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CHAPTER 1

Problem Solving Based on Reasoning

1.1 Problem solving
Definition 1 (Problem, solution, context). A problem is a situation where
a certain object or state are wanted, but missing. A solution to a problem
means making the desired object or state available. Problems do not appear
by themselves, but rather in a context, universe of discourse, world. Problem
solving is the process by which the problem is solved, i.e. the world with problem
is transformed in the world with solution. See Figure 1.

Figure 1: Problem solving: transforming a world (context, universe of discourse)
with problem into a world (context, universe of discourse) with solution.

The definition above should agree with our everyday understanding of the
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2 CHAPTER 1. PROBLEM SOLVING BASED ON REASONING

word “problem”. Problems show up in different contexts, universes of discourse,
“worlds”. We are used to problems, we solve problems everyday, applying differ-
ent methods and tools that are available to us. Let us consider some examples
of problems and possible solutions.
Example 2 (River crossing (ancient)). Imagine that sometimes at the dawn
of humanity a person stands by a river observing that on the other side a
tree full of fruit. The problem is how to get there. There are many solutions
to this problem, and the early humnans reached those solutions accumulating
experience from failed attepmts, observing their environment, learning from e.g.
animals how to dam the river, how to find fords in the river, how to bridge the
river by cutting down a tree long enough to support them, and then refining
these solutions by developing tools to build more permanent and reliable bridges,
boats, etc.

These solutions are part of the succes of humanity as a race. However, note
that this will be of little confort to that one individual at the dawn of humanity,
trying to cross that river and reach the fruit, for whom these solutions might
have taken a bit long to achieve. That is because this method of directly trying
to solve the problem, essentially by trial-and-error, could be:

• slow: coming up with a successful solution can take a long time (genera-
tions),

• expensive: many resources may be needed in order to reach the solution,

• exhausing: reaching the solution could also require sustained effort,

• potentially irreversible: if the person gets badly injuried, or drowns at-
tempting to reach the other side, then no other potential solution may be
attempted.

Of course, this direct approach should not be discarded. It is a successful
approach (it goes by the name of evolution). While it may not have served
the person in our story trying to get on the other side, humanity has evolved
to be able to solve these problems. But is there a more efficient way to solve
problems?
Example 3 (Black box problem solving (modern)). In modern life there is a big
pressure to solve problems quickly, and as directly as possible. To do so, we
are used to call upon different tools, services, black boxes: there is an app for
anything, a swipe on the screen of a mobile and as if by magic, we have the
solution. Hardly anyone has patience if the solution is not available instantly.
This technology-based method is:

• fast: complying with the demand of the modern world,

• cheap: more and more we expect the black boxes to be available, but
note that this may be a position of privilege, and in general such black
boxes are not widely available, one could even argue that where they are
available their availability is at the expense of others (but this discussion
is beyond the scope of these notes),
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• opaque: solutions are achieved as if by magic, we don’t care how, moreover
we don’t understand how, we have no control over the process. but

So the question stands: is there a more efficient way to solve problems while
having control over the process?
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1.2 Problem Solving by Reasoning
It turns out there is an efficient way for solving problems in an efficient man-
ner, while maintaining control over the process, that is in principle available to
everyone. This is problem solving based on reasoning and it works as follows,
see Figure 2:

1. Observation: using the senses, refined with tools (microscopes, telescopes,
rulers, etc.), a model of the world containing the problem is constructed.
This is essentially an intellectual picture of the world containing the prob-
lem.

2. Reasoning: the model containing the problem is transformed into a model
containing a solution, by transforming it through reasoning. The support
of this step is the mind, refined by tools (pen and paper, computers, etc).

3. Action: once the solution is available in the model, it is implemented
in the real world by using the hand (refined with tools and instruments:
hammer, robots, bulldozers, etc).

Figure 2: Problem solving by reasoning: by observation, construct a model of
the world where the problem is also expressed, which is transformed by reasoning
into a model with solution and then this solution is implemented obtaining a
solution in the initial world.

This scheme for problem solving also provides an image of how scientific
domains relate to the different stages of problem solving. The observation stage
corresponds to natural sciences, the reasoning stage is the realm of mathematics,
while the action stage corresponds to engineering sciences. So in this sense,
mathematics is a method of problem solving. A very efficient method, as we
will see.

Note that the scheme corresponds to more than just “thinking about” how
to solve the problem (it is of course important to use common sense to filter
out some of the bad direct solutions), or some sort of “magic” step in which
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the model with the problem is transformed in the problem with solution. While
these approaches would involve a similar scheme, there are some specific prop-
erties that define problem solving by reasoning. These will be discussed in the
following.

Properties of Reasoning

Reasoning should be:

1. Abstract: Reasoning works in intellectual models. After the model is
constructed, there is no longer a connection with the world described by
the model. This provides:

• the power of reasoning: it is reversible, fast, but also
• the weakness of reasoning: the models constructed could be inade-

quate descriptions of the world and the problem, focusing only on
some aspects but ignoring others, which can lead to unpredictable
consequences (and this has, in fact, led to a series of crises faced by
the world: ecological, technological, economical, social).

2. Verifiable:
Reasoning should proceed in small steps, that everybody can perform, and
they should be “deterministic” in nature. A reasoning step applied to a
certain situation, will every time produce the same changes in the model,
no matter who applies the step. These reasoning steps will be called
reasoning rules, and the set of reasoning rules used to solve a problem will
form a reasoning system (together with a description of what a solution
is).

3. Correct:
Reasoning should tranport truth. When in the model we consider a sit-
uation or object that have an image in the universe of discourse (in the
world), then the changes carried out in the model by the application of
reasoning steps should also have images in the universe of discourse. When
we start from something “true”, by the application of reasoning steps we
should get something “true” as well.

4. General:
Reasoning should be applicable to whole classes of problems, potentially
infinitely many.

This method for problem solving illustrated in Figure 2 provides a frame-
work for extremely effective problem solving. In fact this sits at the heart of
the technological revolution that led to the development of Western societies.
However, note that this is a tool for problem solving, one which is suitable for
certain situations, but there are other tools for problem solving. Also, this is
not a replacement for ethics, nor does it replace being.
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1.3 Language as Support for Reasoning
Think back to our Example 2. What if the person standing by the river solves
(by reasoning) the problem of crossing the river? Then they will want to tell the
rest of the tribe what this solution is, so they can implement it together. But the
solution has to be transmitted. This can be done through language. Therefore
all the components of the problem solving have to be expressed in a language,
so they can be communicated. By consequence the support of reasoning is
language:

• intellectual models are built from language expressions,

• reasoning rules take expressions from the model and produce new expres-
sions.

Definition 4 (Language). A language (to be used to construct models and
reason about problems) is definded by:

• the symbols of the language (i.e. its vocabulary),

• the syntax of the language, i.e. how are expressions in the language formed,
and

• the semantics of the language, i.e. what is the meaning of the expressions
of the language (in the universe that the language describes).

• the reasoning system, i.e. the rules for reasoning and a description of how
to organize the reasoning process and how to

Whenever we want to solve a problem by reasoning we need a language
that can describe the problem and its context (universe of discourse). We need
to define the syntax, semantics, then specify the reasoning system (what are
the rules for reasoning, do they respect the properties of reasoning, what do
solutions look like?).

While there are many types of languages, some more appropriate for certain
types of problems, others less so, the above structure is essentially the same.

Let us consider how languages can be classified according to different criteria.

Descriptive vs. Algorithmic Languages

Descriptive languages are used to describe objects, situations, knowledge. The
language of “traditional” or “pure” mathematics is an example of a descriptive
language. Algorithmic languages are used to describe actions, steps for solv-
ing problems. Programming languages are examples of algorithmic languages.
Note, however that these languages should not be seen as separate languages.
Using both the descriptive and algorithmic aspects in a language enhances the
power and expressivity of the language. These aspects are in fact two sides of
the same coin.
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Universal vs. Special Languages

Universal languages are languages that are powerful enough to describe any
universe of discourse, and to express any solutions. Such a language is the
language of predicate logic, which is universal from a practical point of view
– it can express all mathematics – and from a theoretical point of view – if a
problem that can be expressed in the language has a solution, then this solution
can be found using the reasoning system of predicate logic.

Special languages are languages that are relatively simple, therefore they can
only describe special universes. However, for such languages the reasoning sys-
tems are simpler, and they are likely to have better properties: simpler solutions
or for instance for each problem we can say whether it has a solution (and find
it) or whether it has no solution. Such properties may not be available in more
powerful (universal) languages. Examples of special languages are propositional
logic, the language of switching circuits, constructive solid geometry.

Natural vs. Formal Languages

Natural languages are languages learned in context (i.e. by being among people
who use a language, one starts to work out the syntax, semantics and the
reasoning system - it is an evolutionary process). For formal languages, their
vocabulary, syntax, semantics and reasoning systems are descrinbed precisely,
and then they can be used.

For example, we can claim that in a certain sense, people learn mathematics
in context, and only later does it become a formal language.

Metalanguage vs. Object Language

A metalanguage is a language that is used in order to define a language, and
reason about the properties of the defined language, while the language defined
is called the object language.

Note that these are not absolute terms. The same language (e.g. a natural,
informal version of the language of sets) can play the role of metalanguage, when
it is used to define a language (e.g. the language of predicate logic), while later
it can be defined formally (thus playing the role of object language).
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1.4 Logic
Logic (mathematical logic, symbolic logic, metamathematics) is a scientific do-
main concerned with reasoning about reasoning:

• defining languages: their vocabulary, syntax and semantics,

• their reasoning systems, and establishing the properties of these reasoning
systems.

We will call a logic the language, its syntax and semantics, together with the
reasoning system corresponding to the language. So within the scientific field of
logic we can talk about many logics: propositional logic, predicate logic, fuzzy
logic, etc.

Some of the properties of logics that are studied in logic include:

Correctness (soundness) of the reasoning rules: Are the reasoning rules
correct? Two approaches are possible:

• evolutionary: where many people experience in many settings the
correctness of certain inference steps, until everyone is convinced they
are correct,

• formal: where we use a metalanguage and a meta reasoning system
to establish the correctness of the inference rules.

Completeness of the reasoning rules: Can the inference system solve ev-
ery problem that has a solution, is it powerful enough? For predicate
logic it was Gödel who showed that this is the case, in [Gödel, 1930].

Consistency of the model: Is the model (i.e. the description of the universe
of discourse) consistent, free from contradictions? Can the consistency be
proved from within the logic? This question is also related to the next
one.

Completeness of the model and reasoning system: NO, Gödel has shown
in [Gödel, 1931] that in first order logic, if the model contains a description
of arithmetic, then one cannot show that the inference rules are complete
and the model is consistent. If the model is consistent, then there is some
true statement that cannot be proved by the reasoning system.

Decidability: Can every problem be solved? For every problem can we say
that it has a solution or not? This has been shown to be true for several
situations: e.g. euclidian geometry, propositional logic, real closed fields,
polynomial ideal teory, but Church and Turing have shown independently
in 1936 that predicate logic is undecidable (i.e. there is no general me-
chanical method to establish the truth or falsity).

Categoricity of the model: Does the model describe just the indended uni-
verse of discourse, or are there other domains that are described by the
model, but that behave essentially different?
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Logic - An Essential Tool for Mathematics and Computer
Science
Not only does logic provide a framework for problem solving that can be useful
for any situation, but it is hardly conceivable that mathematics or computer
science can “work” without logic. In fact logic played an essential rôle in

Russel’s Paradox

Logic proved essential in solving the “proof crisis” that became apparent at the
end of XIX century.
Example 5 (Russel’s paradox). - an axiom for “sets”:

Intuition:

For all “properties” E, there exist the “set” of all objects x that possess the
property E.

More exactly, for every property E:
“there exists the set M such that for all x (x ∈ M iff E)”,

where M is a variable.
Now, consider the property x ̸∈ x:

“there exists the set M such that for all x (x ∈ M iff x ̸∈ x)”

We take an M (since it exists):

“for all x (x ∈ M iff x ̸∈ x)”

Since the statement holds for all x, it holds also for x := M :

“(M ∈ M iff M ̸∈ M)”,

which is a contradiction.
In fact the axiom can be “patched” to avoid the paradox: For every property

E with free variable x and every variable B not occurring free in E:

for all B there exists M such that for all x (x ∈ M iff (x ∈ B and E)).

But does the restricted form introduce anymore contradictions?

The Rôle of Logic in Computer Science

Why should a computer scientist know logic?
The traditional scope of CS was the automation of operation in numerical

models. In fact, reasoning can be seen as a kind of “computation”, thus in
principle it can be automated.

“Logic plays a fundamental role in computer science, similar to that played
by calculus in physics and traditional engineering. A knowledge of logic is
becoming a practical necessity for the computer professional. ” - Manna and
Waldinger, see [Manna and Waldinger, 1985].
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Logic-based Techniques in Computer Science

For raising the level of the abstract machine: boolean operations (logical
gates), symbolic addresses (assembler), recursion (stacks), dynamic data
structures (garbage collection), functional programming (programs as data),
abstract data programming, OO, relational databases, expert systems,
logic programming, CLP.

For bridging the gap between problem and program (algorithmic solution):
program synthesis, program transformation, program verification.

1.5 Acknowledgement
The author has learned about logic and how it works from his advisor, Bruno
Buchberger. In particular this introduction follows the introduction to logic
from Buchberger’s unpublished lecture notes, see [Buchberger, 1991].



CHAPTER 2

Propositional Logic

Propositional logic is a language of simple statements, called atomic propositions,
and compound statements, formed by combining simpler ones, with the help of
propositional connectives (not, and, or, implication, equivalence).

The atomic sentences that can be either true or false, but not both:

• “Today is Monday”;

• “Snow is white”;

• “Sugar is a carbohydrate”;

Whether a compound proposition is true or false can be computed starting
from the values of atomic propositions from which it is composed:

• “Today is Monday or today is Tuesday”;

• “Today is Monday or today is not Monday”;

• “If children are mean then birds fly westwards”;

• “Children are mean and children are not mean”.

The problems we want to solve in propositional logic are related to the mean-
ing of propositions: the assignment of truth values to the atomic propositions
that form a compound expression represents its interpretation. Statements are
true for any interpretation, are called tautologies or valid. Statements that are
true for some interpretations are satisfiable. Statements that are false for any
interpretation are called unsatisfiable. Statements that are both true or both
false under the same interpretations are logically equivalent. Statements that

11
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are true whenever a given set of statements are all true are logical consequences
of the respective set.

This Part deals with propositional logic. We will define the syntax of propo-
sitional logic,define the semantics of propositional logic, and the problems that
can be expressed in propositional logic: satisfiability, validity, logical conse-
quence. We will show that the logic is decidable, and there is a direct (but
prohibitive) solution for every problem that can be expressed in the logic. There-
fore we need a reasoning system that hopefully is more efficient, and we present
such a reasoning system, which is correct and complete. We also present some
important applications for propositional logic (digital circuit design and trans-
formation).

2.1 The Syntax of Propositional Logic
The Vocabulary of Propositional Logic
Definition 6 (Set of propositional variables). V is a set of propositional vari-
ables iff V is a countable set of words consisting of English letters (uppercase)
possibly followed by numerical indices.

Example 7. A, B, P1, Q5 are examples of propositional variables.

Definition 8 (Special symbols of propositional logic). The special symbols of
propositional logic are:

1. variables from the set of propositional variables,

2. symbols denoting the logical connectives (logical operators): ¬, ∧, ∨, →,
↔,

3. parentheses: (, ).

Well-formed Formulae
Remark. Propositional variables can be used to denote atoms, i.e. simple
propositions, not involving propositional connectives, but also to stand in or
rename propositional formulae. The particular use for propositional variables
will be specified each time.

Definition 9 (Well-formed formulae of propositional logic). The well-formed
formulae (formulae, WFF’s) of propositional logic are defined recursively as
follows:

1. If A is an atom, then A is a formula.

2. If P is a formula, then (¬P ) is a formula.

3. If P and Q are formulae, then (P ∧Q), (P ∨Q), (P → Q) and (P ↔ Q)
are formulae.
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4. All formulae are generated following the above rules.

Example 10.

1. A is a formula;

2. B →) is not a formula;

3. A → B

• is not a formula, according to the definition,
• but why not allow it (for practical reasons)?

Example 11 (Why use parentheses?).

• P → Q ∧R is ambiguous, it could stand for:

– ((P → Q) ∧R),
– (P → (Q ∧R)).

Relaxing the Syntax
In practice, we allow a relaxed syntax, in that some of the parentheses are
dropped. However, formulae should be nonambiguous, even in this relaxed syn-
tax.The way to avoid ambiguity is to define priorities (precedence) for proposi-
tional connectives:
Example 12 (Priorities for propositional connectives (decreasing)).

↔, →, ∨, ∧, ¬.

Remark. The above is just an example of precedence. Different authors may
use different precedences. When using a relaxed syntax, always specify the
precedence. When in doubt, use parentheses!!!
Example 13 (Precedences revisited). Using the precedence above,

P → Q ∧R

is, in fact
(P → (Q ∧R)).

Remark. From now on, if not otherwise specified, we allow the use of the
relaxed syntax for propositional logic, with the precedence given above.

Associativity of Propositional Connectives
Consider P → Q → R. This is ambiguous:

• is it P → (Q → R),

• or is it (P → Q) → R?

It depends on the associativity of the connective. In general, propositional con-
nectives tend to be right associative, so the first variant above will be considered.
When in doubt, use parentheses!!!
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Notation for Propositional Connectives:

Various notations are used in literature:

• ↔, →, ∨, ∧, ¬;

• iff , if...then..., or, and, not;

• ≡, ⊃, ∨, ∧, ¬.
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2.2 Semantics of Propositional Logic
2.2.1 Truth Valuations, Interpretation
Definition 14 (Domain of truth values). We choose 2 distinct values T, F. The
set of truth values is the set {T,F}. The set of truth values is (totally) ordered,
F < T.

Definition 15 (Truth functions). The following functions are called truth func-
tions:

B¬ : {T,F} → {T,F},
B∧,B∨,B→,B↔ : {T,F} × {T,F} → {T,F} ,

v w B¬(v) B∧(v, w) B∨(v, w) B→(v, w) B↔(v, w)
T T F T T T T
T F F T F F
F T T F T T F
F F F F T T

Remark. The truth functions reflect the intuitive meaning of the propositional
connectives.

Definition 16 (Truth valuation/Interpretation). T is a truth valuation (inter-
pretation) iff T is a mapping from V to the set {T,F} of truth values.

Example 17 (Truth valuation). Let G
.
= (P ∧Q) → (R ↔ (¬S)).

A truth valuation (interpretation) for the formula G is
T (P ) = T, T (Q) = F, T (R) = T, T (S) = T.

Remark. The truth valuation assigns to each propositional variable that occurs
in the formula either one of the values T,F.

Definition 18 (Truth values under truth valuations/interpretations of propo-
sitional formulae). For all propositional formulae B, we denote υT (B) - “the
truth value of B under the truth valuation/ interpretation T ”. It is defined
inductively as follows:

• if V is an atom, υT (V ) = T (V );

• if B is a formula υT (¬B) = B¬(υT (B));

• if B1, B2 are formulae,

– υT ((B1 ∧B2)) = B∧(υT (B1), υT (B2)),
– υT ((B1 ∨B2)) = B∨(υT (B1), υT (B2)),
– υT ((B1 → B2)) = B→(υT (B1), υT (B2)),
– υT ((B1 ↔ B2)) = B↔(υT (B1), υT (B2)).

Example 19 (Interpretation revisited). Now let’s compute the truth value of G
.
= ((P ∧Q) → (R ↔ (¬S))), from the example above, under the interpretation
T ( T (P ) = T, T (Q) = F, T (R) = T, T (S) = T):
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υT (G)

= υT (((P ∧Q) → (R ↔ (¬S))))

= B→(υT ((P ∧Q)), υT ((R ↔ (¬S))))

= B→(B∧(υT (P ), υT (Q)),B↔(υT (R), υT ((¬S))))

= B→(B∧(T,F),B↔(T,B¬(υT (S))))

= B→(F,B↔(T,F))

= B→(F,F)

= T.

Definition 20 (True proposition). A propositional formula B is said to be true
under an interpretation if it is evaluated to T in the interpretation. Otherwise
B is said to be false.

Remark.(Number of possible interpretations)
If there are n distinct atoms in a formula, then there will be 2n distinct inter-
pretations for the formula.
Notation.(Representation of interpretation)
For a given formula, assume {A1, . . . , An} is the set of propositional variables.
Then a particular interpretation can be represented as the set {m1, . . . ,mn}
where mi is either Ai or ¬Ai, according to whether T (Ai) = T or T (Ai) = F,
respectively.
Example 21. Consider ((P → Q) ∨R).

{P,¬Q,R} stands for T (P ) = T, T (Q) = F, T (R) = T.

2.2.2 Validity, Satisfiability, Inconsistency
Definition 22 (Propositional Tautologies). The formula B is valid in propo-
sitional logic (or B is a propositional tautology) iff, for all truth valuations T ,
υT (B) = T (i.e. the proposition is true under all possible interpretations). The
formula is invalid iff it is not valid.

Definition 23 (Satisfiability). A propositional formula B is said to be satisfi-
able in propositional logic iff for some truth valuation T , υT (B) = T (i.e. there
exists some interpretation for which the formula is evaluated to true).

A propositional formula B is said to be unsatisfiable (inconsistent) iff it is
false under all truth valuations (all interpretations).

Exercises
Using the definitions, show that:
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1. A formula is a tautology (valid) iff its negation is unsatisfiable (inconsis-
tent).

2. A formula is unsatisfiable (inconsistent) iff its negation is valid.

3. A formula is invalid iff there is at least one interpretation under which the
formula is false.

4. If a formula is valid, then it is satisfiable, but not vice-versa.

5. If a formula is unsatisfiable (inconsistent), then it is invalid, but not vice-
versa.

Definition 24. If a formula B is true (evaluated to T) under some truth valu-
ation (interpretation) T , we say that T satisfies B ( B is satisfied by T ).

On the other hand, if a formula B is false (evaluated to F) under T , we say
that T falsifies B ( B is falsified by T ).

When an interpretation (truth valuation) T satisfies a formula B, T is called
a model of B.

Truth Tables

Definition 25 (Truth table (informal)). A truth table corresponding to a propo-
sitional formula is the table constructed in the following manner:

• on the first row, list all propositional variables occurring in the formula,
then,

• list all subformulae of the formula tree, in a bottom-up manner, the last
one being the formula itself,

• the columns under the propositional variables contain the truth values
under all possible truth valuations,

• the columns under each subformula contain on each position the value
under the truth valuation taken from the corresponding row,

• note that using the bottom-up approach each computation amounts to
one application of a truth function.

Example 26 (Truth table). Consider the propositional formula (P → Q) ∨R.
P Q R P → Q (P → Q) ∨R
T T T T T
F T T T T
T F T F T
F F T T T
T T F T T
F T F T T
T F F F F
F F F T T
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2.3 Propositional Equivalence
2.3.1 Logical Equivalence
Definition 27 (Equivalence of Propositional Formulae). Two propositional for-
mulae F and G are (propositionally) equivalent (and we write F ∼ G) iff for
all truth valuations (interpretations) T , υT (F ) = υT (G).
Example 28. Consider the formulae (P → Q) and (¬P ∨Q).

P Q (P → Q) ¬P (¬P ∨Q)
T T T F T
T F F F F
F T T T T
F F T T T

From the truth table we see that the two formulae are equivalent.
(Propositional) formulae can have very different structure, but the same

values under the same interpretations, for all possible interpretations.
The question is how to detect the that two formulae are equivalent? Truth

tables work, but are very expensive. Can we do better? Can we try (something
like) simplification?
Exercise
How much time does a truth table take?

Consider the following table, taken from [Kleinberg and Tardos, 2006]:
n nlog2n n2 n3 1.5n 2n n!

n = 10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n = 30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 1025 yrs
n = 50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 yrs very long
n = 100 < 1 sec < 1 sec < 1 sec 1 sec 12892 yrs 1017 yrs very long
n = 1000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100000 < 1 sec 2 sec 3 hours 32 yrs very long very long very long
n = 1000000 1 sec 20 sec 12 days 31710 yrs very long very long very long

• running times are estimated for a processor capable of performing 1 million high
level instructions per second (MIPS),

• “very long” is considered to be running time that exceeds 1025 years,
• for comparison, currently (2016) available processors are capable of ∼ 10.000 -

238,310 MIPS
(see, for example, estimates at http://en.wikipedia.org/wiki/Instructions_per_second).

• expensive is still very very bad.

Simplification

To decide if 2 expressions are equivalent (in some sense), “reduce” (“sim-
plify”) each of them to their (unique) normal form, by applying finitely many
equivalence preserving steps. If these normal forms are (basically) the same,
then the initial expressions are equivalent. Even if the normal form is not
unique, it can still be useful, in that it contains information which could lead
to the solving of the problem. This is illustrated in Figure 3.
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Figure 3: Simplification - transforming expressions to normal forms by equiv-
alence rewriting. Expressions are equivalent if they can be transformed to the
same normal form.

2.3.2 A Catalog of Equivalent Formulae
Extending the Language of Propositional Logic

We extend the language with two symbols, ⊥, ⊤:

• ⊥ denote formulae that are always false (unsatisfiable, inconsistent), i.e.
for all truth valuations T , υT (⊥) = F;

• ⊤ denote formulae that are always true (valid), i.e. for all truth valuations
T , υT (⊤) = T;

Remark.

• F ∼ ⊥ iff F is unsatisfiable (inconsistent);

• F ∼ ⊤ iff F is valid.

In the following, F , G, H are propositional formulae.

• Reduction Laws:

(a) (F ↔ G) ∼ (F → G) ∧ (G → F ),
(b) (F → G) ∼ (¬F ∨G).

• Commutative Laws:

(a) F ∨G ∼ G ∨ F ,
(b) F ∧G ∼ G ∧ F ,

(c) F ↔ G ∼ G ↔ F .
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• Associative Laws:
(a) (F ∨G) ∨H ∼ F ∨ (G ∨H),
(b) (F ∧G) ∧H ∼ F ∧ (G ∧H),
(c) (F ↔ G) ↔ H ∼ F ↔ (G ↔ H).

• Distributive Laws:
(a) F ∨ (G ∧H) ∼ (F ∨G) ∧ (F ∨H),
(b) F ∧ (G ∨H) ∼ (F ∧G) ∨ (F ∧H),

(c) (F ∨G) → H ∼ (F → H) ∧ (G → H),
(d) (F ∧G) → H ∼ (F → H) ∨ (G → H),
(e) F → (G ∨H) ∼ (F → G) ∨ (F → H),
(f) F → (G ∧H) ∼ (F → G) ∧ (F → H),
(g) (F ∧G) → H ∼ F → (G → H).

• Laws of “True” and “False”:
(a) ¬⊤ ∼ ⊥,
(b) ¬⊥ ∼ ⊤,
(c) F ∨ ⊥ ∼ F ,
(d) F ∧ ⊤ ∼ F ,
(e) F ∨ ⊤ ∼ ⊤,
(f) F ∧ ⊥ ∼ ⊥,
(g) ⊥ → F ∼ ⊤,
(h) F → ⊤ ∼ ⊤.

• Idempocy rules:

(a) F ∧ F ∼ F ,
(b) F ∨ F ∼ F .

• Absorbtion Laws:
(a) F ∨ (F ∧G) ∼ F ,
(b) F ∧ (F ∨G) ∼ F .

• “Annihilation” Laws:
(a) F ∨ ¬F ∼ ⊤, (“tertium non datur”)
(b) F ∧ ¬F ∼ ⊥,

(c) F → F ∼ ⊤.

• Negation Laws:
(a) ¬(¬F ) ∼ F , (“double negation”)
(b) ¬(F ∨G) ∼ ¬F ∧ ¬G, (“De Morgan”)
(c) ¬(F ∧G) ∼ ¬F ∨ ¬G, (“De Morgan”)

(d) ¬(F → G) ∼ F ∧ (¬G),
(e) ¬(F ↔ G) ∼ F ↔ (¬G).
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• Other Laws:
(a) F → G ∼ F ↔ (F ∧G),
(b) F → G ∼ G ↔ (F ∨G).

Conjunctions and Disjunctions of Formulae

Remark. Because of the associative laws, parantheses can be dropped, e.g. in
(F ∨G) ∨H or in F ∨ (G ∨H).

Definition 29 (Conjunction of formulae). Let F1, F2, . . . , Fn be formulae. The
formula F1 ∧ . . . ∧ Fn, n ≥ 1, is called the conjunction of F1, . . . , Fn, and its
value under a truth valuation T is:

B∧(υT (F1), . . . , υT (Fn)) =

{
T, if υT (F1) = . . . = υT (Fn) = T
F, otherwise .

Definition 30 (Disjunction of formulae). Let F1, F2, . . . , Fn be formulae. The
formula F1 ∨ . . . ∨ Fn, n ≥ 1, is called the disjunction of F1, . . . , Fn, and its
value under a truth valuation T is:

B∨(υT (F1), . . . , υT (Fn)) =

{
F, if υT (F1) = . . . = υT (Fn) = F
T, otherwise .

Principle of Duality

De Morgan’s laws ensure us of the following fact:

• starting from a tautology involving only ⊤,⊥,∧,∨,¬,

• the principle of duality states that one can swap the ’∧’s and ’∨’s, swap
the ’⊤’s and the ’⊥’s, and then negate the result,

• and get another tautology.

Example 31. Start with F ∨ ¬F , swap, obtaining F ∧ ¬F , and then negate,
obtaining ¬(F ∧ ¬F ) (the principle of noncontradiction).
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2.4 Normal Forms
Negation Normal Form

Definition 32 (Literal). A literal is an atom or the negation of an atom. Atoms
are called positive literals, negations of atoms are called negative literals.

Definition 33 (Negation Normal Form). A formula F is said in negation normal
form (NNF) , iff:

• F is ⊤ or F is ⊥;

• F is constructed from literals, using only the binary connectives ’∧’ and
’∨’.

Example 34. Let P, Q, R, S be atoms. The following are in NNF:

⊤,

P ,

P ∧ (Q ∧ (¬R ∨ S)),

however,
¬(¬P ),

¬(P ∨ ¬Q) ∧R,

are not.

Transformation to NNF

Remark. Any propositional logic formula can be transformed into an equivalent
formula in NNF.

Transformation to NNF

1. use the reduction laws (given in the catalog of equivalent formulae) to
eliminate ’↔’, ’→’;

2. repeatedly use the double negation and De Morgan’s laws to eliminate
’¬¬’s and ’¬(. . .)’s.

3. at each of the steps above, it is useful to perform simplifications of ⊤ and
⊥ (using the laws of true and false, annihilation, idempocy).
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Disjunctive Normal Form, Conjunctive Normal Form

Definition 35 (Disjunctive Normal Form). A formula F is said to be in dis-
junctive normal form (DNF) iff F has the form F

.
= F1 ∨ . . .∨Fn, n ≥ 1 , and

each of F1, . . . , Fn is a conjunction of literals.

Example 36 (Formulae in DNF). Let P,Q,R be atoms,

(¬P ∧Q) ∨ (P ∧ ¬Q ∧ ¬R)

P ,

P ∧Q,

P ∨Q ∨R,

are in DNF.
Remark. Any formula which is in DNF is also in NNF.

Definition 37 (Conjunctive Normal Form). A formula F is said to be in con-
junctive normal form (CNF) iff F has the form F

.
= F1 ∧ . . .∧ Fn, n ≥ 1 , and

each of F1, . . . , Fn is a disjunction of literals.

Example 38 (Formulae in CNF). Let P,Q,R be atoms,

(¬P ∨Q) ∧ (P ∨ ¬Q ∨ ¬R)

P ,

P ∧Q,

P ∨Q ∨R,

are in CNF.
Remark. Any formula which is in CNF is also in NNF.

Normal Form Transformations
So far, we have seen that any formula can be transformed into its NNF

equivalent, then defined DNF, CNF. The question now is how to transform the
formula from NNF into DNF (or CNF) and if we can do that, what does that
tell us? For once, if two formulae have the same normal form, they are equiva-
lent, but, does it help in detecting tautologies, satisfiable formulae, unsatisfiable
formulae? And is it better than truth tables?

DNF Transformations
DNF Transformation via Truth Tables

Given a formula, one method to obtain a DNF equivalent formula is through
truth tables, by:

• selecting all the rows that evaluate to T,
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• for each such row, constuct a conjunct of literals in the following way:
positive literals for corresponding T values for the propositional variable,
and negative literals otherwise.

• the DNF is the disjunctions of all these conjunctions.
Example 39. DNF from truth tables

P Q P → Q
T T T
T F F
F T T
F F T

The corresponding equivalent DNF formula:
(P ∧Q) ∨(¬P ∧Q) ∨ (¬P ∧ ¬Q).

Remark.

• In the above example, the DNF equivalent form is quite different from
the well-known equivalent (¬P ∨Q), i.e. it is not the simplest DNF (also
DNF’s are not unique).

• In general, getting the DNF from the truth table is expensive: one has to
construct the truth tables.

DNF Transformation

Transformation to DNF
An arbitrary propositional formula can be transformed in an equivalent DNF
by carrying out the following steps:

• bring the formula into NNF;

• repeatedly apply the tautologies:

F ∧ (G ∨H) ∼ (F ∧G) ∨ (F ∧H),

(F ∨G) ∧H ∼ (F ∧H) ∨ (G ∧H),
starting with the outermost ’∧’, until the normal form is reached.

Example 40 (DNF transformation). Transform the following formula into its
DNF:

(F ∧ (G ∨H)) ∧ (¬F ∨ ¬G).
The formula is already in NNF.

(F ∧ (G ∨H)) ∧
distr

(¬F ∨ ¬G) ∼
(((F ∧ (G ∨H)) ∧

distr
¬F ) ∨ ((F ∧ (G ∨H)) ∧

distr
¬G)) ∼

(((F ∧G) ∨ (F ∧H)) ∧
distr

¬F ) ∨ ((F ∧G) ∨ (F ∧H)) ∧
distr

¬G)) ∼
(((F ∧G ∧ ¬F )

ann
∨ (F ∧H ∧ ¬F ))

ann
∨ ((F ∧G ∧ ¬G)

ann
∨ (F ∧H ∧ ¬G))) ∼

(⊥ ∨⊥ ∨⊥(F ∧H ∧ ¬G)) ∼
(F ∧H ∧ ¬G).
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Remark. In the above, distr, ann indicate the place where the distributive law
(of ’∧’ over ’∨’) and the annihilation law (for ’∧’) were applied, respectively, at
each step.

When transforming a formula into its DNF equivalent, it is a good idea to
perform, after each transformation, simplification steps:

• contradictions within conjunctions:

– if both a subformula and its negation show up in the same conjunc-
tion, then the conjunction is a contradiction (i.e. equivalent to ⊥),

– since P ∨ ⊥ ∼ P , contradictions can be discarded;

• subsumption:

– since (F ∧G)∨F ∼ (F ∨F )∧ (G∨F ) ∼ F ∧ (G∨F ), we see that if F
is true then the initial formula is true, and if F is false then the initial
formula is false (read evaluated to false under some interpretation),
i.e. the truth value of G plays no part in the result of the evaluation,

– therefore, in fact (F ∧G) ∨ F ∼ F ,
– therefore, (F ∧ G) can be safely removed from the disjunct (we say

that (F ∧G) is subsumed by F ),
– due to the associativity of ’∧’ this can be generalized (i.e. F and G

can stand in for conjunctions of literals).

Example 41 (DNF transformation, with contradiction checking.). Transform the
following formula into its DNF:

(F ∧ (G ∨H)) ∧ (¬F ∨ ¬G).

(F ∧ (G ∨H)) ∧
distr

(¬F ∨ ¬G) ∼
(((F ∧ (G ∨H)) ∧ ¬F )

assoc and ann

∨ ((F ∧ (G ∨H)) ∧
distr

¬G)) ∼

((F ∧G) ∨ (F ∧H)) ∧
distr

¬G)) ∼
((F ∧G ∧ ¬G)

ann
∨ (F ∧H ∧ ¬G))) ∼

(F ∧H ∧ ¬G).
Remark. Note that applying after each transformation a check for contradic-
tion (i.e. looking to apply the annihilation law for ’∧’) can lead to much shorter
derivations.

DNF and satisfiability

• Given a formula in DNF, the formula is satisfiable precisely if one of its
disjuncts is satisfiable,

• a DNF disjunct (which is a conjunction) is satisfiable precisely if it does
not contain complementary literals,
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• therefore, transformation into DNF represents a method to establish sat-
isfiablity of propositional formulae,

• however, in general, DNF does not offer a simple way to establish validity.

CNF Transformation

Transformation to CNF
An arbitrary propositional formula can be transformed in an equivalent DNF
by carrying out the following steps:

• bring the formula into NNF;

• repeatedly apply the tautologies:

F ∨ (G ∧H) ∼ (F ∨G) ∧ (F ∨H),

(F ∧G) ∨H ∼ (F ∨H) ∧ (G ∨H),

starting with the outermost ’∨’, until the normal form is reached.

When transforming into CNF, one should check at each step for valid con-
juncts, i.e. disjunctions that contain complementary subformulae.

• validity within conjunctions:

– if both a subformula and its negation show up in the same disjunction,
then the disjunction is a valid (i.e. equivalent to ⊤),

– since P ∨ ⊤ ∼ P , valid conjuncts can be discarded;

• absorbtion:

– F ∧ (F ∨G) ∼ F .

Remark. DNF and CNF transformations are similar.
Example 42 (CNF transformation). Transform the following formula into its
CNF:

(F ∨ (G ∧H)) ∨ (¬F ∧ ¬G).

The formula is already in NNF.

(F ∨ (G ∧H)) ∨
distr

(¬F ∧ ¬G) ∼
(((F ∨ (G ∧H)) ∨ ¬F )

assoc and ann

∧ ((F ∨ (G ∧H)) ∨
distr

¬G)) ∼

((F ∨G) ∧ (F ∨H)) ∨
distr

¬G)) ∼
((F ∨G ∨ ¬G)

ann
∧ (F ∨H ∨ ¬G))) ∼

(F ∨H ∨ ¬G).
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CNF and validity

• Given a formula in CNF, the formula is valid iff each conjunct is valid,

• i.e. each disjunction contains complementary literals.

• If discarding of valid conjuncts is performed, then a formula is valid iff its
CNF equivalent is ⊤.

• However, in general, it is not easy to establish satisfiability, given a CNF
formula.

• In fact, the SAT problem (boolean satisfiability problem) is formulated as
the decision whether a CNF formula is satisfiable,

• and SAT is the first problem proved to be NP complete (see [H.Gallier, 2003],
pp. 50–54 for a discussion on NP and SAT).

DNF and CNF: Sharing Transformations

• due to the De Morgan laws, the CNF of a formula can be obtained directly
from the DNF of its negation, by switching ’∧’s for ’∨’s, and complement-
ing the literals (i.e. positive literals become negative, and vice-versa).

• this allows sharing code for the normal form transformations, if these are
implemented on a computer.

• Start with a formula, and its negation,

• bring them both to equivalent NNF,

• then transform them both to DNF,

• and finally, flip the ’∧’s and ’∨’s in the DNF of the negation, and then
complement the literals.
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2.5 Applications of Propositional Logic: Digital
Circuit Design

2.5.1 Propositional Logic and Boolean Functions
Consider the boolean domain {T,F}, let A1,A2 . . . range over {T,F}, and
A1, A2 . . . be propositional variables (atoms). Propositional formulae describe
boolean functions in a natural way:

Definition 43 (Boolean Functions described by Formulae). Let F be a propo-
sitional formula. Let all the propositional variables (atoms) that occur in F be
among A1, . . . , An. Then [F ]n (the n-ary boolean function described by F ) is
defined as follows:

[F ]n : {T,F}n −→ {T,F},
[F ]n(A1, . . . ,An) = υT (F ),
for all T , truth valuations s.t. T (Ai) = Ai, for all 1 ≤ i ≤ n.

In fact, the truth table corresponding to a propositional formula provides
the corresponding boolean function.

Lemma 44. For every n-ary boolean function f there exists a propositional
formula F such that f = υT (F ⟩.

Proof. Let f be an n-ary boolean function , and let

(A1
1, . . . , An

1), (A1
2, . . . , An

2), . . . , (A1
m, . . . , An

m)

be the distinct n-tuples in {T,F}n for which f has the value T. Then f can be described
by the following propositional formula (in DNF):

F = C(A1
1,...,An

1) ∨ C(A1
2,...,An

2) ∨ . . . ∨ C(A1
l,...,An

l),

where C(A1
1,...,An

1) = A1
A1 ∧ . . . ∧An

An , and Ai
A =

{
Ai if A = T
¬Ai otherwise

.

Example 45 (Majority function). Consider the boolean ternary function defined by
the following table:

A1 A2 A3 f(A1,A2,A3)

T T T T
T T F T
T F T T
T F F F
F T T T
F T F F
F F T F
F F F F

The formula corresponding to f is:

F = (A1 ∧A2 ∧A3) ∨ (A1 ∧A2 ∧ ¬A3) ∨ (A1 ∧ ¬A2 ∧A3) ∨ (¬A1 ∧A2 ∧A3).
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2.5.2 Complete Set of Boolean Operators
DNF, CNF show us that we can transform any propositional formula into equivalent
forms expressed only in terms of {¬,∧,∨}. In fact, due to De Morgan’s rules, we can
do better: any formula can be expressed only in terms of {¬,∧}, or only in terms of
{¬,∨}. These are called complete sets of boolean operators (since they are sufficient to
express any formula). Another example of complete set of boolean operators is {→,⊥}
(exercise!).

Can we do better? Yes! The following are complete sets of boolean connectives:
{|} (NAND), {▽} (NOR), where, for all formulae F,G:

F |G = ¬(F ∧G),
F▽G = ¬(F ∨G).

2.5.3 Digital Circuit Design
Definition 46 (Digital circuits). Digital circuits are elctronic circuits whose inputs
and outputs are electric signals (different voltage levels, usually 2). Combinatorial
digital circuits are digital circuits whose output is determined solely by the values of
their inputs.

Examples of combinatorial digital circuits: arithmetic-logical operations, memory
addressing.

We can use boolean values to express these voltage levels (e.g. T - high voltage,
F - low voltage). Therefore, digital circuits can be represented as boolean functions;
A circuit is given by a circuit diagram which is described as a collection of gates and
their interconnections. Each gate is a boolean function of its inputs. Each circuit
(diagram) can be represented as a propositional formula. In a circuit diagram, input
wires correspond to propositional atoms, internal wires correspond to subformulae.

Note.
The fact that digital circuits can be modelled by boolean functions was observed by
Claude E. Shannon, and described in his 1937 master’s thesis (“possibly the most
important, and also the most famous, master’s thesis of the century”), published later
as [Shannon, 1938], and it had a tremendous impact on the subsequent development
of computers.

Logical gates are the basic devices from which one can (conceptually) build up
digital circuits. They can be described bypropositional connectives.

Figure 4: Logical Gates.

Example 47 (Logical Gates). In Figure 47 (source: teaching resources associated to
[Tanenbaum and Austin, 2013]) 0 and 1 are used for F and T, respectively.
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Digital circuits can be designed using propositional logic. A digital circuit will
have inputs and outputs. Each output can be seen as a boolean function of the inputs
(therefore it has a corresponding boolean formula). They can be constructed in the
following manner:

• start with the specification for the circuit, i.e. the desired behaviour of the
circuit (a boolean function), represented by a (truth) table;

• from the truth table, construct DNF formula determined by the function repre-
sented in the table;

• the corresponding digital circuit can immediately be constructed (and it involves
NOT, AND and OR gates).

Example 48 (Majority, revisited). The majority ternary function returns T if most of
its inputs are T, and F otherwise. See the design in Figure 48.

Figure 5: Majority Circuit

Source: teaching resources associated to [Tanenbaum and Austin, 2013]. 0 and 1 are
used for F and T, respectively. Ā represents ¬A, ABC represents A ∧B ∧ C.

Circuit Design Issues
Usually, the DNF form or a circuit is not suitable for practical implementation:

• AND, OR gates with a variable number of inputs are not practical,
• therefore, these will be replaced with 2-input AND, OR gates (based on the

associativity of ∧,∨),
• moreover, for industrial implementation, it is more practical to have only one

type of gate (even if the number of gates grows), therefore AND, OR, NOT
gates will be replaced by one of NAND or NOR gates,

The number of gates should be minimized:
Example 49. Circuit simplification (reducing the number of gates, Figure 49). Source:
teaching resources associated to [Tanenbaum and Austin, 2013].
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Figure 6: Circuit simplification.

Propositional logic and its machinery (equivalence transformations, reasoning by
resolution, DP, DPLL) is an essential tool for logic circuit design:

• For circuit simplification (equivalence transformations),
• For circuit transformation (equivalence transformations): start with the DNF

form from the specification, then transform the circuit to one using only one
type of gate.

• For correctness of circuits (show that a “fast” circuit, e.g. with significantly
fewer gates, is equivalent to one that is known to be correct, e.g. one that is
obtained from a DNF directly from specification - use resolution, DP, DPLL);

• Circuits today are integrated on chips on a very large scale (hundreds of millions
of transistors on a modern CPU, i.e. same class of magnitude for the number
of gates), therefore efficient implementations of propositional logic reasoning
methods are essential.

2.6 Logical Consequence
We are interested in showing whether some statement follows from some other state-
ments.

Definition 50 (Propositional Logical Consequence). Let F1, . . . , Fn, G be proposi-
tional formuale. G is a (propositional) logical consequence of F1, . . . , Fn iff, for all
truth valuations (interpretations) T ,
if υT (F1) = . . . = υT (Fn) = T, then υT (G) = T.

Remark (Notation). To denote that G is a logical consequence of F1, . . . , Fn, write
F1, . . . , Fn ⊨ G.
Example 51. Let F and G be propositional formulae. Then G is a propositional
consequence of F and F → G.

F G F → G

T T T
T F F
F T T
F F T

Deduction Theorem
Theorem 52 (deduction theorem for propositional logic). Let F1, . . . , Fn, G be propo-
sitional formulae.
G is a propositional consequence of F1, . . . , Fn iff ((F1 ∧ . . . ∧ Fn)→ G) is valid.
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Proof.“⇒”(the direct implication).

To prove the implication,

assume G is a logical consequence of F1, . . . , Fn, and

show ((F1 ∧ . . . ∧ Fn)→ G) is valid, i.e. show that for every truth valuation T ,

υT (((F1 ∧ . . . ∧ Fn)→ G)) = T.
For this, take T0 arbitrary but fixed truth valuation, and show

υT0(((F1 ∧ . . . ∧ Fn)→ G)) = T.
By the definition of truth value under truth valuation,

υT0(((F1 ∧ . . . ∧ Fn)→ G)) =
B→(υT0((F1 ∧ . . . ∧ Fn)), υT0(G)) =
B→(B∧(υT (F1), . . . , υT0(Fn)), υT0(G)),

i.e. we have to show

B→(B∧(υT0(F1), . . . , υT0(Fn)), υT0(G)) = T. (⋆)

Two cases are possible:
Case: υT0(F1) = . . . = υT0(Fn) = T.

Since G is a logical consequence of F1, . . . , Fn, υT0(G) = T, and

B∧(υT0(F1), . . . , υT0(Fn)) = T, therefore (⋆) holds (B→(T,T) = T).
Case: not (υT0(F1) = . . . = υT0(Fn) = T).

B∧(υT0(F1), . . . , υT0(Fn)) = F, therefore (⋆) holds (B→(F, υT0(G)) = T).

Proof.“⇐”(the inverse implication).
To prove the implication,

assume ((F1 ∧ . . . ∧ Fn)→ G) is valid, and
show G is a propositional logical consequence of F1, . . . , Fn.

For this, take an arbitrary but fixed truth valuation T0,
assume υT0(F1) = . . . = υT0(Fn) = T, and
show υT0(G) = T.

From the assumption, we have

υT0(((F1 ∧ . . . ∧ Fn)→ G)) = T.

But
υT0(((F1 ∧ . . . ∧ Fn)→ G)) =
B→(υT0((F1 ∧ . . . ∧ Fn)), υT0(G)) =
B→(B∧(υT0(F1), . . . , υT0(Fn)), υT0(G)) =
B→(B∧(T, . . . ,T), υT0(G)) =
B→(T, υT0(G)),
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therefore, B→(T, υT0(G)) = T.

By the definition of B→ this means υT0(G) = T.

Theorem 53 (alternative characterization of propositional consequences).
Let F1, . . . , Fn, G be propositional formulae.
G is a propositional consequence of F1, . . . , Fn iff (F1∧. . .∧Fn∧¬G) is unsatisfiable.

Proof. Exercise.

The significance of the Deduction Theorem
The deduction theorem is significant, in that it tells:

• that any logic equivalence in propositional logic can be decided by deciding
the validity of a formula, for example by using reasoning (i.e. manipulation of
formulae)

• if a method for reasoning establishes the validity of a certain formula, then we
have logical consequence.

The alternative characterization tells us that deciding logical consequence can also be
done by establishing unsatisfiability,e.g. by reasoning (i.e. manipulation of formulae).
All we need is a method to do reasoning in propositional logic.
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2.7 The Resolution Method in Propositional Logic
2.7.1 Clause Form of Propositional Formulae
Propositional resolution is a method for deciding the satisfiability of propositions or
whether a proposition is a logical consequence of a set of others.

Propositional resolution works on representation of formulae, called “clause forms”,
which are equivalent to CNF.

Definition 54 (Propositional Clause Set).
K is a propositional clause set iff K is a finite set of propositional clauses.
C is a propositional clause iff C is a finite set of propositional literals.
L is a propositional literal iff L is an atom, or the negation of an atom.

Example 55 (Propositional Clause Set). K = {C1, C2, C3}, where

C1 = {F1, F2}, C2 = {¬F2}, C3 = {¬F1, F2,¬F3}.

Notation. Let K, C be a propositional clause set, propositional clause, respectively.
We denote K∗, C∗, the propositional formula detedmined by K, C respectively.

Definition 56 (Formula Determined by a Clause Set).
If C = {L1, . . . , Lm} is a propositional clause, then C∗ = L1 ∨ . . . ∨ Lm.
If K = {C1, . . . , Cn} is a propositional clause set then K∗ = C1∗ ∧ . . . ∧ Cn∗.

Remark. The definition above introduces formulae that are not uniquely defined
(because elements in sets are not ordered). However, these are unique modulo the
equivalence of formulae. We want to identify clauses that contain the same literals, in
possibly different order, and possibly different number of occurences.
Example 57 (Formula determined by a clause set).

Let K = {C1, C2, C3}, where C1 = {F1, F2}, C2 = {¬F2},C3 = {¬F1, F2, F3}.

K∗ = C1∗ ∧ C2∗ ∧ C3∗ = (F1 ∨ F2) ∧ (¬F2) ∧ (¬F1 ∨ F2 ∨ F3).

Example 58 (Particular clause sets and their corresponding formulae).
{} i.e. the empty clause set ∅ is a clause set (the set containing a finite number
of clauses, 0),
{{}}, i.e. {∅} is a clause set (the set containing one empty clause).
Since no propositional variable occurs in these clause sets, the corresponding
formulae should be chosen from those propositions that do not contain any
variables, i.e. ⊤,⊥. The question is how to make the assignment (see below,
propositional resolution method).

From any formula, we can obtain, in a natural way, its clause set form, by
transforming it into CNF, and reading the clauses directly from the disjuncts.
In particular, the clause set corresponding to ⊤ is the empty clause set {},
the clause set corresponding to ⊥ is (following simplification) the clause set
containing the empty clause {{}}. Also, for ⊥, the corresponding clause is
the empty clause.
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Attention! Note the distinction between the empty clause set (the clause set
which is empty) and the empty clause.
The clause set determined by a set of formulae can be obtained by union of the
clause sets corresponding to each formula.
Properties of propositions extend in a natural way to their clause set form: a
clause set is satisfiable (valid, unsatisfiable), iff the proposition determined by
the clause set is satisfiable (valid, unsatisfiable).

2.7.2 Propositional Resolution
Lemma 59 (Correctness of a propositional resolution step). Let B1, B2, C be proposi-
tional formulae. Then B1 ∨B2 is a propositional consequence of C ∨B1 and ¬C ∨B2.

Proof. Let T be an arbitrary thruth valuation such that

υT (C ∨B1) = T, (1)
υT (¬C ∨B2) = T. (2)

Case υT (B1) = T, then υT (B1 ∨B2) = T.

Case υT (B1) = F, then, from (1), υT (C) = T, i.e. υT (¬C) = F, i.e. υT (B2) = T
(from (2)), i.e. υT (B1 ∨B2) = T.

Definition 60 (Complementary literals). Two propositional literals L1, L2 are com-
plementary iff L1 is an atom and L2 is its negation (or viceversa).

Definition 61 (Propositional resolvent). Let C′ = {L′
1, . . . , Lm

′
′
}, C′′ = {L′′

1 , . . . , Lm
′′

′′
}

be two propositional clauses such that L
′
1, L

′′
1 are complementary literals. Then C is

a propositional resolvent of C′ and C′′ iff

C = {L
′
2, . . . , Lm

′
′
, L

′′
2 , . . . , Lm

′′
′′
}.

Example 62 (Propositional resolvent). {F2, F3} is a propositional resolvent (in fact the
only propositional resolvent) of {F1, F2} and {¬F1, F3}.

Theorem 63 (Propositional Resolution Method). Consider the following problem:
• Given: K, a propositional clause set,
• Question: Is K∗ satisfiable?

This problem can be solved by the following algorithm:

Propositional resolution
K

′
:= K

while exists C such that

C is a propositional resolvent of two clauses in K′ and C ̸∈ K′

do

if C = ∅ then answer: “Not Satisfiable”
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else K′
:= K

′
∪ {C}

answer: “Satisfiable”.

Proof Sketch. We have to show:
1. The algorithm terminates;
2. If the algorithm terminates with the answer “Not Satisfiable”, then K∗ is not

satisfiable;
3. If the algorithm terminates with the answer “Satisfiable”, then K∗ is satisfiable.
1. Termination
The algorithm terminates because from finitely many literals occuring in the initial

clause K one can form only finitely many clauses.
(If there are n distinct variables in K, then at most 4n many clauses - including

many redundant ones - can be formed (why?)).

2. Answer “Not Satisfiable”.

This answer is produced only when the clause ∅ is generated by a resolvent.
This clause can only be generated by clauses of the form {L′

}, {L
′′
}, where the

literals L′
, L

′′ are complementary.
By the lemma of the correctness of a propositional resolution step, each clause
produced by the application of the algorithm is a propositional consequence of
K.
Hence {L′

}, {L
′′
} are propositional consequences of K. Therefore, if a truth

valuation T satisfied K, then it would satisfy both L
′
, L

′′ . This is a contradiction
to the fact that L′

, L
′′ are complementary.

3. Answer “Satisfiable”.
Idea: If the answer is “Satisfiable”, one can construct a satisfying truth valuation
for K from the final clause set: start with the shortest clauses, construct for
them a partial satisfying truth valuation, then “propagate” the truth valuation
towards K. (see Examples, satisfiable case).

Example 64. Decide by resolution whether the following set of formulae is satisfiable,
and if it is, construct a satisfying truth valuation:
(a)

(1) F1 ∨ F2,
(2) F1 ∨ ¬F3,
(3) ¬F1 ∨ F3,
(4) ¬F1 ∨ ¬F2,
(5) F3 ∨ ¬F2,
(6) ¬F3 ∨ F2.

Solution: See [Buchberger, 1991], pag. 66, Example 2.84. (Note that there is
no transformation into clause form there. However the transformation makes a
potential implementation easier: it is easier to operate on sets than to operate
on formulae).
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(b)
(1) F1 ∨ F2,
(2) ¬F2,
(3) ¬F1 ∨ F2 ∨ ¬F3.

Solution: See [Buchberger, 1991], pag. 67, Example 2.85. (Again no transfor-
mation. However, the corresponding clause set formulation should not be hard
to see).

(c)
(1) F1 ∨ ¬F2,
(2) F1 ∨ F3,
(3) ¬F2 ∨ F3,
(4) ¬F1 ∨ F2,
(5) F2 ∨ ¬F3,
(6) ¬F1 ∨ ¬F3.

Solution:
– Transform the problem in the clausal form:

(1) {F1,¬F2},
(2) {F1, F3},
(3) {¬F2, F3},
(4) {¬F1, F2},
(5) {F2,¬F3},
(6) {¬F1,¬F3}.

– Apply resolution:

(7) {¬F2, F2} from (1) and (4),
(8) {F1,¬F3} from (1) and (5),
(9) {¬F2,¬F3} from (1) and (6),
(10) {F1} from (2) and (8),
(11) {¬F3} from (10) and (6),
(12) {F2} from (10) and (4),
(13) {F3} from (12) and (3),
(14) ∅ from (11) and (13).

Answer: “Not Satisfiable”.
Remark. The clause (7) can be eliminated, as it plays no role in the
evaluation of the clause set. The clause corresponds to the formula ¬F2 ∨
F2, which is always true (i.e. valid, tautology). Tautology elimination
should always be performed, to avoid unnecessary resolution steps.

Example 65. Decide, by resolution, whether ¬F1 ∧ F2 is a logical consequence of
(F1 ∨ F2)→ F3 and ¬F3.

Solution: See [Buchberger, 1991], pag. 67, Example 2.86.
Example 66. (c)

(1) F1 ∨ ¬F2,
(2) F1 ∨ F3,
(3) ¬F2 ∨ F3,
(4) ¬F1 ∨ F2,
(5) F2 ∨ ¬F3,
(6) ¬F1 ∨ ¬F3.
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Example 67. Decide, by resolution, whether ¬F1 ∧ F2 is a logical consequence of
(F1 ∨ F2)→ F3 and ¬F3.

2.7.3 Improvements of Propositional Resolution

Davis-Putnam method - DP(1960)
The Davis-Putnam method for deciding the satisfiability of a clause set K consists in
the application of 3 steps:

I. the 1-literal rule (unit propagation):

– if a single literal L appears in a clause set, remove any instances of ¬L
from the other clauses of K;

– remove any instances of clauses containing L, including the clause itself,

II. the pure literal rule: If a literal occurs only positively or negatively in the clause
set, delete all clauses containing it;

III. resolution: on the remaining clauses, apply propositional resolution.

DP returns the answer “Satisfiable” when none of the rules can be applied, and
“Not Satisfiable” when the empty clause ∅ is generated.
Example 68 (revisited). Solution by DP:

• The clause set:
(1) {F1,¬F2},
(2) {F1, F3},
(3) {¬F2, F3},
(4) {¬F1, F2},
(5) {F2,¬F3},
(6) {¬F1,¬F3}.

• Rule I and II are not applicable, do resolution, and check after each step whether
I, II are applicable

(7) {¬F2, F2} from (1) and (4), tautology!
(8) {F1,¬F3} from (1) and (5), I, II not applicable
(9) {¬F2,¬F3} from (1) and (6), I, II not applicable
(10) {F1} from (2) and (8), I. applicable!!!

• Apply I (unit propagation) with {F1}:

– erase ¬F1 from (4),(6);
– delete (1), (2), (8), (10).

The clause set becomes:

(3) {¬F2, F3},
(4’) {F2},
(5) {F2,¬F3},
(6’) {¬F3},
(9) {¬F2,¬F3}.

• Rule I (unit propagation) is applicable with {F2}:
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– erase ¬F2 from (3), (9);

– delete (4’), (5),

The clause set becomes:
(3’) {F3},
(6’) {¬F3},
(9’) {¬F3}.

• Rule I (unit propagation) is applicable with {F3}:

– erase ¬F3 from (6’), (9’) STOP, these both become {}, i.e. ∅,

Answer: “Not Satisfiable”.

Davis Putnam Logemann Loveland method - DPLL (1962)
DP could (and it used to) run out of memory. DPLL replaces resolution with the
splitting rule

I. the 1-literal rule (unit propagation):

– if a single literal L appears in a clause set, remove any instances of ¬L
from the other clauses of K;

– remove any instances of clauses containing L, including the clause itself,

II. the pure literal rule: If a literal occurs only positively or negatively in the clause
set, delete all clauses containing it;

III. splitting: The satisfiability of K′ (the current set of clauses, when I. and II. are
no longer applicable) is reduced to the satisfiability of K′

∪{{L}},K
′
∪{{¬L}},

where L is a literal from K′ (K′ is satisfiable exactly if one of the two is).

DPLL returns the answer “Not Satisfiable” when for all subproblems generated
by applications of the splitting rule, the empty clause ∅ is generated. It returns the
answer “Satisfiable” if at least for one of the subproblems generated by the splitting
rule no rules are applicable. This, in fact, amounts to the situation when the empty
clause set is generated, i.e. no clauses are left. This always happens, as the splitting
rule can be applied as long as there are clauses left in the clause set. Therefore:
Attention!!!. The empty clause set gives the answer “Satisfiable”, whereas the empty
clause gives the answer “Unsatisfiable” (if it is generated for all subproblems).

Example 69 (revisited, again). Solution by DPLL:

• The clause set:
(1) {F1,¬F2},
(2) {F1, F3},
(3) {¬F2, F3},
(4) {¬F1, F2},
(5) {F2,¬F3},
(6) {¬F1,¬F3}.

• Since none of the rules I and II are applicable, we apply III (splitting) using F1:

– split on the positive literal: adding (7) {F1} to the clause set:
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* unit propagation (I) is applicable with F1: delete ¬F1 from (4), (6),
then delete clauses (1), (2), (7): the clause set becomes :

(3) {¬F2, F3},
(4’) {F2},
(5) {F2,¬F3},
(6’) {¬F3},

* apply (I) with F2, delete ¬F2 from (3), delete clauses (4’),(5), yieding

(3’) {F3},
(6’) {¬F3}.

* a last application of (I) yields ∅. Answer: “Not Satisfiable”.
– split on the negative literal: adding (7) {¬F1} to the clause set: Ex-

ercise (it will also yield the empty clause (∅) not surprisinly). But note
that both splits have to be carried out to establish unsatisfiability.

Comparing DP, DPLL to resolution
• All the methods return the answer “Not Satisfiable” when an empty clause (∅)

is generated.
• The empty clause (∅) is generated in the case of DP, DPLL by the 1-literal rule.
• As opposed to the method presented for resolution, DP and DPLL do not keep

the initial clause set, rules I (1-literal), II (pure literal) have as an effect the
deletion of clauses.

• DP, DPLL return the answer “Satisfiable” iff none of the rules are applicable.
(In particular, DPLL will be applied as long as there are literals).

• For each of the methods, choice plays an important role: for resolution, which
clauses to be resolved, for DP, DPLL which literal clause should be propagated.
A good choice will make the algorithm produce an answer quicly. Bad choices
will lead to very lengthy executions (and possibly memory consuming, for in-
stance for DP).



CHAPTER 3

Predicate Logic as a Working Language

3.1 The Importance of Predicate Logic
1. General enough to be a formal frame for all of mathematics.
2. It can serve as a formal frame for computer science.
3. It is where most of the foundational research effort was concentrated in the past

decades (so it is very well understood).

A Frame for Doing Mathematics
• By no means trivial.
• Took thousands of years to achieve these results.

1879 Frege - first complete syntactical presentation,
1930 Gödel - completeness of first order predicate logic,
1936 Church, Turing - undecidability.

• In fact, even a restricted form, first order predicate logic (together with set
theory), is sufficient for this.

A Frame for Algorithmic Problem Solving
• Predicate logic is a general frame for proving mathematical concepts and facts,

therefore it can also be used as a universal frame for specifying problems.
• Proving is computing (Robinson 1965 - resolution).
• Logic programming (Prolog).
• Unifying potential and practical power in data design and analysis (abstract

data types, relational databases).

41
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3.2 Syntax First Order Predicate Logic
The Language Symbols
Definition 70 (Vocabulary of first order predicate logic). The vocabulary of first
order predicate logic consists of

• The (countable) set V of variables( individual variables, object variables): x, y, z,
that range over arbitrary elements in a “universe of discourse”.

• The set F of function symbols (function names, function constants): represent
operations, processes in the universe of discourse:

– examples: +, � (usually known as “addition” and “multiplication”),
– functions have arities (number of arguments),
– some functions are 0-ary, i.e. they have no arguments - they are called

constants(“individual constants”),
– the 0-ary functions are in 1-to-1 correspondence with the elements of the

universe of discourse, and are often identified with them,
– for practical reasons, we can (and will) distinguish between function sym-

bols and constants (the set of constants will be denoted by C).
• The set P of predicate symbols (relation symbols) denote attribute of / relations

between objects in the universe of discourse,
– examples: <, |,
– predicate symbols also have arities.

Remark. The sets of symbols used to denote variables, function symbols, predicate
symbols and constants are disjoint.

Terms
Definition 71 (Terms). Terms of first order predicate logic are defined inductively
as follows:

• if x is a variable then x is a term,
• if f is a function symbol of arity n, and t1, . . . , tn are terms, then so is f(t1, . . . , tn),
• in particular, if c is a constant, then c is also a term.

Parsing terms in predicate logic
Some remarks and clarifications about the way to write and parse expressions are in
order:

• position: function symbols can be used prefix: f(x), infix: x+ y, x ∗ y, postfix
x! (factorial), or mixed |x| (absolute value), n

√
x.

• associativity: 8/2/2 can be parsed as 8/(2/2), i.e. 8 or (8/2)/2, i.e. 2, de-
pending whether / (division) is right associative or left associative (arithmetic
functions are usually considered left associative, but this has to be specified),

• precedence: x+yz can be parsed as (x+y)z or x+(yz) (this is the usual use)
according to the precedence of each of the function symbols.

Associativity and precedence simplify the writing of expressions in predicate logic,
but when in doubt, use parantheses!!!
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Formulae
Definition 72 (Formulae of first order logic). Formulae of first order predicate logic
are defined inductively as follows:

• Atomic formulae are formed from a predicate symbol and several terms, i.e. if
p is a predicate symbol of arity n and t1, . . . , tn are terms, then p(t1, . . . , tn) is
an atomic formula.

• Given the formulae A,B, use the propositional connectives ¬ (negation), ∧ (con-
junction), ∨ (disjunction), ⇒ (implication), ⇔ (equivalence) to form compound
formulae:

(¬A) “not A”
(A ∧B) “A and B”
(A ∨B) “A or B”
(A⇒ B) “A implies B”, “if A then B”
(A⇔ B) “A iff B” (if and only if)

• Given a variable x and a formula A, one can form quantified formulae:
(∀xA) “for all x A” - universally quantified formula,
(∃xA) “there exists x such that A”, “for some x, A” - existential formula,

– for all (∀) is called the universal quantifier
– exists (∃) is called the existential quantifier
– the variable x becomes bound by the quantifiers.

• Remark. Attention, also in the case of atomic formulae, these can be written
prefix (odd(x)), infix (x < y), etc.

Free and bound variables
Definition 73 (Free and bound variables).

• The variable x becomes bound by the quantifiers ∀, ∃ in ∀xA, ∃xA.
• Variables that are not bound (by a quantifier), are free.
• In terms (as defined above): variables are free (since terms do not contain

quantifiers).
• In formulae (as defined above):

– variables are free in atomic formulae,
– variable x is free in (¬A) if it is free in A,
– variable x is free in (A□B) if it is free in A or in B, where □ is one of
∧,∨ ⇒,⇔,

– variable x is free in ∀yA if x is free in A,
– variable x is free in ∃yA if x is free in A.

• A formula with no free variables is called a closed formula.
Example 74. • In the formula ∀x(x+ y = 2x+ 4), x is bound and y is free.

• In the formula:
∀ε∃δ∀y(| y − x |< δ)⇒| f ⊙ y − f ⊙ x |< ε,

variables x and f are free, the others (ε, δ, y) are bound.
• In the formula ∀x((x > y) ∧ (∃yy > 5)), x is bound, but y is both bound and

free.
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Substitution
• Substitution of terms for variables is an elementary process for deriving new

formulae from given ones.
• Notation: if E is an expression (term or formula), v is a variable and t a term,

then E{v←t} is the expression obtained by substituting the term t for variable
v in E.

• More generally, for i = 1 . . . n, if vi are variables and ti are terms, then E{v1←t1,...,vn←tn}
is the expression obtained by substituting the terms ti for the variables xi in E
(at the same time).

Definition 75 (Substitution in first order logic). For i = 1 . . . n, let xi be variables
and ti be terms.

• We call {x1 ← t1, . . . , xn ← tn} a substitution of terms for variables.
• We will usually use Greek letters to denote substitutions (σ, λ, µ, θ).
• In particular, we will denote the empty substitution by ϵ.
• If E is an expression and σ a substitution, then we call Eσ, the expression

obtained by substitution, an instance of E.
• Now let σ = {x1 ← t1, . . . , xn ← tn}.
• Substitution in terms is defined inductively on the structure of terms as:

– If v ∈ V (i.e. v is a variable),

vσ =

{
ti if v = xi, for some i

v otherwise
.

– If f ∈ F , is anm-ary function symbol and s1, . . . , sm are terms, f(s1, . . . , sm)σ =
f((s1)σ, . . . , (sm)σ).

• Substitution in formulae is defined inductively on the structure of formulae as:

– If p ∈ P is anm-ary predicate symbol and s1, . . . , sm are terms, p(s1, . . . , sm)σ =
p((s1)σ, . . . , (sm)σ),

– If A,B are formulae, (¬A)σ = ¬(Aσ), (A□B)σ = (Aσ)□(Bσ), where □ is
any of ∧,∨,⇒,⇔,

– If A is a formula, v a variable,

(QvA)σ =

{
Qv(A(σ∖{xi←ti})) if v = xi

Qv(Aσ) otherwise
,

where Q is any of ∀, ∃. Intuitively, the bound variable is “protected”
from substitution. If the bound variable appears in the substitution, it
is ignored, and the rest of the substitution is applied on the quantified
formula.

Example 76 (Substitution). x+ y + z{x←y,y←3,z←x} is
• y + 3 + x

and not
• y + y + z{y←3,z←x}, etc.
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i.e. all substitutions happen at once, in parallel.
New substitutions can be obtained from existing ones by composition.

Definition 77 (Composition of substitutions). Let θ = {x1 ← t1, . . . , xn ← tn} and
σ = {y1 ← s1, . . . , yn ← sk} be substitutions, X,Y be the set of variables in these
substitutions, respectively. θσ, the composition of θ and σ is the substitution

θσ = {xi ← tiσ|xi ∈ X,xi ̸= tiσ} ∪ {yj ← sj |yj ∈ Y, yj ̸∈ X}.

I.e. apply the substitution σ to the terms ti of θ (unless they would collapse to
xi ← xi), then append the fragment of σ whose variables are not already in θ.

Example 78. (Composition of substitutions)
• Example: let

θ = {x← f(y), y ← f(a), z ← u},
σ = {y ← g(a), u← z, v ← f(f(a))},

then:
θσ = {x← f(g(a)), y ← f(a), u← z, v ← f(f(a))}.

Some properties of composition of substitutions
• Let E be an expression and θ, σ substitutions. Then E(θσ) = (Eθ)σ.
• Let θ, σ, λ be substitutions. Then θ(σλ) = (θσ)λ.
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3.3 Semantics of First Order Predicate Logic
Interpretations
Definition 79 (Interpretation). Let L = {F ,P, C} be the set of function, pred-

icate and constant symbols of the language L. Let D be a nonempty domain.
• An interpretation I of the language L into the domain D is a mapping that

assigns:

– to every function symbol f ∈ F a function of corresponding arity on D,
– to every predicate symbol p ∈ P a predicate of corresponding arity on D,
– to every constant symbol c ∈ C a constant of the domain D.

Example 80 (Interpretations).
Consider the formula ∀xp(a, x⊙ b). The following are its interpretations:

– I1 : I1(D) := N, I1(p) :=≤, I1(⊙) := +, I1(a) := 0, I1(b) := 1.
– I2 : I2(D) := Z, I2(p) :=<, I2(⊙) := −, I2(a) := 3, I2(b) := 5.
– I3 : I3(D) := strings, I3(p) := substring, I3(⊙) := string concatenation, I3(a) :=

“a special example ofsome string”, I3(b) := “some string”.

Definition 81 (Variable assignment). Let I be an interpretation. An asignment for
variables under interpretation I

σI : V → D

which assigns to every variable an element from the domain D.
The assignment σI [x ← d] is the same as σI except that x is mapped to the

element d, d ∈ D.

Definition 82 (Value of terms under assignment). Let I be an interpretation, σI an
assignment. The value of a term under υσI is defined as follows:

• If v ∈ V, υσI (v) = σI(v).
• If c ∈ C, υσI (c) = I(c).
• If t1, . . . tn are terms, f ∈ F , υσI (f(t1, . . . , tn)) = I(f)(υσI (t1), . . . , υσI (tn)).

Definition 83 (Domain of truth values). We choose 2 distinct values T, F. The set
of truth values is the set {T,F}. The set of truth values is (totally) ordered, F < T.

Definition 84 (Value of formulae under assignment). Let I be an interpretation, σI
an assignment. The value of a formula under υσI is defined as follows:

• If p ∈ P and t1, . . . , tn are terms, then υσI (p(t1, . . . , tn)) = T iff

I(p)(υσI (t1), . . . , υσI (tn)).

• Let A, B be formulae. Then:

– υσI (¬A) = T iff υσI (A) = F.
– υσI (A ∧B) = T iff υσI (A) = T and υσI (B) = T.
– υσI (A ∨B) = T iff υσI (A) = T or υσI (B) = T.
– υσI (A⇒ B) = F iff υσI (A) = T and υσI (B) = F.
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– υσI (A⇔ B) = T iff υσI (A) = υσI (B).

• Let x ∈ V, A be a formula:

– υσI (∀xA) = T iff for all d ∈ D, υσI [x←d](A) = T.
– υσI (∃xA) = T iff for some d ∈ D, υσI [x←d](A) = T.

Theorem 85. Let A be a closed formula. Then υσI (A) does not depend on σI .

Proof idea. If all variables are bound, then the assignment of a domain value to a
variable does not change the value of the formula.

By this result, we can now talk about the value of a closed formula under
interpretation υI , without being concerned with the variable assignments.

Example 86 (Values of formulae under variable assignment and interpretation). Con-
sider the interpretation

I2 : I2(D) := Z, I2(p) :=<, I2(⊙) := −, I2(a) := 3, I2(b) := 5

from Example 80. Also consider the formulae:
• A : p(a, x⊙ b),
• B : ∀xp(a, x⊙ b),
• C : ∀xp(y, x⊙ z),

and the variable assignment for the interpretation I2:
• σI2 = {x← 0, y ← −2, z ← −9}.
Then:
•

υσI2
(A) is evaluated according to
I2(p)︷ ︸︸ ︷

the interpretation of p

( I2(a)︷ ︸︸ ︷
the intepretation of a

, σI2(x)︷ ︸︸ ︷
the assignment of x

I2(⊙)︷ ︸︸ ︷
the interpretation of ⊙

I2(b)︷ ︸︸ ︷
the intepretation of b

)

i.e. (< (3, 0− 5)),
i.e. (3 < (0− 5)),
i.e. (3 < −5),
which is F on the integers Z,
i.e. υσI2

(A) = F.

•
υσI2

(B) = T iff
for all assignments of elements of the domainZ to x, (3 < x− 5),
but the formula considered above, A, is a counterexample to this
i.e. υσI2

(B) = F.
•

υσI2
(C) = T iff

(−2 < 0− (−9)),
which is true in Z, therefore
υσI2

(C) = T.

Try a similar exercise for I1, I3.
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Summary: Semantics of Predicate logic
To summarize, the meaning of expressions in predicate logic is “computed” according
to the interpretations (i.e. assigned meanings) of its subexpressions.

• the meaning of terms or formulae with free variables can be determined only
after assigning values to free variables,

• the meaning of terms f(t1, . . . , tn) is given by the interpretation of f applied to
the interpretations of t1, . . . , tn,

• the meaning of formulae with no free variables is either “true” of “false”,
• the meaning of ¬A,A ∨ B,A ∧ B,A ⇒ B,A ⇔ B is given by first interpreting

A,B, then computing the meaning of the formulae according to the rules for
¬,∧,∨,⇒,⇔,

• ¬A is “true” if A is “false”, A ∨ B is “true” if at least one of A,B is “true”,
A∧B is “true” if both A,B are “true”, A⇒ B is “false” only when A is “true”
and B is “false”, A⇔ B is “true” when A,B have the same meaning.

• the meaning of ∀xA is “true”, if A is “true” for all possible value assignments
of x, and “false” otherwise,

• the meaning of ∃xA is “true” if A is “true” for some value assignment of x (i.e.
there exists an assignment of x that makes A “true”), and “false” otherwise.

3.3.1 Substitution and Semantics
• Intuition about substitution: “p{v←t} says the same thing about the individual

denoted by t as p says about the individual denoted by v”.

Example 87. (Example taken from [Buchberger, 1991])
The statement about natural numbers P : ∃y(x = 2y) (under the usual in-
terpretations of the function symbols) says that the individual denoted by x is
even.
However, P{x←y+1}: ∃y(y + 1 = 2y) says that y = 1 (why?) and is no longer
saying that something is even.
This is because the variable y in the term substituted for x was free, but now
becomes bound. Substitutions should not be carried out in any conditions.

Definition 88 (Substitutable terms). The term t is substitutable for v in a formula
A is defined as:

• t is substitutable for v in A where A is an atomic formula,
• t is substitutable for v in ¬A (A□B) iff t is substitutable for v in A (A and B),

where □ is one of ∧,∨,⇒,⇔,
• t is substitutable for v in QvA, where Q is one of ∀, ∃,
• t is substitutable for v in QwA iff not both v is free in A and w is free in t, and

t is substitutable for v in A.

Example 89 (Substitutivity). • Is y + 1 substitutable for x in ∃y(x = 2y)?
NO! x is free in the existential formula, the result of substitution would become
bound.
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• Is y + 1 substitutable for y in ∃y(x = 2y)?
YES! (why?)

• Is vw substitutable for x in ∃y(x < vx⇒ (∃w(w < v)))?
YES! x is free in the formula after the quantifier, but y is not free in vw, and
vw is substitutable for x in the formula after the quantifier.

• Is vw substitutable for v in ∃y(x < vx⇒ (∃w(w < v)))?
NO! (why?)

• Is vw substitutable for w in ∃y(x < vx⇒ (∃w(w < v)))?
YES! (why?)

3.4 Syntax (Revisited)
3.4.1 Syntactic Sugar

• Notation: for the rest of the lecture, instead of ∀xA (∃xA) we will write ∀
x
A

(∃
x
A).

• The common (and often informal) use of predicate logic contains many syntac-
tical “shortcuts”.

• Their role is to make expressions shorter (syntactic sugar).

• Below we review some of the more common notation variants.

• Negation of binary predicates: x ⋪ y stands for ¬(x ◁ y), where ◁ is a binary
predicate.

• Associativity of propositional connectives: P ∧ Q ∧ R stands for P ∧ (Q ∧ R),
P ∨Q ∨R stands for P ∨ (Q ∨R), P ⇒ Q⇒ R stands for P ⇒ (Q⇒ R).

• If . . . then . . . { else . . . }: “If P then Q” stands for P ⇒ Q, “If P then Q, else
R” stands for

(P ⇒ Q) ∧ (¬P ⇒ R).

• Conjunctions of formulae: P,Q,R stands for P ∧Q ∧R.

• Conjunctions of atomic formulae involving infix binary relations:

– x < y < z < 1 stand for x < y ∧ y < z ∧ z < 1,

– x, y, z < 1 stands for x < 1 ∧ y < 1 ∧ z < 1.

• Conjunctions of formulae involving quantifiers

– ∀
x,y

A ( ∃
x,y

A) stands for ∀
x
∀
y
A (∃

x
∃
y
A),

– ∀
P (x)

A stands for ∀
x
(P (x)⇒ A),

– ∃
P (x)

A stands for ∃
x
(P (x) ∧A).
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The predicate logic language: usage
Using the term (first order) predicate language:

• the language of (first order) predicate logic = the language built from variables
and arbitrary (all conceivable) functions and predicate symbols,

• a (first order) predicate logic language = a language characterized by a few
function and predicate symbols,
i.e. a language of (first order) predicate logic is characterized by its function
and predicate symbols (non-logical symbols).

3.5 Back to Semantics: Validity, Satisfiability,
Unsatisfiability

In general we are interested in the following questions (concerning truth of formulae):
• Is a formula F valid, i.e. does it evaluate to T under all variable assignments

and all interpretations, in all domains (infinitely many)?
• Is a formula F satisfiable, i.e. does it evaluate to T under some variable assign-

ments and some interpretations, in some domain (out of infinitely many)?
• Is a formula F unsatisfiable, i.e. does it evaluate to F under some variable

assignments and some interpretations, in some domain (out of infinitely many)?
• Is a formula F a logical consequence of a set of formulae KB (denoted KB |= F ),

i.e. does F evaluate to T under all variable assignments and all interpretations,
in all domains where the formulae KB evaluate to T (out of infinitely many)?

• The difficulty of finding the answer to such questions shows the limitation of
the direct method (interpretation of first order logic).

• Can we do better?



3.6. PROVING. PROOF TECHNIQUES. DEFINITIONS. THEORIES. 51

3.6 Proving. Proof techniques. Definitions. The-
ories.

3.6.1 Reasoning in Predicate Logic
• The good news is that reasoning (as defined Chapter 1)

‘ is possible in predicate logic.
• In fact several calculi for reasoning in (first order) predicate logic were proposed.
• A reasoning calculus represents a way to organize reasoning:

– specifies how a proof should be organized,
– specifies the inference rules (i.e. rules for producing proof steps).

• Intuitively proof is a trace of reasoning.
• Notation: If KB is a set of closed formulae and G can be proved (derived) from

KB by the application of inference rules from a given calculus, we denote this
as KB ⊢ G.

• For reasoning in predicate logic (natural deduction, i.e a calculus that models
the human reasoning as done by e.g. mathematicians) a remarkable result was
proved by Gödel
Theorem 90 (Soundness and completeness of reasoning in first order predicate
logic).

KB |= G iff KB ⊢ G.

• We will present here informally a particular calculus for reasoning in first order
logic.

3.6.2 Proof Situations
• Proving is stepwise arrangement of “proof situations”.
• A proof situation is characterized by the current knowledge base (i.e. sentences

known to be true, which can be used), and the current goal (i.e. sentence which
should be proved).

• A proof situation is trivial if the goal occurs in the knowledge base.
• Proof steps (proof techniques, proof rules, inference rules) describe how a proof

situation is transformed in (one or more) “simpler” proof situations.
• New proof situations are “simpler” in the sense that either the goal has a simpler

structure, or more sentences are added to the knowledge base (i.e. we know
more).

• A proof describes the necessary inference steps that transform the initial proof
situation into (one or more) trivial proof situations.

• (AND-OR) trees can be used to represent proofs.

• Only a few proof situations are possible.
• Each determined by the structure of its sentences.
• and proof steps can be chosen according to the “outermost construct” in the

sencence considered.



52 CHAPTER 3. PREDICATE LOGIC AS A WORKING LANGUAGE

• Below are described such typical situatons and the proof steps that can be
applied.

• This should be considered as a guideline for human proving (but note that
this can be formalized to “natural deduction”, and even automated theorem
proving).

3.6.3 Basic Approaches to Proving
For proving the sentence A (when not knowing whether A is true):

• Try to prove A. If successful, :) (be happy). Otherwise:
• Assume ¬A and try to derive a contradiction. If successful, :) (be happy, A is

proved). Otherwise:
• Try to prove ¬A. If successful, :) (be happy). Otherwise:
• Assume A and try to derive a contradiction. If successful, :) (be happy, ¬A is

proved). Otherwise:
• Start again with the attempt to prove A. (By this time you have much more

insight).

Proof Rules
Notation: In the following, A,B,C are formulae, s, t are terms, P is a predicate, f is
a function constant, x is a variable. A[x] is a formula where x is free, A[t] is Ax←t

(when A[x] is changed into A[t]), A[C] is a formula where C is a subformula.

∀xA[x]

• Prove ∀xA[x]:

– For proving ∀xA[x],
– show A[x0], where x0 is a new constant (which did not occur so far).
– Announcement in proofs:

“Let x0 be arbitrary but fixed (constant). We show A[x0].”

• Use ∀xA[x]:

– If ∀xA[x] is known,
– then one may conclude A[t] where t is an arbitrary term.
– Announcement in proofs: “Since we know that ∀xA[x], we know that, in

particular, A[t]”.
– Note that the choice of t is probably going to be suggested by the goal

statement.

∃xA[x]

• Prove ∃xA[x]:

– For proving ∃xA[x],
– try to find a term t for which A[t] can be shown,
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– Finding such a term t is many times nontrivial step, which needs creativity.

• Use ∃xA[x]:

– If ∃xA[x] is known, and B has to be proved,
– one may assume A[x0] where x0 is a new constant, and try to prove B.
– Announcement in proofs: “Since we know that ∃xA[x], let x0 be such that

A[x0]. We have to prove B”.

A ∧B

• Prove A ∧B:

– For proving A ∧B

– prove A and
– prove B.

• Use A ∧B:

– If A ∧B is known, then
– A is known and
– B is known.

A ∨B

• Prove A ∨B:

– For proving A ∨B

– assume ¬A and
– prove B

– (or assume ¬B and
– prove A).

• Use A ∨B:

– If A ∨B is known, and C has to be proved then
– assume A and prove C and
– assume B and prove C.
– Announcement in proofs: “We prove by cases: Case A: We prove C. Case

B: We prove C.”

A ⇒ B

• Prove A⇒ B:

– For proving A⇒ B

– assume A and
– prove B.

• Use A⇒ B:
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– If B has to be proved
– then look for A⇒ B (or something that “matches” it) and
– prove A.
– Announcement in proofs: “To prove B, since we know A ⇒ B, it suffices

to prove A”.
Also (“modus ponens”). . .

– If A and A⇒ B are known,
– then B can be added to the knowledge.
– Announcement in proofs: “From A⇒ B and A, by modus ponens, we get

B.”

A ⇔ B

• Prove A⇔ B:
– To prove A⇔ B,
– assume A and
– prove B, then
– assume B and
– prove A.

• Use A⇔ B:
– If C[A] has to be proved, and
– A⇔ B is known, then
– try to prove C[B].

¬A
• Prove ¬A:

– To prove ¬A,
– assume A,
– and derive a contradiction, i.e.
– prove ¬C,
– where C is in the knowledge base.

P (t1, . . . , tn)

• Prove P (t1, . . . , tn):
– To prove P (t1, . . . , tn)

– look for an “explicit definition” ∀
x1,...,xn

P (x1, . . . , xn)⇔ A[x1, . . . , xn]

– and prove A[t1, . . . , tn].
• Use P (t1, . . . , tn):

– If P (t1, . . . , tn) is known and the definition:
– ∀

x1,...,xn

P (x1, . . . , xn)⇔ A[x1, . . . , xn] is in the knowledge base,

– then A[t1, . . . , tn] can be added to the knowledge base.
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A[f(t1, . . . , tn)]

• Prove A[f(t1, . . . , tn)]:
– To prove A[f(t1, . . . , tn)]

(a) “explicit definition” case:
* where the “explicit definition” of f :

∀
x1,...,xn

f(x1, . . . , xn) = s[x1, . . . , xn] is in the knowledge base,

* prove A[s[t1, . . . , tn]].
(b) “implicit definition” case:

* where the “implicit definition” of f :

∀
x1,...,xn

f(x1, . . . , xn) = such a y that B[x1, . . . , xn, y]

is in the knowledge base,
* prove ∀

y
B[t1, . . . , tn, y]⇒ A[y].

• Use A[f(t1, . . . , tn)]:
– If A[f(t1, . . . , tn)] is known:

(a) “explicit definition” case:
* and the “explicit definition” of f :

∀
x1,...,xn

f(x1, . . . , xn) = s[x1, . . . , xn] is in the knowledge base,

* then A[s[t1, . . . , tn]] can be added to the knowledge base.
(b) “implicit definition” case:

* and the “implicit definition” of f :

∀
x1,...,xn

f(x1, . . . , xn) = such a y that B[x1, . . . , xn, y]

is in the knowledge base,
* then ∃

y
(B[t1, . . . , tn, y] ∧A[y]) can be added to the knowledge base.

* see below, the explanation about “such a . . . that . . .”

3.6.4 Definitions in Predicate Logic
• Definitions allow the introduction of new concepts in terms of existing ones.
• They provide a facility for concise formalization of mathematics, but they are

not essential, i.e. they can be eliminated.
• However, they allow formulae to be shorter,

and help structuring the knowledge.
• Practical mathematics would hardly be conceivable without this facility.

Example 91 (Irreducible natural numbers).

∀
is-nat(i)

( is-irreducible(i)︸ ︷︷ ︸
“definiendum”(lat. to be defined)

⇔ ∀
is-nat(n)

(n|i⇒ (n = 1 ∨ n = i))︸ ︷︷ ︸
“definiens”(lat. the defining)

)
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Types of definitions
• (Explicit) definitions of predicate symbols. See Example 91.
• Explicit definitions of function symbols.

Example 92 (The determinant of a 2x2 matrix.). Let A =

(
a11 a12

a21 a22

)
. Then

|A| = a11a22 − a12a21.
• Implicit non–unique definitions of function symbols.

Example 93 (Implicit non–unique definition of √). The squareroot function can
be defined (e.g. in the complex numbers) by:

∀
x

√
x = such a y that y2 = x.

Note that this (such a . . . that . . .) is syntactic sugar for: ∀
x,y

(√
x = y ⇒ y2 = x

)
.

• Implicit unique definitions of function symbols.
Example 94 (Implicit unique definition of √). The squareroot function can be
defined (e.g. in the real numbers) by:

∀
x

( √
x = the y such that(

(x ≥ 0⇒ (y ≥ 0 ∧ y2 = x)) ∧ (x < 0⇒ y = 0)
) ) .

Note that this (the . . . such that . . .) is syntactic sugar for:

∀
x,y

(√
x = y ⇔

(
(x ≥ 0⇒ (y ≥ 0 ∧ y2 = x)) ∧ (x < 0⇒ y = 0)

))
.

Properties of definitions
• Definitions:

– are axioms,
– can always be “eliminated”,
– do not bring anything new to the power of the theory (conservative exten-

sions),
– do not introduce contradictions.

• Correct definitions (watchlist):

– no extra variables in the definiens.

Example 95 (Extra variables). Consider the “definition”: is-factor(f) ⇔
f |x. This leads to a contradiction: is-factor(f), because 3|6 and ¬is-factor(f)
because 3 ∤ 5.

– definitions of terms, uniqueness, pairing functions.
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Example 96 (Definition of terms (wrong)). . The “definition”

is-nice-sum(x+ y)⇔ x = 2y

introduces a contradiction: 6+3 is a nice sum, because 6 = 2∗3, but 5+4
is not a nice sum 5 ̸= 2 ∗ 4. So 9 is both a nice sum and not a nice sum.
Example 97 (Definition of terms (with unique pairing function)). The
definition pair-of-primes((x, y)) ⇔ (is-prime(x) ∧ is-prime(y)) is correct,
because the pairing function (x, y) which yields the pair of x, y has the
uniqueness property:

(x, y) = (x1, y1)⇒ (x = x1 ∧ y = y1).

3.7 Theories
Structure of a Theory
• A (mathematical) theory T is described by its:

– language (symbols): LT = ⟨FT ,PT , CT ⟩,
i.e. its function, predicate and constant symbols respectively. Note that,
for any theory, id,= (the identity function and the equality) can always
be included in the language;

– knowledge base KBT , which contains facts (formulae over the language),
i.e. axioms and propositions (theorems, lemmata, corollaries, etc.).

– inference rules, IRT . The rules for predicate logic, as well as rules for
equality proving (rewriting) may be included in any theory. Additional
rules may be included (depending of the nature of objects in the theory),
which make the theory more powerful, in the sense that more facts may
be proved using these additional rules. These cannot be applied outside of
the theory.

Example 98 (The theory of Strict partial orderings PO.).

• The symbols in the language:

– function symbols, FPO = {} (no function symbols),

– predicate symbols,PPO = {p}, where p is a binary symbol,

– constants, CPO = {} (no constants either).

• the knowledge base KBPO:

– Axioms describing strict partial orderings:
∀

x,y,z
(p(x, y) ∧ p(y, z)⇒ p(x, z)), (transitivity)

∀
x
¬p(x, x). (irreflexivity)

• The inference mechanism IRPO consists of the inference rules of predicate logic.
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Development of a Theory
• Theories are not static, but are developed:
• from initial descriptions (such as in the previous example), where the knowledge

base contains axioms,
• by adding new components:

– new formulae to the knowledge base, i.e. consequences of the existing
formulae, proved using the mechanisms available,

– new symbols with their corresponding definitions (defining axioms, which
are added to the knowledge base),

– new inference rules, a very subtle point - lifting knowledge to the level of
inference, as these have to be proved correct

• Questions that arise in the development of theories include:

– how much of the theory is relevant? (not always all knowledge is needed,
or even useful)

– ...
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3.8 Equality
• The binary predicate = (equality) plays a very important role in predicate logic:

many theories contain equality.

• The language symbols (vocabulary) of a theory of equality (or containing equal-
ity) consists of = and an unspecified number of function, predicate and constant
symbols.

• Any theory containing equality includes the axioms for equality:

∀
x,y,z

(x = y ∧ y = z ⇒ x = z) , (transitivity)

∀
x,y

(x = y ⇒ y = x) . (symmetry)

∀
x
(x = x) (reflexivity)

Now let f be any function symbol of arity k, p be any predicate symbol of arity
l:

∀
x, y, z1, . . . , zi−1,

zi+1, . . . , zk

 (x = y)⇒(
f(z1, . . . , zi−1, x, zi+1, . . . , zk) =
f(z1, . . . , zi−1, y, zi+1, . . . , zk)

) 
(functional substitutivity)

i.e. functions applied to arguments that are equal (x and y) yield equal results.

• (functional substitutivity) is in fact an axiom scheme, that can be applied to
any functions of any arity.

• The corresponding proof technique is equality rewriting, i.e. chains of equalities
from a complex (in some measure) to a simpler (simplest) term.

• E.g. two terms are equal if they can be rewriten to the same simpler (simplest)
term.

∀
x, y, z1, . . . , zi−1,

zi+1, . . . , zl

 (x = y)⇒(
p(z1, . . . , zi−1, x, zi+1, . . . , zl)⇔
p(z1, . . . , zi−1, y, zi+1, . . . , zk)

) 

(predicate substitutivity)

i.e. predicates applied to arguments that are equal (x and y) are equivalent.

• (predicate substitutivity) is in fact an axiom scheme, that can be applied to any
predicates of any arity.

• The corresponding proof technique is equivalence rewriting, i.e. chains of equiv-
alences.

• E.g. two formulae are equivalent if there is a chain of equivalences between
them.
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3.9 Induction
• Induction is an inference rule used to prove (universal) properties of objects in

domains that are manageable,
• i.e. every object in the domain can be “constructed” in a finitary way from

“basic” objects, “smaller” objects,
• e.g. apply the successor function to a natural number to get the next one, and

this is the only way to construct natural numbers (they are all successors of 0),
• all concepts in such (i.e. inductive) theories will be defined in a way which

reflects the structure of the objects (inductive definitions, “recursive”),
• universal properties of inductive objects can be proved by corresponding in-

duction inference rules, which again reflect the structure of the objects in the
domain,

• induction is in general essential to prove in inductive theories, i.e. induction is
stronger than predicate logic,

• examples of inductive domains: natural numbers, strings, lists, trees, sets, bags,
formulae, proofs.

The theory of natural numbers
Example 99 (The theory of natural numbers N).

• Natural numbers start with 0, and any other natural number is obtained from
0 by successive applications of the successor function +

• the symbols in the language:

– function symbols, FN = {+} the unary successor function,
– predicate symbols,PN = {is-nat,=}, a unary predicate that detects natural

numbers, and equality, respectively
– constants, CN = {0}.

• the knowledge base KBN:

– generation axioms:

is-nat(0) (gen. zero)
∀

is-nat(x)
is-nat(x+) (gen. succ.)

– uniqueness axioms:

∀
is-nat(x)

x+ ̸= 0 (zero)

∀
is-nat(x),is-nat(y)

(x+ = y+)⇔ (x = y) (succ.)

– induction axiom (scheme): for any formula F:(
F[0] ∧ ∀

is-nat(x)
(F[x]⇒ F[x+])

)
⇒ ∀

is-nat(x)
F[x]

• the inference mechanism IRN consists of the inference rules of predicate logic
and rewriting.
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Induction as an inference rule
• A subtle point: the induction axiom scheme cannot be expressed in first order

predicate logic, because first order logic only allows variables over objects and
not over formulae (as is needed to express the induction scheme).

• One way to overcome this is to add, for each formula F used an instantiation
of the scheme. This may be cumbersome, and will result in very big knowledge
bases, containing many similar formulae.

• However, we can add an inference rule (the induction rule) to IRN:

– To prove: ∀
is-nat(x)

F[x] (an universal property of natural numbers),

– Prove F[0] (the base case) and
(Induction step):

– Take x0 arbitrary but fixed such that is-nat(x0) and
Assume F[x0] (the induction hypothesis) and
Prove F[x+

0 ] (the induction conclusion).

Inductive definitions
• In inductive domains, definitions of new concepts will reflect the inductive struc-

ture of objects:

– the notion has to be defined for (all) the simplest objects (the base case(s)).
– the notion has to be defined for the complex objects, and it will be defined

using the notion for the simpler objects, i.e. recursion will be used.

Example 100 (Semantics of expressions in predicate logic).
• Expressions of predicate logic are an inductive domain:

– For terms:
* variables and constants are (the simplest) terms,
* function symbols applied to other (simpler) terms are terms (complex

terms),
– For formulae:

* atomic formulae are the simplest formulae (but not the simplest ex-
pressions), predicates applied to terms,

* compound formulae and quantified formulae are build from (simpler)
formulae/terms are (complex) formulae.

• The notion of the semantics of terms and formulae is defined recursively:

– For terms:
* for variables it is given directly by the variable assignment, for con-

stants, directly by the interpretation of the constant symbol,
* for compound terms it is given recursively, in terms of the meaning

of the smaller terms that make up the compound term.
– For formulae:
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* for atomic formulae it is given directly by the interpretation of the
function symbol applied to meaning of the terms,

* for compound formulae it is given recursively, in terms of the mean-
ing of the simpler formulae that make up the compound formula,

* for quantified formulae it is given recursively, in terms of the mean-
ing of the simpler formula that (but depending of the assignment of
the quantified variable).

Example 101 (Recursive definitions in the theory of natural numbers).
• Consider the theory of natural numbers, as defined in Example 99.
• Now consider the following definition of a new concept (function symbol +):

∀
is-nat(x)

x+ 0 = x (right zero)

∀
is-nat(x),is-nat(y)

x+ y+ = (x+ y)+ (right succ.)

Notice that for the simplest object (0) the value was given directly, and for a
compound object (y+), it was given in terms of the notion (+) for the simpler
object (y).

• Here is a definition of a new concept (predicate symbol ≤):

∀
is-nat(x)

x ≤ 0⇔ x = 0 (zero)

∀
is-nat(x),is-nat(y)

x ≤ y+ ⇔ (x = y+ ∨ x ≤ y) (succ.)

Notice again the structure of the definition.
Example 102 (Proving by induction). The theory of natural numbers N is described
by

• the symbols in the language:

– function symbols, FN = {+} the unary successor function,
– predicate symbols,PN = {is-nat,=}, a unary predicate that detects natural

numbers, and equality, respectively
– constants, CN = {0}.

• the knowledge base KBN:

– generation axioms:

is-nat(0) (gen. zero)
∀

is-nat(x)
is-nat(x+) (gen. succ.)

– uniqueness axioms:

∀
is-nat(x)

x+ ̸= 0 (zero)

∀
is-nat(x),is-nat(y)

(x+ = y+)⇔ (x = y) (succ.)

• the inference mechanism1 IRN consists of the inference rules of predicate logic
rewriting and the induction inference rule:

1By taking into account the remarks made in the lecture notes when we introduced the
natural numbers, we move the induction axiom scheme to the level of inference
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– To prove: ∀
is-nat(x)

F[x] (an universal property of natural numbers),

– Prove F[0] (the base case) and
(Induction step):

– Take x0 arbitrary but fixed such that is-nat(x0) and
Assume F[x0] (the induction hypothesis) and
Prove F[x+

0 ] (the induction conclusion).

Prove
∀

is-nat(x)
(x ̸= 0⇒ ∃

is-nat(y)
(x = y+)). (decomposition)

Now extend the theory with a new function symbol, +, defined as follows:

∀
is-nat(x)

x+ 0 = x (right zero)

∀
is-nat(x),is-nat(y)

x+ y+ = (x+ y)+ (right succ.)

Prove:
∀

is-nat(x),is-nat(y)
is-nat(x+ y) (closure)

∀
is-nat(x)

0 + x = x (left zero)

∀
is-nat(x),is-nat(y)

x+ + y = (x+ y)+ (left succ.)

∀
is-nat(x),is-nat(y)

x+ y = y + x (commutativity)

Exercise
Consider the (inductive) theory of strings:
• the symbols of the language:

– a binary function symbol •, the prefix function,
– a unary predicate symbol is-char, the character relation,
– a unary predicate symbol is-string, the string relation,
– a constant symbol, Λ, the empty string;

• the knowledge base:
Generation axioms:

is-string(Λ), (generation empty)

∀
is-char(u)

is-string(u), (generation character)

∀
is-char(u),is-string(x)

is-string(u • x), (generation prefix)

Uniqueness axioms:

∀
is-char(u),is-string(x)

(u • x ̸= Λ), (uniqueness empty)

∀
is-char(u), is-char(v),
is-string(x), is-string(y)

(u • x = v • y ⇒ (u = v ∧ x = y)), (uniqueness prefix)
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Character equality axiom:

∀
is-char(u)

(u • Λ = u); (character equality)

• the inference rules:

– string induction: To prove a universally quantified formula over strings,

∀
is-string(x)

F [x],

* Base case: prove F [Λ] (i.e. the property holds for the empty string),
then

* Induction step,
Take arbitrary but fixed u0, x0 such that is-char(u0), is-string(x0),
Assume F [x0] (the property holds for x0) ,
Show F [u0 • x0].

– predicate logic and equality.

Prove

∀
is-string(x)

(x ̸= Λ⇒ ∃
is-char(v),is-string(y)

(x = v • y)). (decomposition)

Try to write the recursive definition for the concatenation of two strings, i.e. a
binary function that takes two strings (e.g. abcdef and ghijkaa) and returns the string
built from putting together the argument strings
(abcdefghijkaa in our case). Then prove the closure and associativity of concatena-
tion in the theory of strings.
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