens) Show the following statement:

H((q and ... g,) implies p) is valid and
@i,-.-+9qn are valid under Iin A
then pis valid under I in A.

Solution: ;: For simplicity of notation let us assume that in ({ ¢ and ...
gn) implies p) we have exactly one free variable v. Let be arbitrary in I
We have to show (p,{7']); = T. Since qi.. .., gy are valid under [in A, we have
{an)elY}r = .. {{gn)uY']}s = T Since ((¢; and ... ¢,) implies p) isa
predicate logical tautology, we also know that {({ ¢; and ... g,) implies
22V = ((C (@)uly) and ... (ga)oly']) implies py[y'))r = T. Hence,
Pl Il =T | ,

5 5 The Semantics of First Order Predicate Logic 53

" Definition 2.46. {Equivalent Formaulae)
p is predicate logically equivalent to ¢ iffi pt=qand ¢ =p.
Exercise 2.47. (Characterization of Equivalence) Show that

p is predicate logically equivalent to ¢ iff
for all domains A and for all interpretations [in A
pis valid under [in Aiff g is valid under I in 4.

Solution: :

p is-logically equivalent to g
' iff
pEgqandgkp
iff
for all A and I, if pis valid under I in A then g is valid under I in A and
for all A and I, if g is valid under I in A then p s valid under [in A
iff
for all A and I, pis valid under / in Aiff g1s valid under I in A.
Example 2.48. (Equivalent Formulae) For arbitrary w and p, not for all wp
is equivalent to for some w mot p. For simplicity of notation, we show this
only in the case where not for all w p contains exactly one free variable v.
Namely,

not for all w pis equivaient to for some w not p
iff (by the previous proposition)
for all A and I,
not for all w pis valid under I in A iff
for all w not pis valid under [in A
iff
for all A and I,
for all 7, {(not for all w pl[y'])r = T iff
for all 7, {(for some w not p)[¥']}r =T.

The last staternent is true because we even can prove the stronger statement
that, for arbitrary 7,

({not for all w p){y'])s = ((sor some w not (Y 1}1,
namely,

{(not for all wp)ly'i)r =T

iff

(not for all w p,(¥]jr =T
iff

(for all w p,[y'j}; =F i
it

{{py[YNwlri])r = F for some 1

54 Contents

i S
(net (py[¥])wim]} = T for some 7, '
iff
(not po[yu[n]} = T for some 7;
iff
{for some w not py[¥'))r =T
iff
((for some w not plly']))r=T.
Definition 2.49. (Satisfiability)

p is satisfichle iff,)
for some domain A and some interpretations [in 4,

p is valid under [in A.

'@ is satisfiable iff,
for some domain A and some interpretations I in 4,

all g € @ are valid under I in 4.
Exercis@Characterization of Satisfiability) Let p be a closure of p. Show

that . _ _)
: ,’7 z ta wemmrpk LT v Al #
p is satisfiable : oy
iff . . I
. —_— ; g L ‘).,.L 4 AT
not P is not valid. £ = :
o
Hencg? also —= 5 o, maf v P o
p is valid L S P
iff = -z :-: Sy S
not p is not satisfiable.) _ .
- > -
Solution: : ' T 5 aaliad
p is satisfiable . <) 5> veal
i — 2o AP " oy
for some A an{], p is valid in A under [. Lor ol ,.*' =
L i LTz
for some Aand I, {p}; =T L iz
iff — .9,.{_‘9{ (?: N : Ler o «-‘-,IJ <; >_ =
for some Aand I, { not g);y =F = -
iﬁr&wyl‘mmw&\w Sor e A‘I' <;>:_;-::-
not forall Aand I, {not p)y =T y
il 84 oL abioBly b Feuef fomboe oz T s
not p is not valid. P =

Exercise 2.51. (Predicate Logical Consequence and Insatisfiability) Let 7 be a
¢losure of p. Show that '

@ = piff @U {not p} is not satisfiable. | R

e P91 8 weg € ~ly oyl

2.5 The Semantics of First Order Predicate Logic
Solution: :

=p
i — Mo F
for all A and I,
if, for all ¢ € @, g is valid under [in A
then p is valid under 7/ in A
iff — w8
for all A and I,
if, for all ¢ € Q, g is valid under [in A
then pis valid under 7 in A
T) PR e “nt
for no 4 and 1,
for all ¢ € @, ¢ is valid under / in A and
p is not valid under I in A
iff —
for no A and I, :
for all ¢ € @, g is valid under [in A and
not pis valid under J in A
M — B o p wlpbilihy
@ U {not F} is not satisfiable. :

55

56 Contents

2.5.6 Proposition Logical Semantics

For most formulae p of predicate logic it is not immediately clear how to de-
termine whether or not p is valid. However, for some formulae, validity can
be determined by merely looking at the structure of the formulae in terms of
the propositional connectives - and v (and the other propositional connectives
A,—, and e in the extended language). For example, it is immediately clear
that (3 x (x < 0)) Vv = (3 x {x < 0)) is valid because this formula has
the “propositional structure” p v - p and, whatever the truth value of p is,
P V — preceives the truth value T.

The logic of formulae in terms of their structure with respect to the pro-
positiornal connectives is called “propositional logic”. It is an important part -
of predicate logic. In some way, propositional logic is trivial because propo-
sitional validity can always be decided mechanically in finitely many steps.
In terms of computational complexity, however, propositional logic is by no
means trivial because any of the known decision algorithms for propositional
validity in the worst case is exponential in the number of “elementary” parts
of the given formulae. In fact, the problem of propositional validity is one of
the “NP-complete” problems all of which are considered to be computationally
“hard”.

For a formal treatment of these ideas, we first define “propositional formu-
lae” and validity of propositional formulae. Then we define the “propositional
transforms” p of predicate logical formulae p and show that if P 18 valid in
propositional logic then p is valid in predicate logic.

Definition 2.52. (Propositional Variables) V is a set of proposition logical (or,
Just, propositional) variables iff V is a set of variables.

From the context it will always be clear when certain variables are used as
predicate logical or proposition logical variables.

Definition 2.53. (Propositional Formulae) The set of proposition logical formu-
lae (or, just, propositional formulae) is the smallest set of strings that satisfies

the following conditions:

If v is a propositional variable then v is a propositional formula.
If b is a propositional formula then — bis a propositional formula.

If b1 and b; are propositional formulae
then Vv b]_ bg, A bl b'z, ad b] 62, and « b] bg
are propositional formulae.

As in the case of predicate logical formulae, we will allow the use of paren-
theses and infix notation of propositional connectives in the “extended” pro-
position logical language. :

We use the typed variables b, ¢ as variables for proposition logical formulae.

~ Let now a fixed set V' of propositional varjables be given.

Contents 57

Definition 2.54. {Truth Valuation)

T is a truth velvation iff
T is a mapping from V into the set {T,F} of truth values.

Definition 2.55. (Truth Values under Truth Valuations} For all propositional for-
mulae b and truth valuations T we define (b} (the “iruth value of b under the
truth valuation T”) inductively as follows:

{v}y = T(v) if v is a propositional variable.
(= b7 = B-({b)r).

{V b1 b2)r = By({br)r, {b2)7)-

(A b1 ba)r = BA((b1)r, (Ba)7)-

(= & ba)r = Bo((b)7, (b2)7).

(& by o)y = B..({b1)T, (b2)7).

Example 2.56. (Truth Values Under Truth Valuations) Let b := V v = v, and
let T be a truth valuation such that T(v) = T. Then

(b)r = By(T(v), B-(T(2))) = By(T, B~(T)) = T.
Definition 2.57. (Propositional Tautologies)

b is valid in proposition logic (or b is a propositional tautology) iff,
for all truth valuations T, (b)y = T.

Example 2.58. (Propositional Tautologies) Each formula of the form Vb —bis a
propositional tautology because (V & = b)r = By ({b}r, B-({b))) and therefore,
for any truth valuation T, either (b})r = T and (V b -~ b} = T or (b}y = F
and, again, (V b -~ b}y = T.

Definition 2.59. (Propositional Consequence)

b is a propositional consequence of ¢y, ..., c, iff
for all truth valuations T
if {e1)r =...{cn)7 = T then (b)r = T.

Example 2.60. (Propositional Consequence) Let b and ¢ be any propositional
formulae. Then ¢ is a proposition logical consequence of b and b — ¢ hecause
for any truth valuation T for which ()7 = (b —)7 = T, also (¢)r must be T.

Exercise 2.61. (Characterization of Propositional Consequence) Show that
b is a propositional consequence of ¢y, ..., ¢,
iff
(g A ... Aep) 2B isa propositional tautology.

58 Contents

Solution: : The proof is similar to the proof shown in Exercise 2.44:

b is a propositional consequence of ¢,..., ¢,
iff
for all truth valuations 7T,
if (ci)r=...={ca)r =T then (b)p =T
iff

for all truth valuations T,
B—'(Bl\“‘f}f)T: o fen)r), (b)) =T
i
for all truth valuations T,
{(er A LA) = B =T
iff
(Cei A ...A cp) — b) is a propositional tautology.

Definition 2.62. (Elementary Formulae in Predicate Logic)

P is an instentiation {or ezistential quantifier formula) iff
p has the form 3 v q.

p is an elementary formula iff
P is an atomic formula or p is an instantiation.

For each predicate logical formula p we now define the “propositional trans-
form” p. In fact, we only present an informal definition and leave an mductwe
definition as an exercise to the reader. In the examples we take wy,w3,... as
the propositional variables.

Definition 2.63. (Propositional Transforms of Formulae) A propositional trans-
form p of a predicate logical formula p is a prositional formula that results from
P by replacing the distinct elementary subformulae of p that are not themselves
subformulae of elementary subformulae of p by distinct propositional variables.

Example 2.64. (Propositional Transforms of Formulae) Let p := ((3 x (x>
0V @yF<o)) - (x>0 A3 x{x>0))) Thenp=(w V
wz) — (w3 A w). .

Theorem 2.65.(Proposition‘- and Predicate Logical Consequences)

If p 1s a propositional tautology
then p is a predicate logical tautology.

If p is a propositional consequence of 41,. .., ¢
then p is a predicate logical consequence of g1,. .., g,.

Proof:

Tautology: Let p be a propos1t10na.l tautology and I an interpretation in
a domain A. For simplicity of notation let us assume that p contains exactly
one iree variable v and let ¥ € I'. Let ey,...,em be the distinct “maximal”

Contents 55

elementary subformulae of p. Then also (e1)o[7')s - -, {(&m)u[Y] are elementary
formulae from which p,[7} is built by propositional connectives exactly in the
same way as p is built from €1,....,€m. Hence, since p is a propositional tau-
tology, whatever the truth values {(e1)[Y1,-- -5 {((emu[¥'])1 may be, (pu{¥'])1
will be T. _
Consequence: Let I be an interpretation in a domain A such that ¢1,...,¢a
are valid under I in A. Since p is a propositional consequence of g1,---,4n,
gy A ... A go) — P)is a propositional tautology. Hence, ((gs A ... A

ga) — p) is also a predicate logical tautology. Hence, p is valid under [in 4

by semantical modus ponens. O
In view of the above theorem we also define

Definition 2.66. (Propositional Consequence for Predicate Logic Formulae) Let
P,q1,- - -;9n be predicate logical formulae.

p is a propositional consequence of g1,...,qn iff
p is a propositional consequence of qt,. -, Gn-

Definition 2.67. (Satisfiability)

b is satisfisble in proposition logic iff,
for some truth valuation T', (b)r = T.

A set B of propositional formulae is satisfiable in proposition logic iff,

for some truth valuation T, .
for all be B, {b)r = T.

Exercise 2.68. (Tautologies, Consequences and Satisfiability) Show that

b is satisfiable in propositioz/lqgic q/
iff
- b is not a proposition logical tautology.
Hence, alsc
b is a propositional tautology
/ iff | . (g/
—# 15 not satisfiable in propositioxf logic
& M
and 7 o
' /b)i,e%p 'ion;l‘ymﬁence el - - - <7707.
iff AL Tn s not satisfiabte. —
Solution: : I
L At
b is satisfiable in proposition logic <
[
for some truth valuation T, (b} = T : &
—4 2 o7 - af.
4

& Vo

ou Contents

iff

for some truth valuation T, {(~bgp=F
iff

not for all truth valuations T, (—bjz = T
: iff

™ b is not a propositional tautology.

Exercise 2;69.(Proposition Logical Consequence and Insatisflability) Show that

b is a propositional consequence of ¢, . .. ,en Aff
(e A ... A en A = b) is not satisfiable in propositional logic.
Solution: :
bis a propositional consequence of Cly.-+,Cn
iff
(ex A ... A cp) — b)isa propositional tautology
iff
=(les A ... A cp) — B
is not satisfiable in proposition logic
iff
(e1 A ... Acg A —b) is not satisfiable in propositional logic.

Exercise 2.70. (Checking Proposition Logical Consequences) For any formulae
P1,P2,P3, show that p; is a propositional consequence of pzand ((p; V p3)

— .p3).
One method for showing this is by using the letnma on propositional con-
sequence and tautology. Namely, we calculate the following “truth table”.

" Vi |2 [‘03 " 'B"'(Bf\(vz!B"’(BV(Ullvz)3U3)):v3)—ﬂ

b | bl [ef| | | 13| 3| e
el I I TR TR T
el T T T T IR

| |] g | Pl | e | g

Here, for: =1,2,3, v; = {Pi)T (for an arbitrary but fixed truth valuation T)
and hence B_,(BA(v2, Bo(Bv(v1,v2),v3)),v:) = (2 A ((Fy V F2) — p3))
I }fa)}T-

The method of “truth tables” needs 2" steps when n is the number of
elementary formulae in the given formulae.

Another method for showing propositional consequences is the “indirect”
method which is sometimes faster. It proceeds by using the lemma on propo-
sitional consequence and insa isfiability. In our example, we assume that for

et B b

duwrtd i

some T

-
T

Contents 61

{2 A {py V P2) — p3) A ~p3))r=T (1)

and show a contradiction. From (1) it follows that

(2})r =T (2)
((Fr V o) = P))r =T, and 3)
{(pa)r = F. (4)

From (3) and {4) we obtain

{(Fr V P)r=F

and, hence, {gz}7 = F, which contradicts (2). O

ol i ull pals e B oV ariy Lo S

["((fr"f?-) ﬂfg\ A _7/0g
e
=

62 Contents

We will now present an alternative method for deciding whether or not a
oty bor propositional formula b is a propositional tautology and whether bis a proposi-
~ad~ tional consequenceofcy,...,Cn. This method is called “resolution method”. Its
:j.‘,_;\ predicate logic variant plays an important role in automated theorem proving
‘toF> . and,In particular, in logic programming. Predicate logic resolution is based on
= two ideas:

1. repeated resolution of “complementary literals” and

2. “unification”.

~— Theg idea of resolution of complementary literals can already be studied in
propositional logic. :

The propositional resolution method works only for formulae in “clause
form” (conjunctive normal form), also called “clause sets”. Therefore, before
applying the method to an arbitrary propositional formula, we must transform
the formula into an equivalent formula in clause form. In the sequel, we present
the details of both the transformation into clause form and repeated resolution

of complementary literals. 9
Definition 2.71. (Propositional Claué Sets)

K is a propositional clause set iff
K is a finite set of propositional clauses.

C is a propositional clause iff
C is a finite set of propositional literals.

1 is a propositional Lteral iff
[has the form v or the form - v,
where v is a propositional variable.

Example 2.72. (Propositional Formulae in Clause Form) The following set K is
a propositional clause set:

K = {Cy,C4,Cs}, where

Cy = {¥1, "2},
Cz = {~w3},
Cy = {-~w1, w3, W3} i

In fact, propositional clause sets and clauses are compact descriptions of
certain propositional formulae as defined by the following definition. (For “K™*”
etc. read “the propositional formula determined by K " etc. Note, that strictly
speaking the formula described by a clause set or a clause are not uniquely
determined by the subsequent definition because the order of the elements in
sets is not unique. We could overcome this ambiguity by introducing some order
on propositional variables but we do not want to overformalize the subject at
this point.) :

" Definition 2.73. (The Formula Determined by a Clause Set)

Contents 63

If C = {l,...,lm} is a propositional clause
then C* =14 v... V I

If K ={Cy,...,Cn} is a propositional clause set .

then K*=CT A... A G U o o dowe forney e = Bl
en (Mw..aewpw A Cay. of oliy of Etarts)

Example 2.74. (The Formula Determined by a Clause Set) Let K,Cy,C3,C3 be
as in Example 2.78. Then

K™ =Cy A CF ACy, where
C*IW] V wa,
C*=_'“2:
03 ==w; V ws V —wj. : a

The reason why, in the context of resolution, clauses and conjunctions of
clauses are written in set form is the fact that we want to consider two clauses
to be “equal” if they contain the same literals but maybe in different order
and/or with multiple occurrences. Similarly, we want to identify conjunctions
of clauses that contain the same clauses but in different order and/or multiple
occurrences.

There exists an algorithm by which every propositional formula can be
transformed into an “equivalent” formula that can be described by a clause
set. '

Definition 2.75. (Equivalence of Propositional Formulae)

b~ c (“bis propositionally equivalent to ¢”) iff
for all truth valuations T, (b} = (c)7.

.. LS Welstadu il .
Proposition 2.76. (Equivalences for Clause Form Transformation)

beore ~(b—c) A {c—b) Prre Prosto, Mot froe ot &
: gk, Mo-ﬁw fz‘“““‘z“‘—"""“

b—oc ~ =b V e cq-:{:,,.,t,,.,,\)-

b ~ b Bt l

Aopal o £ el 4’, e q
'y, / Lol c.and'thakﬂuul
oy . (-,'_)"\.(--‘)/f (,,.)A&ﬁ

. 6. é,W
b (ane) ~ (S A BVa). KN T

£Lht e PV S
(c1Aca) Vb ~ ({c1Vbd) A {c2V). (it outy "{“J"‘““"‘Gf)

=(by Vb)) ~ (=b1 A/by).

—|(b]_ /\bz) ~ (—\bl N

bvb ~ b

(61 vV bg) Vby ~ b v (bg Vv bg)

64 Contents

blVbZ "“bQVb].
bAb ~ b
(blAbz)Aba ~ blf\(bgf\b;g).

by Aby ~ by Aby.
Proof: ;| Exercise.

Proposition 2.77. (Transformation into Clause Form) There exists an algorithm
by which for every propositional formula b one can find a clause set X such
that b is equivalent to K™, '

Proof: By “applying” the equivalences stated in the preceding proposition
we can, first, transform b into an equivalent formula ¢ that i1s a conjunction
of disjunctions of literals {a formula in “conjunctive normal form”) with the
additional property that all disjunctions contain a literal only once and that
no two disjunctions occur whaose set of literals is identical. Every disjunction
of ¢ can then be described by a set of literals. The set of these sets is then the

desired K.

Example 2.78. (Transformation into Clause Form) Let & := (v; V w2) — (w3 V
w3). The following equivalence steps yield an equivalent formula ¢ in conjunctive
normal form.

(W] A" ‘Hg) — (9‘3 vV 93)

~

(wiVwz) — w3

Pt

""(W1 sz) V w3

(_—'Wl A —wa) V w3 /CMF_’
{(~w1 V w3) A (-w2 V w3)=:c 5 . bt g fo e
. . rabtioel Y M D T) -
The corresponding clause set K is p.}’r..ua.i for Ay ,::3 o .,..L_M..,..A»;-

(%ﬂﬁmwaﬂ-{ }-u‘.a[s "‘""‘f‘

'{{““1,‘13},{""2,“3}}- ' / J*ﬂ:mr ::?:;“?h 0

Now we proceed to proving an elementary Iemma. tha.t w1ll be the basis of

the propositional resolution method. i
‘u.,‘o-"-.—
~ Lemma?2.79.(Correctness of a Propositional Resolutmn Ste i
LJ- it epe’ vl ce {Fud meid anclin i) x%ﬁ& ool :
by Vbyisa propositional consequence of ‘ 4 *ty
cV b and —cV by . A T
Y x

Proof: : Let T be an arbitrary truth valuation and assume that

e et~

APt

" il (Ca 1t v Haad)
{cefdn tre 2by) = bond, ~ (“L‘ ")V v *
: o [(‘r_ 4 kol (cn:d Yok,) [[WC wb)y lennty o4) = T Contents 65
— N

{cVb)r :Tj;nd T (1)
{(~e Vi) =T. (2)

If (bl}T =T then, of course, (b] A% bg)T =T.If (blf'jr = F then (C)T =T by (1)
and, hence, (—~¢)7 = F. Therefore, {b2)1r = T by (2) and, hence, (b; V ba)7 = T.
a. ’

We now define one basic step in the resolution method, namely formation of
“resolvents”. For this we need the auxiliary notion of “complementary literals”.

Definition 2.80. (Complementary Literals)

Two propositional literals I' and " are complementary iff
I = v and I" = —w (or viceversa), selavi(@=va
where v is a propositional variable. T it

p N Y T 4

Definition 2.81. (Propositional Resolvents) Let C' = {{],4,... 2.} and C" =
{&,1,...1.} be two propositional clauses with the property that ! and If
are complementary literals. Then

C is a propositional resolvent of C' and C" iff
C:{I’i...l:uj, g,..-_::iu}- '

Example 2.82. (A Propositional Resolvent) {w3, %3} is a propositional resolvent
(and in fact the only possible resolvent) of {w;,w2} and {-w1,w3}. O

Iteration of resolvent formation yields the resclution method:
Theorem 2.83. (Propositional Resolution Method) Consider the following pro-
‘blem: :
[g Todotegy 3 28 tsontirfutl ,]

Given: K, a propositional clause set. '
Question: Is K* satisfiable? [A..,,,.An hos <> (aneh ~Y]

This problem can be solved by the following algorithm:

K' =K
while exists C such_that
C is a propositional resolvent of two clayses in K and
O K (heden tmabiom wre ot et
do _ Py ' cComme I
i if C = 0 ~ N) erfy
then answer: ”Not satisfiable”
else K' = K'U{C}

answer: “Satisfiable”.

Proof: : We have to show [repenromt Lupi y
1. The algorithm always terminates.

2. If the algorithm terminates with the answer “not satisfiable” then K is not
satisfiable.

66 Contents

3. If the algorithm terminates with the answer “satisfiable” then K is satis-
fiable.

Termination: The algorithm always terminates because from the finitely

many literals occuring in the initial clause set K one can form ounly ﬁmte %
many d1§t1 nct clauses. (If in K there occur n distinct variables then only (3

many li 5 can be formed.)
Answer “not satisfiable”. The answer “not satisfiable” can only be produ-

ced if the clause @ is generated as a resolvent. The empty clause can only be 3

generated from two clauses of the form {I'} and {I"}, where the literals { and
" are complementary. By the lemma on the correctness of the proposttional
resolution step, each clause produced in the course of the above algorithm is a
propositional consequence of K. Hence, I’ and " are propositional consequences
of K. Hence, if a truth valuation T satisfied K, it would satisfy both ! and I,
which of course is not possible since I’ and I are complementary.

Answer “satisfiable™ This proof is not given here. (It is included in the
later proof of the correctness of the predicate logic resolution method.) The
proof consists in showing how, if the answer is “satisfiable”, one can construct
a satisfying truth valuation for K from the final clause set K'. We illustrate
the construction in the Example 2.85 below. O

The resolution method is only applicable to formulae in clause form. In order
to decide whether arbitrary propositional formulae are tautologies or whether a
propositional formula is a logical consequences of other propositional formulae
one can apply the lemmata stated in Exercise 2.68 and transform the resulting
formulae into clause form by Proposition 2.77

Example 2.84. (Resolution, Insatisfiable Case) Decide by the resolution method
whether the following clause set is satisfiable:

(1) vy V wa,
(2) w1 Vv W3,
(3) | vV w3,
(4) W v Wi,
(5) w3 V g,
(6) ~w3 V wg,

(Note that, in examples, we often write clause sets as a sequence of clauses
that are presented as disjunctions. However, this notation should be understood
a a notation for sets.)

Solution: :
(T) wy V w3, {(from (1) and (3))
(8) vz, (from (6) and (7))
(9) ~w3 V -wy, ‘ (from (2) and (4))
(10) —wa, (from (5) and (9))
(11) 0. | (rom (8) and (10)}

ey §
(ny) " {rem) (%« waf B !

- as-—ﬂﬂ“
-
ﬂ#

— ca~t

Rw(/‘!--“
¢ etitateel”
“els’,

Contents 67

Answer: “Not satisfiable”.

o
(L Example 2.85. (Resolution, Satisfiable Case) Decide by the resolution method
whether the following clause set is satisfiable and, if the answer is “satisfiable”,
construct a satisfying truth valuation for the clause set.
(1) w1 \% w3,
(2) w3,
(3) -w V w2 V ws.
Solution: :
(4) 51, | (from (1) and (2))
(8) wa V —ws, (from (1) and (3))
(6) - V -wg, (from (2) and (3))
(7) —ws. {from (2) and (5))
At this stage, no new resolvent can be generated.
(1) with (4): There is no complementary literal.
(1) with (5): There is no complementary literal.
(1) with (6): w2 V —wa is a resolvent. However, it is not new. o Rermrys 5
e Mo oy oee frDoan
(6) with (7): There is no complementary literal. (P mene bt
Answer: “Satisfiable”. ' /
A satisfying truth valuation T can be generated as follows:
T{(w;) =T, (from (4))
T(wz) = F, (from (2})
T{wi)=F. . - (from (7))
It is easily seen that this truth valuation satisfies all clauses (1) - (7), which is
‘ in fact guaranteed by theory.
S Example 2.86. (Resolution; Logical Consequences) Decide by the resolution me-

thod whether
bi=-w AW
is a propositional consequence of

c1:={w1 Vwz) — w3and
cp 1= W3
Solution:
First we transform the problem into a satisfiability problem of a clause set:
b is a propositional consequence of ¢; dnd c; iff the formula d :=¢; A 2 A
~b is not satisfiable. In order to apply resolution we first transform d into
clausal form. Note that in this case {and in fact in all cases where the formula
considered derives from a propositional consequence problem), transformation '
into clausal form can be done separately for each part of the conjunction, which
_considerably reduces the work involved.
By Example 2.78 the clausal form of ¢; 1s

68 Contents

(1) W vV w3,
(2) W2y \Y) w3.

¢g is already in clause form. Hence,
(3) —wa.
The clausal form of -b is
(4) w1 V Wy,
because
b ~ =Wy V oW~ wp Vowg.

Now we can apply resolution to the clauses (1) - (4):

(5) —~wy, (from (1) and (3))
(6) s, (from (2) and (3))
(7) ¥, (fom (4) and (5))
(8) 0. ' (from (6) and (7))

Answer: “Insatisfiable”, i.e. b is a propositional consequence of ¢, and cz. O

Propositional formulae “describe boolean functions”. We will now prove
that, conversely, all boolean functions can be desribed by propositional formu-
lae. In fact, all boolean functions can be desribed by propositicnal formulae
involving only — and V because every propositional formule is equivalent to
a propositional formula involving only - and V. The set {—,V} is therefore
called a “complete set of propositional operators”. Another complete sets of
operators are {—, A} because b; V by is equivalent to ~{=b; A -b3). A third
set of complete operators is {|}, where b; | b2 is defined to be equivalent to
=(by A b2). “|" is sometimes called “nand”’. The set {|} is complete because
—b is equivalent to b | b and b; A by is equivalent to —~(b; | b;) and, therefore,
to (by | 82) | (By | Ba). ‘b awathmr comphlite (&f vt gy £ cn e

For the following study, let V = {w1,w32,...} be fixed. Let w;, w3, ... range
over {T,F}.

Definition 2.87. (Boolean Functions Described By Formulae)
B is an n-ary boolean function iff B: {T,F}* — {T,F}.

Let all variables of the propositional formula b be among the variables wy, w2, . . . wy.

Then: i o lic, v inR)

[b]n {“the n-ary boolean fun% described by b") is defined as follows:

[b]ﬂ-(wlz < :wﬂ) = {b)Tl .
where T(w;) :=w; forall 1 <i < n.

. 2
Lemma 2.88. (Complete Sets of Boolean Operators) Let n # 1.

Contents 69

For every n-ary boolean function B
there exists a propositional formula b {involving only — and V)
such that B = {B),. R

7

Proof: We give two proofs that are seemingly different but, in fact, are
only two versions, one recursive and one non-recursive, of the same idea. Both
proofs show that all n-ary boolean functions can be described by propositional
{formulae involving only —, V, and A. The result then follows from the fact that
b1 A b3 i3 equivalent to =(=b; V —b3).

Inductive Proof:

The possible four unary boolean functions can be described by the propo-
sitonal formulae w;, ~wy,w; A =wy, and wy V —wy. [T & Wellodclion start”)

As induction hypothesis, let us assume that all (n—1)-ary boolean functions
can be described by propositional formulae involving only -, V and A. Let now
n > 1 and let B be an n-ary boolean function.

It is easy to check that

B(w;,...,wn) =
B {Ba(wi, B(T,w3,...,wy)), BA(B-(w1), B(F,wa,...,wa))). (1)

{Hint: consider the two cases w; = T and w; = F.} Now,

by, ey orn) 1= Pwgerwn(B(T,ws, ... ,w,)) and

M ":.)

= dwy,. .., we(B(T,ws, ..., wa})

are (n — 1)-ary boolean functions and therefore, by induction hypothesis, can
be described by two propositional formulae & and b;. Obtain] and &, from

b1 and b,, respectively, by simultaneously replacing w; by w3, ..., wa—y by w,.
Then, using (1), B can be described by + o & i
(8,{,»,_,._., an) = BGEIL 3),,g,_,,)

(wi Ab)) V (—w1 ABY).

Iterative Proof:

Let B be an n-ary boolean function and;a‘flet (wsl), e w&l)), (wgz), e ,ws,z)),
o (wgl),. . ,wg)) be the distinct n-tuples in {T, F}" for which B has the value
T. Then B can be described by the following propositional formmla (o~ o8 F)

b= C(wi”,....wg)) \ C(w(lzj,...,wf’) VooV C(wi”,...,we.:))‘
where

Clwy, . wn) = W;‘UI A0 A wf“ .

Wi 1 =
and v =¢ fw="T
) —~w; otherwise.
This can easily be checked. (Hint: Consider the two cases B(wy, ... ,w,) =T

and B(w;,...,wn) = F and compute [b], (w1, ..., w,) by tracing the definition

of b).

70 Contents

Example 2.89. (Description of a Boolean Funetion) Consider the boolean ter-
nary function defined by the following table:

[Lwl | wy | ws ! B(wl,wg,wam

| | bt | bt | 13| 13| 13 { 13
e 1 13} 3| td]) | g
1 TR T FET P

=) |]) e) g

In this exa.mple,
M :={(T,T, T),(T,T,F), (F,T,T),(F,F, F}.
and therefore

bi={(wAwpAwg) v (w1 Awa A-wy) V (mw1 Awy A wg) Vo (~wp A -wg A —w3).

Contents 71

2.5.7 A Lemma on Semantics and Substitution

For some of the proofs in the subsequent chapters one needs a technical lemma
that relates substitution with semantics. Roughly, this lemma shows that the
meaning of the formula pyft] is identical to the meaning of the formula p.[7'],
where 4 is the name of the object « that is the meaning of ¢.

Lemma 2.90. (Semantics and Substitution) Let A be a domain, I an interpre-
tation, ¢ a variable-free term, s a term that contains at most the one variable
v and p a formula that has at most the one free variable v. Then

{s4{th1 = {s0[¥"]}1 and
(polt))s = {pulr D1,

where 7 := {t}1.

Proof: The proof of this lemma is tediuous but not difficult. It is inductive
in nature (induction over the length of formulae) and follows the pattern of
many of the previous proofs on properties of substitution eic.

[The details of this proof will be included in a later version of these lecture
notes. |

Example 2.91. (Semantics and Substitution) Let
p=3y (x=2.y7)
v :=x, and
i:=5.3+1.

Now, under the usual interpretation of “+” and “.” m the domain of natural

numbers,

(5.3+1) = 16,
(3y (5.3+t = 2.y)); =T, and also

{3y (16" = 2.} =T.

T2

3. Reasoning in Predicate Logic

We have seen that, in general, it is not immediately possible to determine
whether or not a formula p is a (predicate) logical consequence of a set of
formulae @ because, following the definition of “logical consequence”, one would
have to observe whether p is valid under “all” possible interpretations under
which all formulae of Q are valid. Even one single determination of the truth
value (p); may be a problem if p involves quantifiers because, by the definition
of (p)r for formulae involving quantifiers, one would have to “observe” the truth
value (g}; for infinitely many formulae q.

The objective of “reasoning” is to establish the validity of formulae by
syntactical transformation of initial formulae, i. e. by the application of “rules of
inference”. Surprisingly, for first order predicate logic, it can be shown (Godel’s
Completeness Theorem) that any logical consequence can be established by
a finite number of applications of certain simple rules of inference. In fact,
mnfinitely many such systems of inference rules could be established. (Compare:
each algorithmically solvable problem can be solved by infinitely many different
algorithms.) We will consider just one such system (which is of the “Hilbert
type”). For theoretical purposes, it is advisable to make such a system as sumple
as possible because, in the analysis of the system, we will have to consider only
a few cases. For practical purposes, however, i. e. when the system is used for
doing real proofs, a proof system is only feasible if it has a certain complexity.
Therefore, we pursue the following strategy: We first introduce a simple system
(the “kernel” system} which is the object of subsequent theoretical studies. For
example, we will study “correctness” of the system. Then, we will show how
more complicated proof techniques can be reduced to the simple rules of the
kernel system. These proof techniques form the “extended proof system” that
can be used for practical purposes. By the reduction process, the theoretical
properties studied for the kernel system carry over to the extended system,
compare the remarks about the “kernel” language and the “extendeI™ langunge
of predicate logic.

3.1 Axioms, Inference Rules, Proofs, Theorems ;
VT S Y. . S L IR 2

In this section we present one particular reasoning system for first order pre-
-+ dicate logic and formulate a notion of “proof”.

Definition 3.1. (Axioms and Inference Rules of Predicate Logic) Let S be a do-
main of symbols. The following formulae are called “azioms of (first order)
- predicate logic” (over S):

Substition Azioms:

3.1 Axioms, Inference Rules, Proofs, Theorems 73

All formulae (over S) of the form Dolt] = 3vp.
Identity Azioms:

All formulae (over S) of the form v = .
Equality Azioms:

All formulae (over 5) of the form
' (vi=wy A ... ANvn=wn) — fvi...vn= fwr...w,.

All formulae (over S) of the form

(vi=wny A ... Avg=wp) A rvy...v, — rwj...ws,.

The following rules are called -'ré!emcntary inference rules first order predicate
logic”:

Propositional Rule:

If p is a propositional consequence of g, . . ., gn .
then p can be derived from ¢, ..., Gn-

d-Introduction Rule:
If v is not free in ¢

then (3v p) — g can be derived fromp — q. D

Note that the notion of a predicate logical axiom depends on the domain
5. This is important in some of the more subtle considerations in the sequel.

Definition 3.2. (Proofs) Let § be a domain of symbols and let Q be a set of
formulae {(over S).

A finite sequence § of formulae (over §) is a proof in the theory Q
(over §) iff
for all 1 <1 < length(p),
pieQor
Pi is an axiom of predicate logic or,
for some j;,...,jn < i, p; can be derived from Pi. - Djn
by application of an inference rule.
- o1 "dlnis B4
@ Fsp (“pis provable from Q7 or “pis a theorem in the theory Q") iff
there exists a proof f in Q (over S) such that '
p 1s the last formula of p.)

If S is clear from the context or fixed then we often write “+” instead of
C(!_ 5” i
Example3.3.(A Proof) We give an example that shows two things: It shows a
proof and, also, it shows how more complicated proof steps can be replaced by

74 3. Reasoning in Predicate Ldgic

more elementary proof steps. This method of “reduction” will be used several
times below in order to establish the soundness of the many proof techniques
used in practical proving.

V-Introduction Rule:
If v is not free in p and

QFp—g
then Q@ F p — Wy gq

Here is a sequence of formulae that is a proof of p — Vv ¢ “in the theory”
{p— g}

(1) Py,

(2) ~g — -p, (from (1) by the propositional rule)
(3) (Fv-g) — -p, {from (2) by F-introduction)
(4) p — —3dv g {from (3) by the propositional rule)

The last formula is an abbreviation for p—Vvgqg O

3.2 Correctness of the Reasoning System

Proving (reasoning, inferring) in the above technical sense has all the essen-
tial properties we listed in the introduction of this book. It is abstrect in the
sense that it only considers the syntactical structure of formulae and not their
meaning. It is verifiable in the sense that each individual step of inference can
be checked by a computer. (Note that this does not mean that a computer is
supposed to be able to find a suitable sequence of steps for proving a desired
formula). We will now show that the above reasoning system is also correct in
the sense that a formula that is derjved by this system from formulae that are
valid under a given interpretation is again valid under the same interpretation.
The above reasoning system is also universal in the sense that it is independent
of which theory we consider. (Much later we will show that the above reaso-
ning system is also universal in the sense that any logical consequence can be
derived by a finite number of reasoning steps.)

!

Lemma 3.4. (Correctness of Reasoning in Predicate L'ngicj

If @ F pthen Q k= p.

Proof: : We first show the following two facts:

1. All axioms of predicate logic are valid in predicate logic.
2. The conclusion of each mnference rule is a predicate logical consequence of
the premises.

The proof of these facts js tediuous but not difficult. The proofs are inductive
in nature (induction over the length of formulae) and follow the pattern of
many of the previous proofs on properties of substitution etc. At certain stages
Lemma 2.90 on semantics and substitution is necessary.

3.2 Correctness of the Reasoning System 75

[The details of these proofs will be included in a later version of these lecture
notes. |

Now we use these facts for the proof of the lemma by induction over the
length of proofs. For this, let n be fixed and assume that

for all proofs 5 of length < n in Q
and for all formulae p in 5 we have Q = p.

Let ¢ be a proof in Q of length n and let g be the last formula of §. Then there
are three cases: '

Case ¢ € Q: In this case, Q = q.

Case g is an axiom of predicate logic: By the first fact above, g is valid and,

hence, Q 4.
Case for certain ji,...,jm < length(g) the formula ¢ is derived from
@hs--+»9j by an inference rule: By the second fact above
{q-jl,"',q—j"l} #Q' (1)
By the induction hypothesis,
QF . ' | (2.1)
Q # qjm! (2'm)

From (1) and (2) we obtain Q = q

L e Ve

Basic Proof Techniques

i io
Proving is stepwise arranging of “proof sitations”. A proof situation is cha-
racterized by the current “knowledge base” (set of sentences that are assumed
to be true or are already proven and, hence, can be “used”) and a sentence
that should be proven. The goal of proving is to arrive at a point where all
proof situations considered are “trivial?. A proof situation is trivial if the
sentence to be proven occurs in the knowledge base.

In the following subsections we compile the basic proof techriques by
which the possible proof situations can be handled. The description of these
techniques is informal. The proof techniques as we present them here are
meant to be guide-lines for proofs by humans. However, they are chosen
in such a way that they could be formally extended to form a complete
formal system of predicate logic (“system of natural deduction”) and even a
complete systemn for automated theorem proving. . -

There are only very few different proof situations possible. Each of them is
characterized by the syntactical structure of the sentence to be proven and by
the syntactical structure of the sentences in the knowledge base. For choosing
& particular proof technique one has to determine the “outermost construct”
{(quantifier, propositional connective, predicate or function symbol) of the
sentence considered. For this, one has to have a firm knowledge of logical
syntax in various disguise. For each of the constructs basically two different
proof techniques are available depending on whether the sentence considered
is in the knowledge base or whether it is the sentence to be proven.

Each proof technique describes how a given proof situation may be trans-
formed to another “simpler” proof situation. The new proof situations are
simpler because either the sentence to be proven has a simpler structure or
more sentences are added to the knowledge base.

In “human” proofs, as presented in papers or talks, there are many ways
of announcing the application of a certain proof technique. We will train the
appropniate use of these idioms in the course. In the following brief summarv
of the proof techniques we only mention the most tvpical idioms for some of
the proof techniques.

In the sequel, A4, B, C are formulae, s and ¢ are terms, P is a predicate
constant, f is a function constant, and z is a variable. 4jz] stands for a

formula A in which z occurs as free variable. Similarly, A[C] is a formula in
which C occurs as subformula.

We assume that all free variables occurring in the sentences considered are
universally bound before we apply any of the proof techniques. In particular,
in all proof techniques for the “propositional connectives” (“not”, “and”,
“or”, “irnplies”, “if and only if”) we assume that the formulae involved do
not contain any free variables, '

The Four Basic Approaches

If we are supposed to prove a sentence A we actually do not know whether
A is really true. We suggest to proceed as follows:

* Try to prove A. If you are successful be happy. Otherwise:

e Assume “not A” and try to derive a contradiction. If you are successful
be happy (you have proven A}. Otherwise:

o Try to prove “not A”. If you are successful be happy (you have shown
that one never should trust the boss). Otherwise:

e Assume A and try to derive a contradiction. If you are successful be
kappy (you have proven “not A”). Otherwise:

o Start again with the attempt to prove 4. (Don’t worry! You have
gained a lot of new insight when you reach this stage. The second run
will be much more successful.)

Prove “for all z, Afz]”

For proving
for all z, Afz]
show

Alz]

where ¥ is a constant that did not occur so far,

One way of announcing the use of this proof technique is: "Let # be
arbitrary but fixed. We show A[z].” Sormetimes one Just assumes tacitly
that, in the sequel, z is a (new) constant and one shows Alz].

Use “for all z, Alz]”
If

for all z, Afz]
is known then one may conclude
Aft]

where ¢ is an arbitrary term.
One way of formulating this is: “Since we know that, for all z, Az] we
also know that, in particular, Aft).”

Prove “there exists z siich that Alz]”

For proving
there exists z such that Alz]
try to find a term ¢ for which
Alt]

can be shown.

Finding a sujtable term t, most times, is a non-trivial step in a proof,
which needs creativity.

Use “there exists z such that A[z]”

If it is known that
there exists z such that A[z]

and one has to prove

B
assume
Alz]
where Z is a constant that did not occur so far and prove
B.

One way of announcing the use of this proof technique is: "Let Z be such
that A[z). We have to prove B”. Sometimes one just assumes tacitly that,
in the sequel, z is a (new) constant and one shows B.

ve “ d B”
For proving)
Aand B

prove

A
and prove

B.

119 *»
If one knows that
Aand B

one knows

A
and one knows

B.

s

Prove “4 or B”

For proving

Aor B
assume
not A
and prove
B
(or assume
not B
and prove
A.
Use “4 or B”
L
- Aor B
is known and
C
should be proven assume
A
and prove
C.
Then assume
B
and prove
C.

One way of formulating the use of this technique is as follows: “We know
A or B and want to prove C. Case A: We prove C. Case B: We prove C.”

5

Prove “A implies B”

For proving

A implies B

assume

A
and .prove

B.
Use “4A implies B”
As a general strategy, if

B

has to be proven, always look for sentences of the kind
A implies B
and prove
A.

Prove “A if and only if B”

For proving

A if and only if B

assume

A
and prove

B.
Then assume

B
and prove

A

Use “A if and only if B”

In a situation where

C[A]
has to be proven it may be helpful to look for sentences of the kind
A if and only if B
and to try to prove
C|B).

This technique is often used in connection with “definitions” of predicate
symbols, i.e. formulae of the form

Plz] if and only if Afz]

Prove “not A”

For proving

not A
it is often helpful to assume
A

and to derive a contraction, i.e. to prove
not C

where

is in the knowledge base.

Prove “P(i,,..., tn)”

For proving

P(ty,... . ¢t,)
look for an “explicit definition” of the form
P(zy,...,20) iff Alzy,..., z,
and prove

Alty, ..., 8.0

Use “P(ty,...,t,)"

If one knows that

P(ty,...,t,)

and an “explicit definition”

P(zy,...,z,)if and only if Alz,,...

is in the knowledge base then
A[th Tt tﬂ]
may be added to the knowledge base.

Prove “A[f(t,...,t,)]

For proving

Alf(t,, ..., tn))
where, for f, an “explicit definition” of the form
flzy, .. z,) = slzy, ...z,
is available prove
Alsty, ..., 0]

For proving
Alf(ty, ..., t0)]
where, for f, an “implicit definition” of the form
f(z1,...,zn) = such a y that Blzy,...,zq,¥]
is available prove -

for all y, Bit;,...,t,,y] implies Afy].

Use “A[f(t1,...,t:)]”
If one knows
Alf(try s ta)]
and an “explicit definition” of the form
1, ..y Ta) = s[Zq, .- -, Ty
is in the knowledge base then
Als[ty, ..., 1.])]

may be added to the knowledge base.
If one knows

Alf(ts, .. ., ta)]
and an “implicit definition” of the form
f(#1,...,2,) = such a y that B[z,,...,z,,¥]
is in the knowledge base then the sentence
there exists a y such that B[t,,....4,, y] and Aly]

may be added to the knowledge base.

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 5

3.8 Definitions Within Predicate Logic

Before using predicate logic as a working language one has to add one
more facility which is indispensable for concise formalization, namely the
facility of defining new concepts in terms of available concepts in predicate
logic. In principle, definitions can be eliminated but practically they are
indispensable because

e they allow to make formulae shorter and

® they are the means for structuring knowledge presented in predicate
logic.

Practical mathematics would hardly be conceivable without definitions.

3.8.1 The Four Basic Types of Definitions

There are four basic types of definitions available in predicate logic:.

o (explicit) definitions of predicate symboals,
¢ explicit definitions of functions symbols,
¢ implicit non-unique definitions of function symbols,

e implicit unique definitions of function symbols.

We give one example for each of the four types.

In the examples we allow various simplifications of predicate logic nota-
tion! In particular we sometimes use natural language constructs for predi-
cate and function symbols and allow phrases like “; is reducible” instead of
“is-reducible(i)” etc. Also, we omit universal quantifiers at the beginning
of a formula (i.e. free variables are considered to be universally quantified).

Example 3.1 The following formula defines the predicate symbol “is re-
ducible” (unary) using the binary predicate symbol | (“divides”):

v is reducible ;s VA(f1i = (f =1V f =1)).

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 6

The part of the definition to the left of the colon is called the “defi-
niendum” (Latin: “to be defined”) and the right-hand part is called the
“definiens” (Latin: “the defining”). The colon is not actually part of the
definition. It is a symbol on the meta-level for indicating that this formula
is a definition. In fact we will see that it is clear from the structure of the
formula whether or not it is a definition.

Example 3.2 The following formula ezplicitly defines the {-ary function
symbol “determinant” using the binary function symbols — and *:

determinant(a, 1, a, 2, 32,1,082,2) '= @11 * Az ~ @12 * Az .

Example 3.3 The following formula non-uniquely implicitly defines (e.g.
in the theory of complex numbers) the unary function symbol |/ using the
binary function symbols *:

Z:= ay such that yxy = z.
y

Here, the new quantifier “a ... such that ...” appears. * Such a formula
should just be conceived as an abbreviation for the following formula:

y=VToyry=z

Example 3.4 The following formula uniquely implicitly defines (e.g. in
the theory of real numbers) the unary function symbol _/ using the binary
function symbols * and the binary predicate symbol >.

VT := the y such that
(z20—(y20Ay*xy==z))
A
{z<0—>y=0).

Here, the new quantifier “the ... such that ...” appears. Such a formula
should be conceived as an abbreviation for the following formula:

Y = /T
(220~ (y20Ay~y=2)
A
(z<0—-y=00

When introducing new predicate and function symbols by definitions,
two questions arise:

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 7

¢ Can the definitions introduce contradictions into 2 theory that so far
was consistent?

¢ Can one derive essentially new theorems that so far were not derivable
in the theory?

The answer to both questions is “no”. If certain rules for definitions

are followed, definitions cannot introduce contradictions. Also, no “essen-
tially” new theorems can be derived where “essentially new” means “new
after elimination of the defined symbols”. In fact, defined symbols can be
eliminated in the sense that each formula containing defined symbols can
be systematically transformed into an equvialent formula not containing
these symbols. The transformed formulae can already be derived in the old
theory. :
The proof of these facts about definitions is.not really difficult but quite
lengthy. We cannot give the proofs. However, we exactly formulate the
logical facts about definitions so that practical situations can be handled in
a clean way. .

3.8.2 Theories

As we have seen in the above examples of implicit definitions, it is important
to consider the underlying theory for deciding whether or not a definition is
appropriate. Hence, for making the formal properties of definitions clear we
need the notion of a “theory”, i.e. knowledge formulated in predicate logic.
“Theories” are characterized by the language in which they are formulated,
l.e. by a domain of symbols, and by their “knowledge base” or “set of
axioms”, i.e. by a set of formulae from which all other facts of the theory
can be derived by reasoning.
Let V be a fixed set of variables.

Definition 3.5 (Theory) Tiscalleda theory of first order predicate loéic
iff there exist § and F such that T = (5, F) and

S is a domain of non-logical constants disjoint from 17 and
F'is a set of formulae over " and §.

Definition 3.6 (Theorem) fisa theoremofa theory (S, F)if F Fyp f.

Definition 3.7 (Extension) The theory 7" = ((F5', RS', AR'), F") is an
extension of the theory T' = ((F S, RS, AR), F) iff

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 8

FSCPFS,

RS C RS,

for all fs € 5, AR(fs) = AR'(fs},
for all rs € RS, AR(rs) = AR/(rs),

for all f,
if f is a theorem of T then f is a theorem of 77. O

The latter condition can also be replaced by the condition that all f in
F must be theorems in 7. (However, it is not necessary that F C F'.)

Definition 3.8 (Conservative Extension) The theory T' = (5, F'}is 2
conservative extension of the theory T' = (5, F) iff 7" is an extension of T

and

for all formulae f over § ,
if f is a theorem of 7' then f is a theorem of T' . O

Let, for the next four subsections T = (§, F), with § = (F'S, RS, AR),
be an arbitrary but fixed theory. .

3.8.3 Definitions of Predicate Symbols

Definition 3.9 (Forin of Explicit Definitions) A formula d is a defini-
tion of the predicate symbol rs over the theory T iff d has the form

Yu1,. ..U 7s(vy, ..., un) 1o f)
where rs is an n-ary relation symbol not occurring in RS and f is a formula
over S in which no variables other than the distinct variables v,,..., v, are
free.

Definition 3.10 (Translated Formula) Let 7' := (§', F') be the exten-
sion of T, where
S':=(F§,RS U {rs}, AR'),
F':= FU{d}, and
d is a definition of rs over T of the form
rs{vy,...,Un) i f.
. Then, for each formula ¢’ over §’', the translation of ¢’ is the formula g
that results from g’ by replacing each part rsft;,...,2,) by fi{vi, ..., va) —
Aty -t

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 9

Lemma 3.11 (Elimination of Defined Svmbol) With the notation of
the previous definition we have:

F'tup (9~ 9), (1)
7/F" is a conservative extension of ,F/ (2)
F'rypg iff Frap g. (3)

&

(3) means that the defined predicate symbol rs may always be “elimi-
nated” from any formula ¢’ such that the resulting formula is derivable in
F iff ¢’ is derivable in F’. (3) is an easy consequence of (1) and (2).

Note that the condition on the variables is crucial in definitions of pre-
dicate symbols.

Example 3.12 The “definition”
fis a factor 1 f | z

introduces a contradiction (i.e. the extension of the given theory by this
definition is not “conservative”), namely

3 is a factor :+» 3 | 3, and
3is a factor 1 3| 5.

Hence, 3 is a factor because 3 | 3, and 3 is not a factor, because not 3135, a
contradiction. O

In practice, the definitions of predicate symbols are sometimes also given
in a form where the left-hand side does not only contain variables but terms.
This must be handled with care and is only possible if the occurring terms
have the properties of injective “pairing functions”. In fact we used this
type of definition several times on the “metalevel”.

Example 3.13

(S, F)is a theory : e
S is a domain of symbols A F is a set of formulae.

“Is a theory” is a unary predicate symbol (on the metalevel}, “(S, F)"
i1s a term, not a variable!l. Such a “definition” cannot introduce any con-
tradiction because for the function symbol “(,)" in set theory the following
property holds:

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 10

(z,9) = (z'y) =" Ay =1y (uniqueness)

Hence 5 and F are uniquely determined by (S, F). Therefore it is not
possible to derive the contradiction that something is a theory and is not
a theory. In fact the above “definition” can always be rewritten in the
following form (which, however, is clumsy):

T is a theory : :
35, F(T = (S, F)A S is a domain of symbols A
F is a set of formulae). O

A “definition” having terms on the left-hand side is not allowed if the
uniqueness property cannot be proven in the theory. Consider the following
example:

Example 3.14
Z +yis anice sum «+z =2 *y.
In fact, this definition leads to a contradiction:

6+3isanicesum<——>6=2_t3,
S+4isanicesum — 5=2x4.

Hence, 9 is both a nice sum and not a nice sum.

3.8.4 Properties of Explicit Definitions of Function
Symbols

Definition 3.15 (Form of Explicit Definitions) A formula d is a defi-
nition of the function symbol fs over the theory T iff d has the form

Yoy, Ua(fs(ve, ... v0) 1= 1)

where fs is an n-ary function symbol not occurring in FS and £ is a term
over 5 in which no variables other than the distinct variables vy, ..., v, are
free. O

The notion of the translated formula g of a formula ¢ involving the new
function symbol fs and the way the new function symbol can be eliminated
‘is exactly analogous to the case of defined predicate symbols.

Again, the condition on the variables is crucial in the explicit definitions
f function symbols.

e e e S o T L e,

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 11

Example 3.16 The “definition”
F@)i=aay

introduces a contradiction. Why?

Again, the “explicit” definitions of function symbols are sometimes also
given in a form where the left-hand side does not only contain variables but

terms. This is again possible if the occurring terms have the properties of
injective “pairing functions”,

Example 3.17
On the metalevel we could define

(61 =)4 = equ{(t;)a, {t2}a),
z=y —equ(z,y) = T,
~z =y — equ(z,y):=F.

Here, we used = instead of = for denoting equality on the object level
in order to distingnish it from the — on the metalevel. Strictly, this is
Dot an explicit definition. However, it can easily be transformed into the
following explicit definition of the binary function symbol “(,)” because the
components {; and 1, are uniquely determined ip the formula t; = ¢,. (“="
is a function symbol on the metalevell).

(f)a := equ({op,(f))a, (ops(£)}).

Here, = again has the essentjal “pairing function property”
F=y)=(e'=y) o (z=aVA(y=y)

and op;, op; are the corresponding “projection functions” satisfying

opi{z =y) =z,
op(z = y) =y,
opi(z) = opy(z) = 2. o

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 12

3.8.5 Properties of an-—Uniqué Implicit Definitions
of Function Symbols
Definition 3.18 (Form of Definitions) A formuladisa non-unigue im-

plicit definition of the function symbol fs over the theory T iff d has the
form

Vo, v, v(v =fs{vy, L vn) = f)

where fsis an n-ary function symbol not occurring in F'S and f is a formula
in which no variables other than the distinct variables Vi,...,Upn, v are free.
0

Note that d is equivalent to

flv —fs{vy, ..., v,)].

We should also mention that a formula d of the above kind is not always
considered a “definition” of the function symbol. Some authors prefer to
reserve the word “definition” for what we call here “unique implicit defi-
nitions” (see next subsection). In fact it is not possible to eliminite non-
uniquely defined function symbols. Still, the expressive power of a theory
1s not essentially enhanced by non-uniquely defined function symbols;

Lemma 3.19 (Extension is Conservative) Let 7' .= (5, F') be the ex-

tension of T, where l{;/ _ :Q{ Qo {«9 le b .. 3V (f) o Trgor
1 M “’ B
§':=(FS,RSU{rs}, AR), e)

F' = FuU{d}, and
d is a non-unique implicit definition of fs over T of the form
Vor,. . vm, v =fs{v1, . ., vm) — f).

Then F'is a conservative extension of F. O

It 15 crucial that the (existence condition) is a theorem in 7. Qtherwise,
a contradiction could be introduced by an implicit definition.

Example 3.20 Let

y=vToyry=cz

2¢ a formula in which the variables range over the real numbers. Then

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 13

\/-_*\/-_1=—1

and, hence,

Fy«y=-1)

i contradiction to

“Jylyxy = -1),

which can be proven in the theory of real numbers. a

3.8.6 Properties of Unique Implicit Definitions of
Function Symbols :

Definition 3.21 (Form of Definitions) A formula d is a unique implicit
definition of the function symbol fs over the theory T iff has the form

V‘Ul,...,Un,U(U zfs(uh---:vn) - f)

where fs is an n-ary function symbol not occurring 1n F'S and f is a formula
in which no variables other than the distinct variables vy,. .., v,, v are free.

Definition 3.22 (Translated Formula) Let T’ := (5', F’) be the exten-
sion of T, where

§':=(FS8, RS U {fs}, AR"),

F':= F{{d}, and

d is a unique implicit definition of fs over T of the form
LAV T TR T €Y =fs(vy,...,v,) & f).

Then, for each atomic formula g' over &, the translation of ¢’ is the formula
g that results from ¢’ by recursive application of the following step: If fs
does not occur in g’ then g := g’ otherwise ¢’ can be written in the form

hlw —fs(ty, ..., t)],.

vhere & is an atomic formula, w is a variable and fs does not occur in any
f the ¢;,...,¢,.Then g is

Zw(f[(v1,. .., v0,v) (1, -yt w)l A RY),

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 14

where A* is the translation of h. (Note that 4 contains one less occurrence
of fs than ¢'.) _

The translation of non-atomic formulae proceeds by translating each
atomic part,

Lemma 3.23 (Elimination of Defined Symbol) With the notation of
the previous definition we have: If the formulae

Yoy,...,va3v(f), and (existence condition)
Vor, oo e, 0, V(A flu e 0] = v =0Y), {(uniqueness condition)

are theorems of T then

F'typ (¢ & g), (1)
F' i3 a conservative extension of F, : (2)
F ’-ND g’ iﬂ‘.F!"ND g. - (3)

a

It is crucial that both the existence condition and the uniqueness condi-
tion is a theorem in T. Otherwise, a contradiction could be introduced by
an implicit definition.

Example 3.24 Let
y=VT o
(220> y*xy=2)
A
(z<0—>y=0)

be a formula in which the variables range over the real numbers. The
uniqueness condition is not satisfied. We obtain the following contradiction:

3=v0 o
(9>0—3%3=09)
A .
(9<0—3=0), (1)

-3 =19 :

(8 >0 — (~3)x(~3) = 9)

A

(9<0—-3=0), - (2)

3=1/9, from (1)
-3 =9 from (2)

3=-3.0

CHAPTER 3. FORMAL REASONING IN PREDICATE LOGIC 15

Note that for definitions by “cases” in which each case has the form of
an explicit definition, both the (existence condition) and the (uniqueness
condition) are automatically satisfied.

Example 3.25
z=y —equz,y)=T
—{z =y) — equ(z,y) = F,
is such a definition. Usually, these definitions are written in the form
_] T, ifz=y,
equ(z,y) = { F, otherwise.

Finally, we give an example of the above translation process.

Example 3.26 (Translation of a Formula) Let d be the follomng un-
ique implicit definition of the unary function symbol “reverse” (where the
variable f ranges over sequences, for simplicity of fixed length 10, and i and

J range over integers): _
f' = reverse(f) i Vi(1<i< 10 = fi= f1,_).
Let g be the following formula:
reverse(reverse(f)) = f

First step of translation:

3f'(f' = reverse(f) A reverse(f') = f),
IFVI(L<i<10— fi= fI,_)
Areverse(f') = f).

Second step of translation:

FF(M(1<i<10— fi = f],)
AJFT(f = reverse{ f'Y A f7 = f});
VIl <i<10 - fi = f},)
AIFP(VI(1 S <10 = ff = f11.)
AP =).

Chapter 4

The Completeness Theorem

4.1 Reduction to Model Construction

We have seen that the set of correct inference rules used in mathematical
Practice can be reduced to very few rules, in fact, those compiled in the
Natural Deduction Calculus of the previous chapter. Can there exist for-
mulae f that are logically valid (i.e. formulae f that are true independent
of the meaning of the symbols occurring in f) but cannot be derived in this
calculus? The Surprising answer is: no. The proof of this result is quite
mvolved and was first given by (Goedel 1930). The first step consists in a
reduction of the question to the following theorem.

Theorem 4.1 (Model Existence)

If F is consistent then F is satisfiable.

Proof: The proof will be given in the subsequent sections. For proving this
theorem one constructs a valuation (i.e. a domain, an interpretation, and
an assignment) such that aj] formulae of F are true i this valuation. The
main idea is that, as the “material” for constructing this domain, one talkes

symbols occurring in £, 3
Having proven the above theorem it is thep easy to show the following

completeness theorem.

(1)

CHAPTER 4. THE COMPLETENESS THEOREM 6

Theorem 4.2 (G6del’s Completeness Theorem) — —> Aofels for prcti s Gop
. Jf f-ﬁ-_few"‘“, el for

If Fi= f then FFnp f. by lray ~ 0 vlan fradniate Zog,

Proof: Assume F ¥np f. Then F U {-f} is consistent by Lemma 3.17.
Hence, by the above Theorem on Model Existence, F U {—-f} is satisfiable.
Hence, f cannot be a logical consequence of F. O

Summarizing the Correctness Theorem and the Completeness Theorem,
and the Consistency Theorem and the Model Existence Theorem, we ob-
tain the following perfect parallelism between “semantical and syntactical
reasoning” in first order logic.

Theorem 4.3 (Semantical and Syntactical Reasoning)

FEfiff Fibnp f.
F' is satisfiable iff F is consistent. O

In terms of computer science, this fundamental result can be paraphrased
by saying that, in the area of first order predicate logic, logical consequences
can be established by finite sequences of correct inference steps each of which
1s so simple that '

e it can be verified by a computer and

e it can be executed by considering only the syntactical structure of
formulae without any appeal to the meaning of the symbols occurring.

Chapter 5

Predicate Logic as a Working
Language

In this chapter we show some examples of how various branches of mathe-
matics and computer science can be formalized within predicate logic.
In contrast to the preceding chapters in which we spoke about predicate
logic, in the main sections of this chapter we will speak in predicate logic.
In the first two sections we give two “universal” examples of using pre-
dicate logic: set theory as a universal frame for mathematics and logic
programming as a universal frame for computer sctence.

5.1 Set Theory as a First Order Predicate
Logic Theory

5.1.1 Underlying Intuition

For a given domain D and interpretation 7, a formula f containing a free
variable v is true or false depending on the value (object in D) assigned by
an assignment A to v. The formula is true for some objects in the domain
and is false for others, i.e. the formula describes a property of objects in
the domain.

Example 5.1 With D := N, J{2) := two, [{-) := multiplication, and A
arbitrary, the formula

Syr=2-y

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 7

1s true or false depending on the value assigned to z:

(ayz =2- y) Val[:::l] = ‘F’
(Byz =2- y) le(z::?] = T"
(e =2 P ygheay = F
(Fvz =2 Y yappan = F,

(33{3 =2 y) Vﬂk:::lﬂj = T'
e O

For constructing the various domains of mathematics, for example the
domain of real numbers, it is often necessary to speak about such properties.
For exampile, in the construction of real numbers one may want to say: “Let
fr and f; be two properties (i.e. formulae with a free variable v) such that,
if fy is true for Alv := ;] and f, is true for Afv := 23], then z, < z,”.
However, there is no construct in first order predicate logic for formulating
assertions about formulae in predicate logic.

The following trick helps to overcome this deficiency: A binary symbol €
is introduced, which denotes a relation that is required to have the following
property: '

for (almost} arbitrary formula f containing a free variable v,
ASVv(v € S — f). (separation axiom for f)

If one reads “v € §” by “v is contained in S” (or, “the object v is an element
of the set §7), then the above separation axiom for f says that

“There is a set (an object) S that contains exactly the objects
satisfying f.”

. Hence, for describing this fundamental property of € one needs infinitely
many axioms, one for each formula f. In fact, we have seen in Chapter 1
that the separation axiom must not be postulated for completely arbitrary
formulae f because contradictions may arise (Russell antinomy).

Also, some additional axioms are necessary that add some more features
to the notion of € and guarantee the possibility to “construct” certain sets.
Examples of such axioms are:

¢ an axiom that excludes the existence of infinite chains . . LIy E Ty € 1
of objects (“regularity axiom”), '

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 8

¢ an axiom that guarantees the existence of at least one infinite set (“in-
finity axiom”), which allows the construction of the natural numbers
and all the other infinite domains of mathematics,

e an axiom (“extensionality axiom”) that postulates that two “proper-
ties” (i.e. “sets”) are equal if they hold for the same objects (i.e.
contain the same objects as elements; have the same “extension”),

¢ axioms that allow to construct the power set (set of all subsets) of a
set, the “range” of relations etc. '

The latter axioms must be formulated with caution. As we have seen, if
one is too careless in requiring the existence of certain sets, contradictions
may arise. As a guiding line, one only should require the existence of sets
whose elements “are already available before the new set is formed”. For
example, the following modified version of the separation axiom

ISVu(ve S veSAf)

can be postulated for any f without any restriction “because” the objects
v that are collected in S are already available in the given 5.

When set theory is developed along the above lines, another fundamental
construction is taken care of by the same token: For a given domain I and
interpretation [, a term ¢ containing a free variable v yields an object in the
domain that depends on the value (object in D) assigned by an assignment
A to v, i.e. the term describes a construction (process, procedure) for
obtaining output objects form input objects. Again, there is no possibility in
first order predicate logic to formulate assertions about terms. For example,
it is not possible to express

"~ tis bounded « 3bVv |t |< b

in first order predicate logic.

However, if € has already been introduced in the way described above,
then it is possible to define (by an implicit definition) a binary function
symbol & (“application”) in the theory such that for arbitrary terms ¢ with
free variable v the following holds:

IFVY(F i v =t).

ﬁ ‘b 4t /fwéﬁr"

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 9

In this context, the object F is called a “function”.

€ and are the two fundamental notions of set theory, which simulate
the static aspect of mathematics (the validity of facts, properties, relations)
and the dynamic aspect of mathematics (the application of procedures, pro-
cesses, constructions}). However, one essential feature of these two aspects
that is contained in the intuitive notion of “property” and “procedure” is
lost in this set theoretic simulation of the two notions: Everything that
has to do with the “intension” (i.e. with the linguistic formulation) of pro-
perties and procedures is dropped in the set theoretic formalization of the
notions “property” and “procedure”. By the extensionality axiom, only
the “extension” (i.e. domain of validity) of properties and the “extension”
(i.e. input/output behavior) of procedures is retained. Thus, “set” and
“function” are only very coarse, albeit usefu], formalizations of the notions
“property” and “procedure”.

5.1.2 The Axioms of Zermelo-Fraenkel Set Theory

There are various possibilities for formalizing the fundamental features of
the notion € by first order predicate logic axioms. We present here one
particular set of axioms due to Zefmelo and Fraenkel. This set of axioms is
quite common and,'in fact, is the one on which the comprehensive collection
of mathematical results in the Bourbaki presentation of mathematics is
based. In its formal parts, our presentation follows (Shoenfield 1967).
' We fix the alphabet V := {z,y,z,...} that contains the ordinary va-
riables used in mathematical texts. “v” with subscripts is reserved as a
metavariables for variables. As a convention, we omit the outermost uni-
versal quantifiers in the individual axioms. The domain $ of symbols in the
~ Zermelo-Fraenkel set theory consists of only one binary predicate symbol
€,1.e. §:=({},{€}, AR), where AR(€) := 2.

For reading the axioms, it is appropriate to imagine that one speaks
about a “world” in which there exist nothing else than “objects”, i.e. all
variables occurring in set theoretic formulae are ranging just over “objects”.
Between some of these objects z and y the relation z € v (“z is contained in
¥”, “the object T is element of the set y") holds. In this context the object
y is called a “set”. However, note that the property “set” is not a concept
of Zermelo-Fraenkel set theory, i.e. there is no relation symbol “is set” in
Zermelo-Fraenkel set theory. ‘

Axiomf 5.2 (Extensionality)

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 10

Vz(z€z e~ z€y)—z =y, a

The extensionality axiom states that two objects (“sets”) are identical

if they contain the same elements.
ne o e Bt of etives,

. . P o P AL
Axioms 5.3 (Regularlty) | - :\Mom-ﬂu:-;
y(yes) > ylyezAr-Tz(zcznzey)) - O

The regularity axiom states that, if a set z contains an element, then it
contains an element y that does not contain any element of . (This axiom
entails that there are no “infinite descending chains w.r.t. €").

ke e .
Axioms 5.4 (Subsets) All formulae of the following form are axjoms:

.

o berem wt . . A < i

¢ Ar#f a3 Vuy(va € v o vy € @A), <« f;‘,‘ A:mw;:,;;‘ul ey
where f is a formula, v, v,, and v, are distinct variables, and v,, y5'do not g o
occur free in f. O ' r |

For a fixed £, the corresponding subset axiom states that for any set Uy |
there exists a set v,.that contains exactly those elements of v; that have the
property f.
L™

Axioms 5.5 (Replacement) All formulae of the following form are axiorns:

Vo1 JvaVua(v; € vz + f) o
31J4V1?2(3U1(U1 € vs A f) — Uz £ '04),

where f is a formula, V1, V2, V3, Vs, Us are distinet and vj, vy, vs do not oecur
freein f. O

The meaning of these replacement axioms can be illustrated in a dra-
wing. Typically, the formula f contains the free variables v; and v,. For ¥
certaln pairs of values of v; and v, the formula f 1s true, for others it is [
false:

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 11

The premise in the corresponding replacement axiom states that, for any
value of v, the following set drawn as a bold vertical line exists:

b
J,

Sy
i 4
Yi

The conclusion in the axiom then states that, for any given set vus a set vy
of the kind shown as bold part of the v;-axis exists (i.e. a set ug containing
all v, that are in the relation f with a v, in vs):

Axioms 5.6 (Power Set)
JuWy(Vz{z €y ~z€z) >y € w). a

The power set axiom states that, for a given set z, there exists a set w
that is big enough for containing all “subsets” y of z.

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 12

Axioms 5.7 (Infinity)

Jz(3y(y € = AV2(z € y))A
V'y(yez—»az(zem/\Vw(wezH(wewazy))))) O

The infinity axiom states that there exists a set z that

e contains the “empty set” (i.e. a set that does not contain any element)
and :

e with each element y also contains an element z (the “successor of 7")
containing exactly all elements of y plus y as an element.

One can show that the empty set and its successors are all distinct, i.e.
the axiom guarantees the existence of infinitely many objects.

5.1.3 The Set Braces

We want to show now

e that the well-known elementary concepts of set theory, like “orde-
red pair”, “function”, “natural number”, can be defined in Zermelo-
Fraenkel set theory, and

e that the existence of the sets used in elementary set theory can be
proven in this theory.

Before we do this, we show how the “set braces” can be introduced as
abbreviating notation in Zermelo-Fraenkel set theory. For this we consider
implicit definitions (of function symbols) of the following kind:

vg = fs{vy) +— Yui{v) € vo < f),

where f is a formula, vo, v}, and v; are distinct variables and the free va-
riables of f are among v, and v;. (All what follows can also be applied to
n-ary function symbols fs for arbitrary n.)

Such a definition will be abbreviated by

fs(vi} = {v | f},
(read: “fs(v;} is the set of all vy for which f7).

The uniqueness condition for such an implicit definition reads as follows:

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 13

Yuh(vh € vor < f) AYui(vh € vor «— f) — vor = Vor-

This condition is always true. Namely, from the assumption we can conclude
that, for arbitrary vy,

vg € vy iff fiff vy € vo2
and, hence, by the extensionality axiom
1?01. = Voz-
The existcﬁcc condition for the above implicit definition is:
Vv, JupVuh(vg Evo = f) (existence condition)

This condition is already satisfied if the following, seemingly weaker, con-
dition is true:

Yo, JugVug{vh € vo — f)- (weak existence condition)

In fact, if for an arbitrary v, by the weak existence condition, vg is
chosen such that

Vol(vh € vo —"f) | | (+)
then one can apply the corresponding subset axiom
Il € vl o U € vo A f).
This axiom guarantees the existence of an vy such that, for all Vg,
v} € vf iff (v € v A f) ‘lif_, f- |
by (+)

The above weak existence condition is also called “set existence condition

for f7.

One also allows the use of

{vif}

as a part of formulae without mentioning the corresponding implicit defini-
tion of a function symbol. For example,

8e{n|Im(rn=2-m)}

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 14

has to be considered as an abbreviation for

S:={n|3m(n=2-m)},
8e€S.

The set braces have the characteristics of a quantifier: They take a
formula and a variable and form a term out of it. {v | f} is a term that has
the same free variables as f except for v, which becomes bound by the set

braces.
Furthermore, one uses the following abbreviation:

{t| f}o (or simply {t | f} if v is clear from the context)
is an abbreviation for

{v' | v(v' =t A f}, where v’ is a variable
that does not occur among the free variables of ¢ and f.

For example,
{2-n]a<n<b}
is an abbreviation for
. {m|3(m=2-nAa<n<b)

Again, the uniqueness condition for definitions involving this type of set
braces is always satisfied. For satisfying the existence condition

Fu'Vu{Ju(v =t A f) = v’ € v")
(where v” is a “new” variable) it suffices that
F"Vu{f — v € v").

(where v™ is a “new” variable}. Roughly, this means that, for showing that
a set containing the “range” of a term t exists, it suffices to show that a
set containing the “domain” of the term exists. We omit the proof, which
essentially involves the replacement axiom.

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 15

' 5.1.4 First Stages of Developing Set Theory
First, one can introduce the concept of “subset” by the explicit definition
z C y (read: “z is subset of y") :>V2z(2 €2 — z € y).
Then, the notion of “power set” is introduced by the implicit definition
P(z) (read: “the power set of ") :={y |y C z}.
The set existence condition for .this definition is
VzJwWy(y C z — y € w),

which is exactly the power set axiom, i.e. the condition is trivially provable
in the theory.
The empty set is defined by -

@ (read: “the empty set”) := {z | ¢ # z}.
The set existence condition for this definition
yVz(z #z s zE€Y)

follows from z = . (z = z implies VyVz(z # ¢ — 7 € y) from which the
above set existence condition follows immediately.)
The unordered pair is defined by

{z,y} (read: “the unordered pair consisting of z and y”) :=
{zlz=2zVz=y}

Note that, here, the braces are binary function symbols and, formally, have
nothing to do with the set braces used as a quantifier.

For proving the set existence condition for this implicit definition we
proceed as follows. First we define a new function symbol F:

F(@,I,y) =z,
F(z,z,y) =y« z #0.

Now it can be shown that
!
Vz(z=zVz=y -z € {F(éB | z € P(P(O))}).

(
X/ l}

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 16

{The details of this proof are left as an exercise.)
Having unordered pairs one can define singletons:

{z} (read: “the singleton, or unit set, consisting of z”) := {z,z}.

Note that the braces obtain yet another meaning here. Namely, they serve
also as a unary function symbol.
Next one defines

U(z) (read: “the union of X"} :={y|-32(z € z Ay € z}.
The existence condition is

VeduVy(Jz(z €z Ay € 2) >y € w).
This condition can be derived from

VzIwWy(y € v & y € z)

by the appropriate replacement axiom.
The next notion is defined explicitly:

::Uyl (read: “the unior of = and y) := U({z, v})-

The next two notions are defined implicitly in the form ... ;= {z | z €
z A...}. The existence condition in such cases is always satisfied {because
of the subset axioms}.

z Ny (read: “the intersection of z and y”) :={z |z € c Az € 3},
z — y (read: “the set difference of z and y”) :={zlz €z Az & y}.

The next concept can be defined explicitly:
(z,y) (read: “the ordered pair consisting of = and y”) := {{z}, {=,¥}}.
Ordered pairs have the following basic property:
{z,y) = (2, ¢) —mx=2z'Ay=y (uniqueness of pair components).

The proof is left as an exercise. The uniqueness of pair components gua-
rantees that the foliowing implicit definitions of the “projections” w; and
w4 are sound:

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 17

71(z} := the z such that
(3z,3(z = (z,¥)) — 3y(z = {z,y}))
A
(-3z,9(2 = (z,9})) = z=10),

72(z) := the y such that
(3z,3(z = (z,9)) — 32(z = (=,¥)))
A
(-3z,y(z = (z,9)) ¥y = 0).

The case of the definition that handles objects z that are not pairs is quite
arbitrary. However, for the sake of uniqueness we have to specify some value
of the projections in this case.

Now, the notion of Cartesian product can be based on the notion of
ordered pairs:

z X y (read: “the Cartesian product of and y”) :=
{z|Ja,bleaczAbEyAz=1{ab))]

The existence condition for this definition is satisfied: If a € z and b € y
then both {e} and {a,b} are in P(z U y). Hence, (a,b) € P(P{z Uy)),
i.e. there exists a set that contains all elements z appearing in the above
definition. .

- By induction on n (on the metalevel) one can now introduce infinitely
many function symbols (,} and x (one for each arity n) denoting n-tuples
and n-ary Cartesian products:

($1,...,$ﬂ) = (21,(31,...,1‘“)),
Ty X . X B i=T) X(Tz X ... X Ty).

The definition of the corresponding projection functions =7 is left as an

exercise.

Now the concept of “function” can be formally defined within set theory.
As explained earlier in this chapter, in set theory a function intuitively is a
set of pairs (a, b) with the idea that b is the “output” of the function when
applied to the “input” a. Formally, one can proceed as follows:

Dom(z) (read: “the domain of x") := {m{y) |y € =},
Rg(z) (read: “the range of x”) := {m:(y} | vy € =},
Fun(z) (read: “z is a function”) 1~

z € Dom(z)} x Rg(z),

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 18

Va, b b ({a,b),{a, b} €z — b=1}),
InjFun(z) (read: “z is an injective function™) e
Fun{z)A
Va,a' b({a,b},{d',) € z — a = d'},
T & a (read: “the result of applying z to a”) := the b such that
((Fun(z) A 35((a,) € 2)) — (a,b) € 2),
A
(~(Fun(z) A I&({a,b) € z}) — b= 0).

Now all the notions related with functions can be introduced in the usual
rnanner.

5.1.5 The Natural Numbers in Set Theory

The set construction mechanisms of the preceding subsection are a powerful
tool for building up new domains (sets together with functions operating
on these sets) from existing domains. However, thus far we have not yet
shown that there exist interesting basic domains from the tower of domains
used in mathematics could be built up.

The domain of natural numbers is the crucial non-trivial domain that
must be built up first. Every other domain (for example, the real and com-
plex numbers, the domain of real functions, the domain of linear mappings
between two vector spaces etc) can then be constructed using the construc-
tion mechanisms of the preceding subsection. '

Therefore, in this subsection, we show how the natural numbers can
be constructed within set theory. T'hirs means that, within set theory, a
set No and an element 0 and a function S is defined such that the funda-
mental properties of the domain of natural numbers can be proven. The
most important fundamental properties are the so called “Peano properties”
{“Peano axioms”):

OGND:

x et = I’jf

(0 E/AVT.ENO(IEN —S(z)EN)) =Ny CN. P

In set theory, the construction of the domain of natural numbers 1s
carried out in a very general setting: First, the notion of an “ordinal” is in-

z € Ng — S(z) € N, - 4@
S(z) # 0, = ”
S(z)=S(y) w2 =y, = 5 2 |

%w-,-' [N L

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 19

troduced. Ordinals can be compared. Among two ordinals it is always clear
which one is “earlier” and which one is “later”. Ordinals always have an
immediate successor. However, not all ordinals have an immediate prede-
cessor. Such ordinals are called “limit ordinals”. The set of natural numbers
is then defined to be the “first limit ordinal”, i.e. the first ordinal after all
the successors of the ordinal “zero”.

Trans(z) (read: “z is transitive”) :o Vy(y € z — y C),
Ord{z) (read: “z is an ordinal”) :«+ Trans(z) A Vy{y € z — Trana(y)).

From now on, let p, o, 7 be variables that range over ordinals. This con-
vention facilitates writing complicated formulae. It should be clear how
formulae using these “typed variables” can be viewed as abbreviations of

ordinary predicate logic formulae.
As an exercise prove the following property of ordinals:

Ord(9),
z € o — Ord(x).

One now can define an ordering on ordinals:
TLT 0T ET.
As an exercise prove the following properties of “<”:

p<oNT<T —p<T,
(e < o),
o <TAT <O}

(Hint: For the first property, use the transitivity of r. For the second
property, prove first that ¢ ¢ . The third property is a consequence of the
first two.) . '
Using the regularity axiom one now can show the following fundamental
minimality properties (one minimality property for each formula f):

Jof — Jo(fAYT(r < 0 - ~f[o — 7]).

In fact, one can even show that the “minimal” ordinal in the above property
1s uniquely defined:

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 20

(ff\VT(T(O’—P"'f[O'*—-T])
A | .
(flo = cfAVT(r <o’ — —-flo — 7])

=

|

It is therefore possible to introduce the quantifier “the first ordinal ... such
that ...” for abbreviating formulae involving the above construction. For
example, ' '

p := the first 7 such that ¢ < 7,
can be used as an implicit definition as soon as one has proven
Yodr(oc < 7)

and is an abbreviation for
* p := the r such that ¢ < 7 AVT < 7(0 £ 7').

Using these minimality properties one can prove one more property of -
e

o< TVa=1TV1r <0,

which shows that there are no “incomparable” ordinals. Furthermore, the
following powerful induction principle (the “principle of transfinite induc-

tion”) can be proven, which again holds for arbitrary formulae f:
- VY&

Yo(Vr(r < o0 — flo — 7]) = f)¥o — f).

This principle allows to conclude Vo f if f can be proven unter the “induction
hypothesis” that, for all 7 < o, f holds for 7.]

We now can proceed to some preliminaries that later can be specialized
for constructing the natural numbers:

S(o) (read: “the successor of ¢”) := g U {o}.

S has the properties:

Ord(S(7)),
S(o)} = the first ordinal 7 such that o <7,
S(o) = S(r) = o =,

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 21

The following limit construction allows to go beyond iterated successors:

g is a limit ordinal :— o # @ A ~37(g = §(7)),
Yy(y € = — Ord(y)) — Ord(Uz),

Vz3o(Vr(r €z — 7 < o),

Jo{c is a limit ordinal).

The last statement can be proven by using the infinity axiom that guarantees
the existence of a set = containing @ and S(y) whenever y € z. Let z be the
set of ordinals in z. Then o := {J z has the desired property.

Now one has all the ingredients for defining the set of natural numbers:

w (read: “the set of natural numbers) :=
the first ordinal & such that o is a limit ordinal.

Furthermore, we define
0:=0.

Now, ope can show that that w together with 0 and S satisfies the funda-
mental “Peano properties” of natural numbers:

0€w,

cE€Ew— o) € w,

S(e) #0,

S(g)=8(r) o=,

(0ezAVoew(lcerz —>S(o)ez)) swC ez

The last property is the well-known and fundamental induction property of
the set of natural numbers. In set theory this property can be proven {using
the transfinite induction principle). One could introduce arbitrarily many
constants for natural numbers by defining 1 := 5(0), 2 := S(1),

c¢r (Hence, Dedekifid’s remark that “God has created the natural numbers,
everything else was created by m,g’n” could be paraphrased by “God has
created the empty set, everything else was created by men”.)

9.1.6 Developing All of Mathematics in Set Theory

Having the set Ny := w of natural numbers and the powerful mechanisms
of set theory for constructing new sets and functions from given sets and

CHAPTER 5. PREDICATE LOGIC AS A WORKING LANGUAGE 22

functions, one now can built up all domains of mathematics in the usual
way.

For example, the set Z of integers can be obtained by constructing first
No X Np and setting Z := {[p|~ | » € No X No}, where [p|. is the equivalence
classe of p with respect to the equivalence relation (m,n) ~ (m',n’) e
m+n' =m'+n,

Similarly, the set @ of rational numbers can be constructed from the set
Z by first forming the Cartesion product Z x Z and then “factoring modulo
a suitable equivalence relation™.

Again similarly, albeit more involved, the set R of real numbers can be
constructed from Q by first constructing the set of all sequences f: Ny — Q
that have the “Cauchy-property” and then “factoring modulo a suitable
equivalence relation”.

The set C of complex numbers can be identified with the set R x R. The
arithmetical operations on € can be defined explicitly on such pairs.

The set of polynomials over a domain (with certain operations) can be
identified with the set of finite sequences of “coefficients” from the given
domain. The operations on polynomials can then be defined suitably.

The set of matrices over a domain D can be defined as.the set of map-
pingsm: {1,...,m} x {1,...,n} = D.

Accordingly, all domains of mathematics, including very abstract do-
mains that result from collecting {infinitely) many other domains in a sui-
table way, can be constructed and their properties can be proven within set
theory.

CHAPTERS. 5 . ' 7

5.2 Predicate Ldgic as a Programming Lan-
guage

5.2.1 Underlying Intuition

When an interpretation / in a domain D and an assignment A4 for the
variables is fixed, a formula f of predicate logic describes a fact that may
be true or false. If we leave 4 open, a formula describes a property of
elements in D or a relation between elements in D.

In particular, formulae of predicate logic may describe properties of “de-
sired objects”, properties of “objects that should be constructed” or, in
other words, formulae may describe problems.

Example 5.1 The ﬁroblem of “greatest common divisor” can be described
by the following formula of predicate logic:

Given: z,y. _
Find: z such that
zleAz|yAVI((Z |z A2 |y)— 2 < z). o .o

The formula describes the property the desired object z should have in
relation to the given z and y. (In fact, the formula itself is quite “indifferent”
with respect to which free variable should stand for a “given” and which
one for a “desired” object. The distinction between “given” and “desired”
comes from “outside” the formula. The above formula also describes the
(uninteresting) problem of finding = and y such that the given z is the
greatest common divisor of and y.} o

In describing facts, properties and, in particular, problems, predicate
logic serves a» “static” purpose. Seemingly, this is far from the “dynamic”
Purpose programming languages have. Such languages do not describe facts
but formulate instructions (procedures, algorithms) how to obtain certain
objects.

Programs are written for solving problems, i.e. the objects constructed
by programs should meet certain specifications. The output of programs
should have certain properties in relation to the input. A program should
- meet its specification.

This is where the static aspect of logic and the dynamic aspect of pro-
gramming languages come together. Logic can be used for specifying pro-
blems that should be solved by programs described in a prograrnming lan-
guage. : :

CHAPTER 5. & . ' 8

Facts described in logic can be proven or disproven. The proof of a
formula is something outside the formula. A proof is a process, a sequence
of steps. Hence, although the typical meaning of a logic formula is “static”
the proof of a formula is “dynamic”.

It is near at hand to ask: Can the dynamic aspect of proving be used
for making a programming language out of logic? = The answer is: Yes!
In fact, computing can be seen as a particularly simple form of proving.
Hence, theoretically, a part of logic is sufficient as a programming language.
Practically, general proving is not very suitable as a computing mechanism
because general proving is “undirected”. For making proving practical as
a computing mechanism one must restrict the enormous “search space” of
general proving by allowing only certain sequences of proof steps.

Using (a restricted version of) proving as a computing mechanism has the
~ wonderful consequence that problems and their solutions can be expressed
in the same language. In fact, the exact problem specification is the solution
when used as the initial input for 2 proof.

Also, another fundamental insight evolves when viewing logic as a pro-
gramming language: Proofs become shorter when more “knowledge” (i. e.
proven formulae) on the concepts involved in the problem specification is
established. This leads to the conclusion that the purpose of mathematical
knowledge (theorems) ultimately is the speed-up of problem solving.

Example 5.2 All variables in this example range over the natural nurnbers.
Let us define .

ged(z,y) = .
the zsuch that z)z Az |y AVZ((Z' |zAZ |y) = 2 < z).

Essentially, “ged” (greatest common divisor} abbreviates t'hc- problem spe-
cification in the previous example.
The following proof of

gcd(6,8) = 2

can be viewed as a “computation” of the “output” 2 for the “input” 6 and
8. (In this computation we already presuppose that we have proven earlier

that
alb—a<b

and various other well-known properties of “!* and “<”.)

CHAPTER 5. 5 9

26—z <6,
zlﬁ—-rz_:}_V,..VZ“-‘-.B,

118,

2186,

316,

~(416),

~(56),

6|61)
2{6—=z=1V2=2Vz=3Vz=6,

z|8—>2=1Vz=2Vz=4Vvz=3§,
z|6Az|8—oz=1Vz=273

ged(6,8) —z—z= 2,
ged(6,8) = 2.

Of course, this “computation” is only one of the infinitely many possible
traces of proofs of gcd(6,8) = 2 and it needs the ingenuity of a human to
propose a fast computational path in this isdeterministic proof mechanism.

Adding the following knowledge about the functions ged and rest (which
can be proven once and for all in a finite sequence of proof steps)

(z >y Ay # 0) — ged(z,y) = ged(y, rest(z, y)),
z <y — ged(z,y) = ged(y, z),
ged(z,0) = =z, ' .

. the above proof of ged(6,8) = 2 can be made much shorter and, what is more
important, the necessary sequence of proof steps that leads to the desired
“output” can be described by a simple rule that relieves the “prover” of any
creative decisions:

gcd(6,8) =
= gcd(8, 6) =
= ged(6,2) =
= gcd(2,0) =
2.

Of course, we left out many intermediate steps, notably the “computation”
(proof) of the rest in the division of intermediate numbers. However, it is

CHAPTER 5. 5 | 10

-easy to imagine that the division, as a proof procedure, can also be made
efficient by introducing (proving) the knowledge:

T 2 y - rest(z,y) = rest{z — y,y),
z <y rest(z,y) = z. -

An analysis of the type of knowledge that lead to an efficient “com-
putation” in the form of proofs shows that such “algorithmically useful
knowledge” should have the form of “rewrite rules”, i. e. formulae that do
notinvolve any quantifiers and describe the reduction of a problem to other,
“simpler”, problems or the “recursive” reduction to the same problem for
“smaller” input values. : .

Summarizing the intuition obtained from the above example, the goals
that have to be achieved in order to make predicate logic a suitable pro-

gramming language are;

* identification of a class of predicate logic formulae that describe “algo-
rithmically useful knowledge” and reveal the recursive nature of such
knowledge (see the Horn clauses in the next subsection),

o if possible, design of a procedure that' transfomnrs arbitrary formulae
into formulaeof the restricted class (see next subsection),

e specification of a restricted form of proving that is appropriate for the
restricted class of formulae and relieves the prover of making decisions
about directions in proof paths and achieves proof goals efficiently,
i.e. with as few steps as a2 “deterministic” program in a conventional
programming language would need {see “resolution proving” in the
next but one subsection),

e if possible, proof that the restricted proving procedure is still complete,
i. e. always finds a proof if the desired result is provable at all (i. e.
provable with one of the procedures whose completeness is already

known).

Essentially, these goals have been achieved by the various research ef-
forts in computational logic (automated theorem proving, logic program-
ming etc.) over the last three decades. We only sketch the result, mainly
by examples, Extra courses of the RISC-curriculum are devoted to the
details automated theorem proving and logic programming.

CHAPTER 5. 5 | | 11

- 5.2.2 Clausal Form‘qf Formulae

In an earlier chapter we have seen that every formula f can be transformed
into a formula f’ in Skolem normal form such that f is satisfiable iff f is
satisfiable. The procedure that achieves this, essentially proceeds in two
steps:

e transformation into prenex form, i.e. a form in which all quantifiers
appear as outermost symbols, by successive application of well-known
equivalences like “=Vv f equivalent to Ju—f",

¢ transformation of the prenex form into Skolem normal form, i.e. a
form in which no existential quantifiers occurs and all universal quanti-
fiers appear as outermost quantifiers, by Skolemization steps by which,
for example, Yv,3vf can be transformed into Vv, f[v — fs(v,)] with

- a new function symbol fs.

Formulae in Skolem normal form can be further normalized into “clausal

form?”:

Definition 5.3 (Literals and Clauses) .
! is a literal iff" _
[is an atomic formula or { = - f, where f is an atomic formula.

C s a clause iff C is a finite set of literals.
CF is a formula in clausal form iff CF is a finite set of clauses. (m}

A formula CF = {C,,...,C,} in clausal form, where each clause C; =
- {li1; .-, Lin;} and the I ; are literals, is an abbreviation for the formula

(haV. . LA Al V. Vina),

i. e. CF is a conjunction of disjunctions of literals.

A formula in Skolem normal form can be transformed into an equivalent
clausal form by first omitting the universal quantifiers (this is only cosme-
" tics; free variables are now viewed as being universally quantified} and then
successively applying the following equivalences (“conjunctive normal form
algorithm”):

(fr = f2) is equivalent to ((f» — fo) A (f: = f1)),
(fi = f2) is equivalent to (—f, V fo),

SPTER'5. 5 N

- ..maf is equivalent to f, ‘
7 (£ A f2) is equivalent to (~fiv=f),
=1V f2) is equivalent to (~HA-f), .
S (Fe ¥ (fr A f3)) is equivalent to ((AVRIAAV A,
{((f; A f3) V f1) is equivalent to ((f, v RIA(fBY A).

e S

- At arbitrary proof problem, i.e. the question wether f...f, I f (or,
equivalently, f,... f, |= f), can also be transformed into the form of a
satisfiability problem. Namely,

fiy ..)f,, F=f i fiA---Afu A-fis not satisfiable.
5 Ajgg, one should note that for a formula f with free variables L7V T

- f is satisfiable iff Fv,,. -, Unf is satisfiable.
The following proposition summarizes all this.

Theorem 5.4 There exists an algorithm (&sentia.ﬂy_ consisting of prenex
normalization, Skolemization, and conjunctive form simplification) that takes
arbitrary formulae fy - fa, f and produces'a formula f’ such that

f" is insatisfiable iff f; ... f, = f and ‘
f' is in clausal form.

Example 5.5 In the above example the computational problem “gcd(6,8) =
- 7" can be formulated as the following proving problem (where we write
-a]l equations in predicate form, ie. we write “ged(z,y,2)" instead of

“ged(z,y) = 27): '

Yz,y,z(ged(z, y, z) — |

Ju(ged(y, u, z) A rest(z, VU Az > y)A (case z > y)
vz, ¥, 2(ged(z,y, 2) ged(y,z,2) Az < y)A {case z < y)
Vz ged(z,0,z) : : ' (case y = 0)
— 3z gcd(6, 8, z). S ' (existence of result)

The computational problem is formulated as an existence proof: We
are supposed to prove the existence of the ged of 6 and 8. A “good” (i.e.
constructive) proof will prove the existence by giving an example of an
answer. Hence it will “prove”, i. e. compute, the result. :

The above formula i s true (provable) iff the following formula leads to
a contradiction (is insatisfiable, inconsistent):

CHAPTER 5. 5 ' 13

A ' (case z > y)
A , ' (case z < y)
A (case y = 0)

~3zgcd(6, 8, z).
The clausal form of the latter formula is:

VZI,y,2,u
((ged(z,y,2) < ged(y, u, 2) A rest(z,y,u) Az > y)A
' (ged(w, y, 2z} « ged(y,z,2) Az < y)A
ged(z, 0, z)A

“ghged(6,8,2))

Note that in this example and, in fact, in many practical examples of the
form “Yvi... fi AV¥ ... f;... = -Juf” the skolemization can be obtained
in few steps. With some practice it is often even possible to formulate the
problem immediately in clausal form.

Note also that in the example all clauses have the special form

fefiA A fm,
or, using only Vv and -,
fVﬂfIV...V my

i. e. in each clause only one “positive” -literal occurs. Such clauses are
called Horn clauses. ‘

The proof of inconsistency of sets of Horn clauses is called “logic pro-
gramming” in the more restricted, technical sense. Such proofs can be
carried out by iteration of one single inference rule (the “resolution rule”),
which may be viewed as a general elementary computation step.

This implies that formulating problems in Horn clause form is already
“programming”. For such sets of formulae, the resolution procedure is an
“interpreter” for the language of Horn clause programs (“PROLOG").

5.2.3 Resolution Theorem Proving

Example 5.6 In the example of the previous subsection, a proof on paper
can be organized as follows: We start from '

CHAPTER 5. 5 | 14

ged(z,y,z) — ged(y,u, z) Arest(z,y,u) Az > ¥, (case z > y)
ged(z,y,2) — ged(y,z,z) Az <y, ' (case z < y)
ged(z,0,z) «, _ (case y = 0)
— gcd{6,8,2). ' _

(“ged(z,0,z) <" is a near-at-head reformulation of “gcd(z,0,z)” and “«
ged(6, 8, 2)” is a reformulation of “—gcd(6, 8, z)”. Also, for the sake of bre-
vity, we omit all universal quantifiers.)

Now, from '

«— gcd(6, 8, z)
and

gcd(6,8,2) — ged(8,6,2) A6 < 8 (case 6 < 8)

‘and
6 < 8,

which we assume to be “built-in” knowledge in our “'knov‘vledge base”, we
obtain . :

+ ged(8, 6, z).
From the last formula and

gcd(8,6, z) — ged(6,u, z) A rest(8,6,u) A 8 > 6, (case 8 > 6)

and the built-in knowledge

rest(8,6,2) and
8>6

we obtain
— ged(6,2, 2).
From the last formula and

gcd(6,2,2) — ged(2,1', z) Arest(6,2,u') A6 > 2 (case 6 > 2)

CHAPTER 5. 5 ' _ | 15

and the built-in knowledge

rest(6,2,0) and
62>2

we obtain -
— ged(2,0, z).

(Note that in this step we had to introduce a new variable w'. Why7 Hint:
The use of u would imply that the same number u would satisfy rest(8, 6,)
and rest(6,2,u)).

From the last formula and

gcd(2,0,2)_ — (case y = (B
we obtain a contradiction. O

The individual steps of the above proof procedure can be read in two
different ways:

1. For example, the second step could be read: “If « ged(8,6,z) was
true then, because of the built-in kpowledge and the Horn clause
(gcd(8,6,2) «— ged(6,u,z) A rest(8,6,u) A 8 > 6), also — gcd(6,2, 2)
would be true.” In this way the initial assumption that no result
exists is successively reduced to similar assumption about the resuit
of simpler computations until a.contradiction is reached.

2. Atomic formulae at the right-hand side of the “«~" in a Horn clause
are considered as “goals” that should be satisfied for achieving the
goal at the left-hand side. For example, “— ged(8,6,2z) " can be
read as the goal to find a z such that ged(8,6,z). Now, a rule like
“(gcd(8, 6, z) «— gcd(6,u, 2) Arest(8,6,u) A8 > 6) shows how the goal
“— (gcd(8,6,2)" can be reduced to the three simpler goals on the
right-hand side of the arrow. Two of these goals can be satisfied by
built-in knowledge. The third goa.l “+— gcd(6,2,2)" remains as the
goal to be achieved next.

Note that the above proof not only establishes the validity of 3z gcd(8, 6, 2|
unter the hypotheses {case z > y), (case z < y), and {case y = 0) but also
yields (“computes”) an example of a suitable z. By tracing the proof back-
ward, in our example it can be read off that = = 2 is suitable for the last
tep, the last but one step etc. Hence, the answer is gcd(6,8,2).

CHAPTER 5. 5 | | 16

When we analyze the individual proof steps we see that the same proof
technique is used in each step:

1. An atomic formula (a “goal”) on the right-hand side of a Horn clause
is “unified” (i. e. “made equal” by a suitable substitution) with the
atomic formula on the left-hand side of some other Horn clause.

2. The unified atomic formulae are canceled and the remaining atomic
formulae are collected in a new Horn clauge.

Amazingly, this simple proof technique (which needs a careful definition
of the “unification” process) is so strong that it suffices as the only inference
rule for creating a.complete proof systern for all of formulae in clausal form
and not only for Horn clause logic. Since every formula of predicate logic
can be transformed into clausal form, the resolution proof procedure is
complete for all of predicate logic. The proof of this fact is not easy. It is
an alternative to Goedel’s proof of the completeness theorem. The details
are given in the course “Automated Theorem Proving”.

We now present the resolution proof procedure in its general form. -

Resolution Proof Procedure:

Given: CF, a formula in clausal form.

Question: Is CF satisfiable?

Procedure:

 CF':=CF

while exists R _

such that R is a resolvent of clauses in CF' and R ¢ CF'
do :

CF':= CF'U{R|R is a resolvent of clauses in CF'}

if O € CF' then return "UNSATISFIABLE”

return "SATISFIABLE”. =

If the input formula C F is unsatisfiable then the above procedure stops
after finitely many steps with the answer “UNSATISFIABLE”. Otherwise
the procedure may stop with the answer “SATISFIABLE” or it may go on
forever. This behavior cannot be improved, i.e. it is inherently impossible to
establish a proof procedure that would terminate also for all satisfiable input
formulae (Church’s theorem on the undecidability of first order predicate
logic). \ :

Arcre (fands A93E

CHAPTERS. 5 _ 17

In the above procedure we needed some auxiliary notions, which are
given in the subsequent definitions. (In fact, we only give the definition of a
“binary” resolvent. The general notion of a resolvent needs some a.dd:tlonal
technical details.)

Definition 5.7 (Resolvents) Let C; and C, be two clauses that have
no variables in common. Ris a binary resolvent of C, and Cj iff

C; bas the form {i,} U D;,
Cg has the form {‘*[3} V) Dz,
where [, 1, are literals,
R = (Dl] Dz)Of,
where ¢ is a most general unifier of {; and 4,
(Formally, R=0 if DU D, =0.)

Definition 5.8 (Most general .un-iﬁers)

o is a substitution iff
o:V — Terms.
A substitution o is a unifier for- the l1terals l; and {, lif
hoo=loo.
A substitution o is a most general umﬁer of Iy and I iff
o is a unifier of {; and I; and
for all unifiers 7 of {; and I,
there exists a substitution # such that r = g o 4.]

In the above definition, [0o denotes the application of the substituion ¢
to the literal !. {The formal definition of o would need some technicalities).
‘We now provide some simple examples that 1llustratc the execution of

- the resolution proof procedure:

Example 5.9

Set of clauses:
(1) -C(z)Vv R(z)
(2) C(a)
(3) Pla)
(4) ~P(z)V ~R(z)
Resolution procedure:
(5) R(a) from (1) and (2)
{6) -R(a) from (3)and (4)
(7) O from {3) and (6).

1

CHAPTER 5. 5 - | 18

Hence, the set of clauses is insatisfiable.

Example 5.10'

Set of clauses:

(1) ~E(z)vV(z) Vv S(z, f(z))

(2) ~EB(z) v V(z)Vv C(f(z))

(3) Pla)

(4} E(a)

(5) ~8(a,y)v P(y)

(6) —P(z) Vv ~V(z)

(1) ~P(z) v -~C(z)
Resolution procedure:

(8) -V(a). from (3) and (6)
(9) V(e)vC(f(a)) from (2) and (4)
(10) C(f(a)) from (8) and (9)
(11) V(a) v S(a, f(a)) from (1) and (4)
(12) S(a, f(a)) from {8) and (11)
(13) P(f(a)) from (5) and (12)
(14) ~C(f(a)) from (7) and (13)
{15)a from (10) and (14)

Hence, the set of clauses js insatisfiable.

Example 5.11

Set of clauses:
(1) Pi(a) Vv Py(b)
(2) -Pyb)

, (3) ~P(a)Vv Py(5) v - Py(a)

Resolution procedure: :
(4) Pi(a) from (1) and (2)
(3) Pa(b) v ~Ps(a) from (1) and (3)
(6) -~Pi(e)V-Pia) from (2) and (3)
(7) —=Pifa) | from (2) and (5)

No more resolvents can be generated in this stage. Hence, the set of clauses
is satisfiable.

QM of x Lall of e L—wu :

(L) = sz!:f:
(‘f’}f =7 ﬂ(.«)‘i’“
M =2 G = F

