
Computer Architecture
Adrian Crăciun

January 9, 2018

1

Contents
1 Computer Architecture - Overview and Motivation 6

1.1 The Structured Organization of Computers 6
1.2 Milestones in Computer Architecture 14
1.3 The Computer Zoo . 21
1.4 Computer Families . 26

2 Computer Systems Organization 30
2.1 Processors . 31
2.2 Primary Memory / Secondary Memory / Input/Output (Old Slides) 40

3 The Digital Logic Level 73
3.1 Gates and Boolean Algebra . 73
3.2 Basic Digital Logic Circuits . 80
3.3 Memory . 88
3.4 CPU Chips and Buses . 96
3.5 Example CPUs . 102

4 The Microarchitecture Level 109
4.1 An Example Microarchitecture 109
4.2 An Example ISA: IJVM . 116
4.3 Implementation of the Instruction Set 122
4.4 Designing the Microarchitecture Level 127
4.5 Improving Performance . 135
4.6 Example Microarchitectures . 141

5 The Instruction Set Architecture Level 144
5.1 Overview of the Instruction Set Architecture Level 144
5.2 Memory models . 146
5.3 Registers . 147
5.4 Data Types . 150
5.5 Instruction Formats . 152
5.6 Addressing . 155
5.7 Instruction types . 158
5.8 Flow of control . 162
5.9 Example ISAs . 166
5.10 Comparison of the Instruction Sets 167

6 The Operating System Machine Level 170
6.1 Virtual Memory . 170
6.2 Virtual I/O Instructions . 172
6.3 Virtual Instructions for Parallel Processes 173
6.4 Example Operating Systems . 175

7 The Assembly Language Level 177

2

List of Figures
1 Moving between language levels. 7
2 A multilevel machine. 9
3 A multilevel machine with 6 levels. The way of moving be-

tween levels (translation/interpretation) is indicated along with
the name of the program to do this. 10

4 The von Neumann design. 17
5 The PDP-8 omnibus. 18
6 Milestones in the development of the digital computer. 21
7 A representation of Moore’s law (source: commons.wikimedia.org). 22
8 Key members of the Intel family. 27
9 The organization of a simple computer. 30
10 The data path of a typical von Neumann machine. 32
11 An interpreter for a simple computer (written in Java). 33
12 (a) A five stage pipeline. (b) The state of each stage as a function

of time (nine clock cycles). 36
13 Dual five-stage pipeline with a common instruction fetch unit. . . 37
14 A superscalar processor with five functional units. 37
15 An array processor of the ILLIAC IV type. 38
16 SIMD core of the Fermi GPU. 39
17 (a) A single bus multiprocessor. (b) A multicomputer with local

memories. 72
18 (a) A transistor as an inverter and two transistors combined to

form (b) a NAND gate and (c) a NOR gate. 74
19 The basic gates and their behavior. 74
20 (a) The majority function as a truth table and (b) the corre-

sponding circuit. 75
21 The basic gates represented in terms of NAND, NOR: (a) NOT,

(b) AND and (c) OR. 77
22 Two equivalent Boolean functions. 77
23 Some laws of Boolean algebra. 78
24 Some alternative notations for (a) NAND, (b) NOR, (c) AND,

(d) OR. 79
25 (a) XOR and some of its equivalent implementations (b), (c), (d). 79
26 (a) Digital device in (b) positive logic and (c) negative logic. . . 80
27 A SSI chip. 81
28 A multiplexer. 81
29 (a) A MSI multiplexer, (b) used to implement the majority function. 82
30 A 3 to 8 decoder. 83
31 A comparator. 83
32 A 12 input 6 output programmable logic array. 84
33 An 8 bit shifter. 85
34 A half adder. 85
35 A full adder (a) specification and (b) circuit. 86
36 1 bit ALU. 87

3

37 8 bit ALU. 87
38 Clocks: (a) subdivisions of the clock cycle by inserting a delay,

getting 4 references (b) rising edge of C1/ falling edge of C1/rising
edge of C2/falling edge of C2 and (c) asymmetric clock - basic
clock shifted and ANDed with the original circuit. 88

39 A NOR SR latch. 89
40 A clocked SR latch. 89
41 A clocked D latch. 89
42 (a) Pulse generator and (b) pulse signal. 90
43 A D flip-flop. 90
44 Representations of (a), (b) latches and (c), (d) flip-flops. 91
45 An 8 bit register. 91
46 A 4 x 3 bit memory. 93
47 (a) A noninverting buffer (IN: data, control, OUT: data), (b) the

effect of the control being 1, (c) the effect of the control being 0,
(d) an inverting buffer. 93

48 The organization of a 4 Mbit memory chip: (a) 512K x 8, (b)
4096K x 1. 94

49 The logical pinout of a generic microprocessor. 97
50 A computer system with multiple buses. 98
51 The evolution of an address bus over time (a) enough for address-

ing 1 Mb, (b) extended to address 16 Mb, (c) extended further
to address 1 Gb. 99

52 Timing of a read operation on a synchronous bus. 100
53 A read operation on an asynchronous bus. 100
54 Centralized bus arbitration: (a) with daisy chaining and (b) mul-

tilevel daisy chaining. 101
55 Decentralized bus arbitration. 101
56 Block operations on buses. 102
57 The 8259 interrupt controller. 103
58 The logical pinout of an Intel CPU (i7). 103
59 Pipelining DRAM memory requests on Core i7. 104
60 The main features of the core of an UltraSPARC system. 105
61 A microJava 701 system. 106
62 The Intel 8255a PIO chip. 106
63 Location of EPROM, RAM and PIO in the 64KB address space

of an enbedded device. 107
64 (a) Full address decoding. (b) Partial address decoding. 108
65 The data path of the example Mic-1 microarchitecture. 110
66 Useful control combinations for the ALU. 111
67 Timing diagram for a data path cycle. 112
68 The format of a Mic-1 microinstruction. 113
69 The Mic-1 microarchitecture. 114
70 A microinstruction with JAMZ set to 1 has two potential successors.115
71 The use of an operand stack for doing arithmetic computation. . 116

4

72 Use of a stack to store local variables. (a) While A is active. (b)
After A calls B. (c) After B calls C. (d) After C and B return
and A calls D. 116

73 The IJVM memory model. 117
74 The IJVM ISA instructions. 118
75 (a) Memory before executing INVOKEVIRTUAL. (b) Memory

after. 119
76 (a) Memory before executing IRETURN. (b) Memory after. . . . 120
77 (a) Java fragment. (b) The corresponding Java assembly lan-

guage. (c) The IJVM program in hexadecimal. 120
78 The stack after each instruction from Figure 77. 121
79 MAL description of permitted operations: SOURCE is a regis-

ter that outputs on bus B, destination is a register that can be
written from bus C. 123

80 The Mic-1 microprogram (1). 124
81 The Mic-1 microprogram (2). 124
82 The Mic-1 microprogram (3). 125
83 The Mic-1 microprogram (4). 125
84 The Mic-1 microprogram (5). 126
85 Main loop fused into the execution of POP. 127
86 Further integration of the interpreter loop. 127
87 Mic-2, a 3 bus architecture with IFU. 129
88 Mic-2 microprogram (1). 130
89 Mic-2 microprogram (2). 130
90 Mic-2 microprogram (3). 131
91 The 3 bus pipelined data path of Mic-3. 132
92 Graphical illustration of the Mic-3 pipeline. 133
93 The main components of Mic-4. 133
94 Mic-4 pipeline. 134
95 (a) A direct mapped cache. (b) A 32 bit virtual address mapping

memory words into the cache. 136
96 A four way associative cache. 137
97 (a) A program fragment. (b) Corresponding translation into

generic assembly language, with branching instructions. 138
98 (a) A 1-bit branch history. (b) A 2-bit branch history. (c) Map-

ping betwern branch history address and target address. 138
99 (a) Program fragment . (b) Corresponding basic block graph. . . 140
100 Block diagram of the i7 microarchitecture. 141
101 Simplified pipeline of the i7 microarchitecture. 142
102 The OMAP4430 microarchitecture. 142
103 The pipeline of OMAP4430. 143
104 The microarchitecture of ATmega168 microcontroller. 143
105 The ISA level - the interface between high level programming

language and hardware. 144
106 (a) Aligned memory. (b) Non-aligned memory. 146
107 The registers of the IA 32 architecture. 148

5

108 Registers of UltraSPARC II. 149
109 UltraSPARC II register window. 150
110 Numerical data types for the Intel architecture. 151
111 Numerical data types of UltraSPARC II. 151
112 Numerical data types of JVM. 152
113 Common instruction formats: (a) Zero-address instruction. (b)

One-address instruction. (c) Two address instruction. (d) Three-
address instruction. 152

114 Possible relationships between instructions and word length. . . . 152
115 An expanding opcode with 15 3 address instructions, 14 2 address

instructions, 31 one address instructions and 16 zero address in-
structions. The fields xxxx, yyyy, zzzz are 4 bit address fields. . . 154

116 Format of the Intel 32 bit instruction. 155
117 The instruction format of UltraSPARC. 155
118 JVM instructions format. 156
119 Adding the elements of an array. 157
120 Or-ing elements in an array. 157
121 Reverse Polish notation correspondent to infix terms. 158
122 A comparison of supported addressing modes. 158
123 Looping with test (a) at the end and (b) test at the beginning. . 161
124 A Java code fragment using programmed I/O. 162
125 A system with a DMA controller. 163
126 Program counter as a function of time (a) without branching, (b)

with branching. 163
127 Procedure calls. 164
128 When a coroutine is resumed, execution starts from where it left

off. 165
129 A machine with 3 I/O devices, a printer, a disk, a RS232 line,

with priorities 2, 4, 5 respectively. (IRS - Interrupt service routine).166
130 Intel 32 bit integer ISA. 167
131 UltraSPARC integer ISA. 168
132 The JVM ISA. 169
133 Virtual memory: mapping virtual addresses to memory locations. 171
134 A comparison of paging and segmentation. 172
135 Process parallelism (a) True parallelism. (b) Simulated parallelism.174
136 A rough breakdown of UNIX calls. 175
137 A typical UNIX system. 176
138 The structure of Windows (NT). 176
139 Implementing I+J = N (a) on Intel IA32, (b) Motorola 680x0 (c)

UltraSPARC. 178
140 Swapping (a) without macros, (b) with macros. 179
141 From source(s) to executable: the assembly process. 180

6

Lecture Organization
Organizational Items

• Computer Architecture:

– how computers do what they can do
– or, where do your programs go when you “launch” them (and how)?

• Lecture sources:

– Based on Andrew S. Tanenbaum, Structured Computer Organiza-
tion, 6th Edition. (Romanian translation available for 4th Edition),
[Tanenbaum, 2005] and John L. Hennessy, David A. Patterson, Com-
pute Architecture A Quantitative Approach, [Hennessy and Patterson, 2012].

– Many figures in these notes/slides are taken from the above, excep-
tions will be indicated.

– Other materials were consulted in the elaborations of these notes:
e.g. [East, 1990], [Harris and Harris, 2007], [Hsu, 2001].

–

• Exercises/Lab: presence is compulsory (University policy). For lectures
50% (but you really want to do 100%).

• Evaluation:

– Exam + exercises + presentations + projects + involvement (weights
to be discussed).

– What if you cannot show up for labs (e.g because you work): CON-
TACT ME ASAP!!!

• Other items?

1 Computer Architecture - Overview and Moti-
vation

1.1 The Structured Organization of Computers
Computers, Programs

• Computer = machine that can solve problems by carrying out instructions
given to it.

• Program = a sequence of instructions describing how a certain task is
performed.

• Computers are built from electronic circuits. Only very basic instructions
can be carried out on such machines:

7

Figure 1: Moving between language levels.

– add 2 numbers,
– check to see whether a number is 0,
– copy a piece of data from one location to another.

• Machine language = the set of instructions that can be carried out on the
electronic circuits that form a computer.

• People find it extremely difficult to understand such a language.

• People must understand the language in order to write programs.

• To bridge the gap between machine language and human (programmer’s)
language, a series of abstractions have to be employed, leading to the
structured organization of computers.

Translation and interpretation
Figure 1 presents the problem of moving between “machine” and “human”

languages, and its solution.

Comparison: translation and interpretation

• Similar:

– instructions from L1 are ultimately carried out by executing equiva-
lent sequences in L0.

• Different:

– Translation:
∗ a L1 program is converted into a L0 program;
∗ the L1 program is thrown away;

8

∗ the L0 program is loaded into the memory and executed;
∗ the new L0 program has control of the execution.

– Interpretation:
∗ after each L1 instruction is analyzed and decoded, it is carried
out immediately (no translated program);

∗ the interpretor is in control of the program, the initial L1 pro-
gram is just data.

Virtual machines

• Instead of thinking in terms of interpretation and translation, imagine a
hypothetical computer, a virtual machine M1, able to “speak” the lan-
guage L1.

• If the machine M1 can be constructed easily, there is no need for L0 (and
the corresponding machine M0).

• If M1 is too difficult to construct, one can still write programs in L1 (for
M1), and these can either be translated or interpreted into L0 (and run
on M0).

• However, in order to make the translation/interpretation from/of L1 to/into
L0, these language should not be “too different”. The initial picture (“hu-
man” - “machine”) was too optimistic.

• Obvious solution: introduce intermediary levels (and virtual machines),
so that moving between levels becomes easier. This leads to a hierarchy
of language layers.

Multilevel machines
Figure 2 presents the structure of a multilevel machine.

Languages, virtual machines

• A virtual machine defines its machine language (as the set of all instruc-
tions which can be executed on that machine).

• A language defines its machine (as the machine that can execute all pro-
grams written in the respective language).

• Machines based on arbitrary languages can be arbitrarily hard to build
(complicated, expensive).

• Example: C++, Cobol machines can be constructed with the technology
today, but would not be cost effectives.

• A computer with n levels can be seen as n different machines, each with
its own language.

• The terms “level” and “virtual machine” can be used interchangeably.

9

Figure 2: A multilevel machine.

Modern multilevel machines.

• Contemporary multilevel machines have two or more levels. Figure 9
presents a machine with 6 levels

The digital logic level

• Gates:

– built from analog devices, can be accurately modeled as digital de-
vices,

– each gate has one or more digital inputs (i.e. 0,1) and generate simple
digital outputs,

– each gate can be built out of a handful of transistors,
– a small number of gates can be combined to form 1 bit memories

(stores for one of two values: 0,1).

• Registers:

– combinations of typically 16, 32, 64 1 bit memories,
– each can hold a simple binary number up to some maximum.

• Gates can also be combined to form the main computing engine.

10

Figure 3: A multilevel machine with 6 levels. The way of moving between levels
(translation/interpretation) is indicated along with the name of the program to
do this.

The microarchitecture level

• A collection of (typically) 8 to 32 registers that form a local memory.

• A circuit – arithmetic logical unit (ALU) – capable of carrying out simple
operations.

• Data path that connects the registers to the ALU, ensuring the data flow.

Example: select 2 registers, pass the content to the ALU where the
values are added, then store the result in some other register.

• On some machines, the operations in the data path is controlled by a
microprogram, in others this is done directly in hardware.

The instruction set architecture (ISA) level

• This is what is usually described in the “Machine language reference man-
ual”.

• It contains the machine’s instruction set.

• These instructions are carried out interpretatively by the microprogram
or by the hardware execution circuits.

11

The operating system machine level

• Most instructions in the language of this level can be found also on the
ISA level.

• However, in addition:

– there is a new set of instructions,
– the memory is organized in a different way,
– it is possible to run two or more programs in the same time.

• The new instructions are interpreted by an interpretor at the ISA level
(historically called the operating system).

• The instructions that are identical to those at the ISA level are interpreted
by the microprogram or the hardware (at the microarchitecture level).

• Note that the operating system machine level is a hybrid level (instructions
interpreted at 2 levels).

Some considerations regarding the levels

• The levels discussed so far:

– are intended primarily for running interpretors and translators to
support higher levels;

– these are written by system programmers.

• The remainding levels are for application programmers.

• Other differences:

– method of language support:
levels 1-2-3: interpretation,
levels 4-5: (mostly) translation;

– nature of the language:
levels 1-2-3: numeric (hard to read by humans),
levels 4-5: words and abbreviations.

The assembly language level

• The language presents an abbreviation for the languages at levels 1-2-3.

• Programs in assembly languages are first translated, then interpreted by
the appropriate machine for which instructions were intended.

• The program that performs the translation is called the assembler.

12

The problem oriented language level

• Contains the languages for application programmers (high level languages).

• There are hundreds of such languages.

Basic, C, C++, Java, LISP, Prolog, Mathematica, Python, . . . (add
your favorite).

• Generally, the programs written in one of the high level languages are (can
be) translated into level 3 or level 4 by translators called compilers.

Hardware, software - some considerations

• Initially:

HARDWARE: the electronic circuits (level 0) along with the memory
and the input-output devices.

SOFTWARE: algorithms (detailed instructions telling how to do some-
thing) and their computer representations (programs).

• However, in time, the distinction between hardware and software blurred:

“Hardware and software are logically equivalent”.
“Hardware is petrified software”.

– Any operation performed by software can be built into the hardware.
– Any hardware operation can be simulated by software.

• The above points will be illustrated by taking a look at the development
of multilevel machines.

Invention of microprogramming

• In the 1940s computers had two levels: digital logic and instruction set
architecture:

– they were complicated to build,
– difficult to understand,
– unreliable.

• 1951, Maurice Wilkes (University of Cambridge) had the idea to introduce
an additional level (microarchitecture):

– this meant simplified hardware,
– a built-in interpreter at the microarchitecture level was interpreting

programs at the ISA level.

13

Invention of the operating system

• Even with microprogramming, working with computers was tedious:

– programs were stored on punch cards (e.g. about 80 for a program),
– the user would have to load the interpreter/translator,
– then load their own program and data.

• Work time had to be booked in advance – computers were complicated
machines that had to be operated directly by the programmer.

• Around 1960 the idea of having a program (the operating system) in the
computer at all times emerged:

– it led to a new virtual machine that got more and more complicated
over the years,

– some of its instructions were similar to those of the ISA level,
– others (in particular I/O) were different (operating system macros,

supervisor calls).

Migration of functionality to microcode

• In the 1970s microprogramming was widespread.

• It was common practice to add more and more instructions to the set of
machine instructions.

• This led to an explosion of machine instruction sets.

• Examples of instructions added:

– integer multiplication and division,
– floating-point arithmetic,
– calling and returning from procedures,
– speeding up loops,
– handling character strings.

• Examples of added features:

– computations involving arrays,
– memory relocation facilities,
– interrupt system,
– process switching.

• Adding many instructions (not always needed, not always executed) meant
that microprograms grew slower, bulkier.

14

Elimination of microprogramming

• The solution to the problems caused by the large instruction sets devel-
oped in the golden years of microprogramming was to reduce vastly the
instruction set and have the instructions executed directly by hardware,
rather than by a microprogram.

• There are two trends:

– CISC (Complex Instruction Set Computers),
– RISC (Reduced Instruction Set Computers),
– more details discussed later . . .

To summarize...
The evolution of multilevel machines shows how, depending on various fac-

tors, the border between hardware and software moves back and forth.

1.2 Milestones in Computer Architecture
Generations of computers

• Generation zero: mechanical computers (1623(?)–1945).

• The first generation: vacuum tubes (1945–1955).

• The second generation: transistors (1955–1965).

• The third generation: integrated circuits (1965–1980).

• The forth generation: very large scale integration (1980 – ?).

• The fifth generation: Japan’s fifth generation computer project (1982 –
1992).

• The next generation?

Generation zero: mechanical computers

• Wilhelm Schichard (1623) - mechanical device able to do addition, multi-
plication, division. http://en.wikipedia.org/wiki/Wilhelm_Schickard

• Blaise Pascal (1623–1662) - mechanical machine able to do addition, sub-
straction. http://en.wikipedia.org/wiki/Pascal’s_calculator.

• Gottfired Wilhelm “Calculemus!” von Leibniz (1646 –1716) - mechanical
machine that could multiply and divide. http://en.wikipedia.org/wiki/Stepped_Reckoner

• Charles Babbage (1792 – 1871):

– difference engine:

15

∗ designed to computer tables of numbers for navigation,
∗ one algorithm: the method of finite differences using polynomi-
als,

∗ output: punched on a copper plate (CD ROM principle).
∗ http://en.wikipedia.org/wiki/Difference_engine

– analytical engine (1834)
∗ 17000 sterling pounds from the government + a large part of
family fortune,

∗ machine consisting of a store (memory) of 1000 words, each of 50
decimals, the mill (computational unit – addition, substraction,
multiplication, division), input section (punched cards), output
section (punched cards, printed).

∗ http://en.wikipedia.org/wiki/Analytical_engine
∗ general purpose device,
∗ programmable (in a simple assembly language)
∗ Lady Ada Augusta Lovelace (daughter of Lord Byron) – the
world’s first programmer,

∗ however, the analytical engine was difficult to implement, with
many hardware bugs (thousands of components, entirely me-
chanical).

–

• Konrad Zuse (late 1930’s, Germany)

– builds a series of automatic calculating machines using electromag-
netic relays,

– was not granted government funding (other priorities),
– the machine was destroyed by Allied bombing of Berlin (1944), no

influence on subsequent development of computers,
– http://en.wikipedia.org/wiki/Konrad_Zuse

• John Atanasoff - Iowa State College (late 1930’s)

– tries to build a machine for binary arithmetic,
– using capacitors for memory (similar to RAM chips),
– his vision was not supported by the technology, and the machine was

never completed,
– http://en.wikipedia.org/wiki/John_Vincent_Atanasoff

• George Stibbitz - Bell Labs (late 1930’s): implements a calculator simpler
than Atanasoff’s, but which worked. (http://en.wikipedia.org/wiki/George_Stibitz)

• Howard Aiken

16

– was completing a PhD at Harvard,
– he discovered Babbage’s work and set out to implement his analytical

engine using relays instead of toothed wheels,
– Mark I, Harvard 1944 had 72 words of 23 decimal digits each, an

instruction time of 6 sec, I/O on punched paper.
– http://en.wikipedia.org/wiki/Harvard_Mark_I

Vacuum tubes (1945-1955)

• The development of these machines was driven by World War II.

• Colossus (1943) - Alan Turing, others:

– built to perform the huge computations needed to break the German
Enigma code,

– secret for 30 years, no influence on the further development of com-
puters,

– http://en.wikipedia.org/wiki/Colossus_computer.

• In 1943 John Mauchly is awarded a government grant to build a machine
to compute artillery tables .

– together with J. Presper Eckert: ENIAC (Electronic Numerical In-
tegrator and Computer), 1946.

– 18000 vacuum tubes, 5000 relays, 30 tons, 20 registers each holding 10
digit decimal numbers, programmed by 6000 switches and connecting
sockets,

– presented at a summer school, leading to an explosion of interest in
computers.

– spinoffs: EDSAC (University of Cambridge, Maurice Wilkes), JOH-
NIAC (Rand Corporation), ILLIAC (University of Illinois), MANIAC
(Los Alamos Labs), WEIZAC (Weizmann Institute, Israel).

• John von Neumann - Princeton Institute of Advanced studies:

– notices that programming with switches is tedious,
– programs can be stored along with the data in the memory,
– binary arithmetic is better than decimal.

• The design known as the von Neumann machine is the basis of nearly all
digital computers (up to this day) see Figure 4
.

• http://en.wikipedia.org/wiki/Von_Neumann_architecture

17

Figure 4: The von Neumann design.

• The design was implemented as the IAS machine:

– memory of 4096 words, each of 40 bits (holding either 2 20 bit in-
structions - 8 bit instruction type, 12 memory address).

– ALU with a 40 bit register - the accumulator,
– typical instructions: add a word from memory to the content of the

accumulator, write the content of the accumulator into the memory.

• Whirlwind I, a machine designed for real-time control (as opposed to num-
ber crunching like IAS, ENIAC).

16 bit words,
– it lead to the invention of the magnetic core memory (Jay Forrester).

• IBM - a producer of punchers and card sorting machines started showing
interest in computing machines.

– 1953 IBM 701, 2084 36 bit words,
– 1957 IBM 704 4k core memory, 36 bit instructions, floating point

hardware,
– IBM 709, an upgrade of the 704.

Transistors (1955-1965)

• Transistors:

18

Figure 5: The PDP-8 omnibus.

– 1948, AT&T Bell Labs, John Bardeen, Walter Brattain, William
Shockley.

– 1965 Nobel Prize for Physics,

• First transistor computers developed at MIT:

– TX-0 (Transistorized eXperimental computer 0) 1956
– TX-2, 1958

• From MIT, a number of teammembers go on to establish Digital Equip-
ment corporation:

– 1961: PDP-1:
∗ 4 kb of memory, 18 bit words, $ 120,000.
∗ 512 x 512 points screen,
∗ Spacewar - one of the earliest games (MIT students).
∗ http://en.wikipedia.org/wiki/PDP-1.
∗ Note that at the same time, IBM’s 7090, dedicated to scientific
computing was selling for millions of $.

– 1965: PDP-8
∗ at $ 16,000, with 50,000 sold
∗ important innovation: omnibus connecting the CPU, memory,
I/O devices.

∗ http://en.wikipedia.org/wiki/PDP-8
The schematic representation of the PDP-8 omnibus is illustrated in
Figure 5.
.

• In this time, IBM followed 2 directions:

– Expensive models, dedicated to scientific computing: 7090, 7094, see
http://en.wikipedia.org/wiki/IBM_7090.

– Cheaper models, dedicated to business computing: 1401, see http://en.wikipedia.org/wiki/IBM_1401.

• Control Data Corporation:

19

– 1964: CDC 6600
∗ CPU able to perform parallel operations twice as fast as 7094,
∗ small computers inside used to perform I/O operations
“Snow White and the Seven Vertically Challenged People”.

∗ see http://en.wikipedia.org/wiki/CDC_6600
– 6600 and its successors 7600, Cray-1 (designed by Seymour Cray)

were dedicated to complex computations (supercomputers).

• Burroughs B5000 - built to run Algol 60, see http://en.wikipedia.org/wiki/Burroughs_large_systems.

Integrated Circuits (1965-1980)

• 1958 - the silicon integrated circuit (Robert Noyce,. co-founder of Intel):
dozens of transistors can be put on a single chip, leading to smaller, faster
computers.

• 1964 - IBM System/360 series:

– both commercial and scientific applications,
– replace the two separate strands of system design at IBM,
– first commercial computers with microprogramming (emulation of

both 7094 and 1401),
– multiprogramming (many programs running in the same time on a

processor),
– huge address space (224 bytes - 16 MB).
– http://en.wikipedia.org/wiki/IBM_360

• DEC PDP-11 - popular at universities, http://en.wikipedia.org/wiki/PDP_11.

Very Large Scale Integration - VLSI (1980-?)

• In excess of tens of thousands of transistors on a single chip, making
computers faster an cheaper (“the personal computer era”).

• Originally, personal computer chips were available, consisting of:

– printed circuit board,
– CPUs (including Intel 8080),
– cables, power supply,
– 8 inch floppy disk,
– no software (write your own, later CP/M on a floppy).

• Early PC’s

20

– IBM PC (1981 - public documentation for $ 49 leading to a PC clone
industry),

– Apple, Apple II (Steve Jobs, Steve Wozniak),
– Amiga, Atari.

• Mid 1980’s - RISC processors (replacing CISC processors).

• Mid 1990’s - superscalar CPUs.

The Fifth Generation

• Japan’s fifth generation computers (1982-1992),

– http://en.wikipedia.org/wiki/Fifth_generation_computer
– The aim was to create an “epoch making” computer, with supercom-

puter like performance and usable artificial intelligence capabilities,
– The machine was to be built on top of massive databases, using a

logic programming language (Prolog, extended) to access data in the
range of 100 M - 1 G Logical Inferences per Second (LIPS).

– The project failed, as fifth generation computers were made obsolete
by the development of the CPU beyond the “obvious limitations” that
motivated the project, the internet and the development of graphical
user interfaces (GUI).

– Although the project failed in its goals, it lead to a strong develop-
ment of research networks, relations, etc.

• Ubiquitous computing/Low power/invisible computers (alternative fifth
generation): computing integrated in everyday objects and activities.

Figure 6 gives a summary of important milestones in the development of the
digital computer.

The Next Generation?

• 3D circuit design (cubes of transistors instead of chips).

• Optical computing (replace electronics by optics).

• Molecular computing (chemical-biological processes for computing):

– experiments were made of 4bit computation in test tubes,
– DNA computing,
– new computing models - p-systems (IeAT Timisoara).

• Quantum computing, with special applications (quantum cryptography).

21

Figure 6: Milestones in the development of the digital computer.

1.3 The Computer Zoo
Technological and Economic Forces Driving Computer Development

• The primary force is the ability of chip manufacturers to pack more and
more transistors per chip every year:

– Moore’s Law (Gordon Moore, co-founder and chairman of Intel, 1965):
“The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year ... Certainly over the short
term this rate can be expected to continue, if not to increase. Over
the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for
at least 10 years.”(”Cramming more components onto integrated cir-
cuits”, Electronics Magazine 19 April 1965).

– today’s formulation: the number of transistors doubles every 18
months (and it was correct so far).

– the estimation is that it will hold until around 2020 (when physical
limits will be reached).

– Moore’s law drives a virtuous circle: better technology → smaller
prices → more products → more companies → better technology.

– Figure 7 illustrates the fact that Moore’s law still holds today.

22

Figure 7: A representation of Moore’s law (source: commons.wikimedia.org).

23

– Nathan’s first law of software (Nathan Myhrvold, former top execu-
tive, Microsoft):
“software is as gas - it expands to fill the container holding it”.

• Not all computer technologies develop as fast: storage capacity increases
only about 50% per year.

• Communications, on the other hand saw spectacular development (high
speed Internet).

The computer spectrum

• Several ways of using Moore’s law:

– Increase computer power at constant price.
– Build the same computer for less and less.
– Shrink the size of the hardware for constant power.

• Categories of computers:

Type Cost ($) Example application
Disposable computer 0.5 Greeting cards
Microcontroller 5 Watches, cars, appliances
Game console 50-200 Home/portable video games
Personal computer 500 Desktop or notebook
Server 5K Network server
Collection of workstations 50-500K Departmental minisupercomputer
Mainframe 5M Batch data processing in a bank

Disposable computers

• To the low end, greeting cards, playing cheerful tunes.

• Possibly the most important development: RFID (Radio Frequency IDen-
tification) chips:

– smaller than 0.5 mm on edge, with 128 bit ID,
– Applications:

∗ labelling products in stores
∗ animal ID (pets, farm animals, etc.),
∗ vehicle tracking (controversial),
∗ airline luggage,
∗ cash marking (possible RFID in Euro notes),
∗ http://www.rfid.org.

– Critical design issues: Price, energy, application-specific performance.

24

Microcontrollers

• Microcontrollers = computers embedded in devices that are not sold as
computers.

• They manage the devices and/or user interfaces.

• Found in a large variety of devices:

– Appliances (clock radio, dishwasher, microwave, alarm).
– Communication gear (cordless phones, cell phones, pagers).
– Computer peripherals (printer, scanner, modem, CD ROM drive).
– Entertainment devices (DVD, stereo, mp3 player).
– Imaging devices (TV, digital cameras, photocopier).
– Medical devices (X ray, MRI, digital thermometer).
– Military weapon systems (missiles, etc.).
– Shopping devices (vending machines, ATM).
– Toys (talking dolls, radio-controlled cars, etc.)

• Critical design issues: Price, energy, application-specific performance.

• Example: a car could contain up to 50 microcontrollers (ABS, fuel injec-
tion, radio, GPS, etc), a plane more than 200.

• Compared to RFIDs, microcontrollers are complete computers (processor,
memory, I/O capabilities).

• Types:

– general purpose - complete computers,
– special purpose (architecture geared to some application, e.g. multi-

media).

• General purpose microcontrollers differ from ordinary computers:

– extremely cost sensitive (in large number they may cost as little as $
0.01 per unit),

– operate in real time (get a stimulus and react to it),
– physical constraints (designed with size restrictions in mind)

25

Game consoles

• Game consoles - normal computers with special graphics and sound capa-
bilities, but limited software and little extensibility.

• Started out as low-end machines (pong on TV) but evolved into far more
powerful systems (sometimes outperforming personal computers in certain
dimensions).

• Examples (last generation): Microsoft XBOX 360, Sony Playstation 3,
PSP, Nintendo Wii.

• Other characteristics:

– Customized hardware: special processors, I/O devices.
– Low cost - price supported by manufacturers (consoles sold at a loss,

profits from games).

• See http://en.wikipedia.org/wiki/Game_consoles.

• Critical system design issues: Price-performance, energy, graphics perfor-
mance.

Personal computers

• Personal computer is what people think in general when hearing “com-
puter”

• Include desktop and notebook models.

• Some people call “PC” Intel CPU machines, “workstations” high-end
RISC CPU machines (see also “Apple vs. PC”) but they are essentially
the same, conceptually.

• Other closely related machines: PDAs.

• Critical system design issues: Price-performance, energy, graphics perfor-
mance.

Servers

• Servers are beefed up workstations, used for local networks or the Internet.

• Single processor and multiprocessor configurations.

• Architecturally not that different from personal computers, but typically
much larger memories, storage, network bandwidth.

• Critical system design issues: Throughput, availability, scalability, energy.

26

Collections of workstations

• COW - Clusters of Workstations - multiple workstations collected to-
gether.

• Special software allows them to work on a single problem.

• The clusters are many time COTS (Commodity Off The Shelf) machines
linked by high-speed networking hardware.

• These scale easily.

• One typical application: Internet Web server - server farms (hundreds,
thousands of servers).

• Critical system design issues: Price-performance, throughput, energy pro-
portionality.

Mainframes

• In many cases, mainframes are descendants of the IBM 360.

• They are not much faster than a powerful sever, but may have higher I/O
capacity, higher storage.

• Very expensive, but many companies find it cheaper to pay once in a while
for a mainframe, than update software.

• This has led to the Y2K problem (originating in the 1960-70s when COBOL
programmers used only 2 digits for years).

• Andrew Tanenbaum predicts “the end of civilization as we know it at
midnight on Dec. 31, 9999, when 8000 years worth of COBOL programs
crash simultaneously.”

• Critical system design issues: Price-performance, application-specific per-
formance, throughput, energy proportionality.

1.4 Computer Families
Intel x86 -*

• 1968 - Robert Noyce, Gordon Moore, Arthur Rock form Intel Corporation
(and sell $ 3000 worth of chips).

• http://en.wikipedia.org/wiki/Intel_x86

• Some notable milestones in the Intel (and related) processor development:

27

Figure 8: Key members of the Intel family.

Chip Date Memory Notable features
4004 1971 640 First microprocessor on a chip.
8008 1971 16 KB First 8 bit microprocessor.
8080 1974 64 KB First general-purpose CPU on a chip.
8086 1978 1 MB First 16 bit CPU on a chip.
8088 1979 1 MB Used in IBM PC.
80286 1982 16 MB Memory protection.
80386, AMD am386 1985 4 GB First 32 bit CPU.
80486 1989 4 GB Built-in 8 KB cache memory, RISC like pipelining, integrated FPU.
Pentium (Pentium MMX) 1993 4 GB Superscalar, MMX.
Cyrix 6x86 1996 4GB Register renaming, speculative execution.
Pentium Pro, AMD K5 1995 4GB Microoperation translation, 2 level cache (only Pentium).
Athlon 1999 4GB Superscalar FPU design.
AMD K6-2/3, Pentium II 1997 4 BG Extra MMX instructions.
Pentium 4 2000 4 GB Deeply pipelined, high frequency, SSE2, hyperthreading.
Pentium M 2003 4 GB Optimized for low power.
Athlon 64/Opteron 2003 up to 1 TB 64 bit instruction set, on-die memory controller, hypertransport.
Core 2 2006 up to 1 TB low power, multi-core, lower clock frequencies, SSE4.
AMD Phenom 2007 up to 1 TB Monolithic quad-core, 128 bit FPU, SSE4a, modular design.
Intel Atom 2008 4 GB/up to 1TB Low power (netbook, nettop).
Core i7 2008 up to 1TB Quad core.
AMD Bobcat 2011 as above on-die GPU, low power.
Intel Sandy Bridge/Ivy bridge 2011-2012 as above highly modular, on-die GPU.
Haswell/Skylake 2013-2016 as above (but more and better) as above (but more and better)

Figure 8 gives another summary of the most important members of the Intel
family.

UltraSPARC

• 1970’s Unix could only run on minicomputers such as PDP 11;

• 1981 Andy Bechtolsheim SUN 1 (Stanford University Network) a personal
computer that would run Unix (Sun Microsystems 1982);

– these workstations (Sun 1, 2, 3) used Motorola CPUs;
– the Sun workstations were more powerful than the PCs of the day and

came equipped with an Ethernet connection and TCP/IP software;

• 1987 Sun decides to design its own CPU, based on the revolutionary new
design from the University of California at Berkeley (RISC II):

28

Enters SPARC (Scalable Processor ARChitecture) the basis of Sun 4;

• Various manufacturers produced their own implementation of the open
architecture:

– MicroSPARC,
– HyperSPARC,
– SuperSPARC,
– TurboSPARC,

each of the above being compatible with the architecture (running the
same programs);

• SPARC International Consortium manages the development of the SPARC
architecture;

• The initial SPARC CPU: 32 bit machine 36 MHz, 1986 Sun/Fujitsu;

• 1995 UltraSPARC I: 64 bit architecture, 64 bit address space, 64 bit reg-
isters, but still able to run SPARC 32 bit instructions:

– implementing the SPARC V9 specifications,
– instructions designed to handle images, audio – VIS (Visual Instruc-

tion Set);

• 1997 UltraSPARC II;

• 2001 UltraSPARC III;

• 2003 UltraSPARC IV;

• 2006 UltraSPARC T1;

• 2007 (late) UltraSPARC T2;

• 2010 (late) SPARC T3.

• 2011 SPARC T4 (Oracle).

• 2013 SPARC T5 (Oracle).

• 2015 SPARC64 XIfx (Fujitsu), SPARCM7 (Oracle).

29

ARM

• Advanced RISC design, initially Acorn Computer RISC design, later Ad-
vanced RISC Machine.

• Timeline:

– 1985: ARM2 (popular in schools UK, Ireland, Australia, New Zealand),
– 1993: ARM 610 (Apple Newton),
– mid 90’s: strongArm (ultrafast - 233MHz, ultra low power - 1W),
– 1994: ARM7 (still used today)
– 2011: 64 bit ARM architecture.

• ARM does not manufacture processors, but licenses them.

• ARM is the most widely used processor (over 50 billion processors by 2015,
growing).

• Typical applications: hand-held devices, home appliances, etc.

• Some characteristics: RISC design, low power, hardware support for Java
bytecode.

Java

• Sun Microsystems: mid 1990’s designs Java (inspired by C++), aiming at
crossplatform compatibility;

• JVM (Java Virtual Machine): memory of 32 bit words, 226 instructions;

• Java programs are compiled for JVM;

• To run compiled Java code on a machine, one needs an interpreter (usually
written in C i.e. available virtually everywhere, but generally slow);

• JIT (Just in Time) compilers:

– JVM to machine compilers, usually found in web browsers,
– using a JIT solution may cause delays in execution;

• picoJava II (1998)

– a chip architecture that implements JVM,
– designed for embedded devices (i.e. low cost, way under 50$),
– various implementations available.

30

Figure 9: The organization of a simple computer.

2 Computer Systems Organization
Computer organization

• A digital computer is an interconnected system of processors, memories
and input/output devices.

• In the following we focus on each of these 3 categories.

Figure 9 illustrates the organization of a digital computer.

• CPU (Central Processing Unit) - the “brain” of the computer.

Its function is to execute the programs stored in the main memory by

– fetching instructions,
– examining them,
– executing them one after the other.

• A bus:

– connects the components of a computer,
– is a collection of wires (parallel, serial) for transmiting address, data

and control signals,
– external buses connect the CPU to the memory and the I/O devices,
– internal buses are found inside the CPU.

31

A modern computer today

Desktop workstation Mobile
Processor Core i7X 990x 3.20 GHz Quad A5 (ARM Cortex-A9 MPCore 1GHz)
Memory 36 GB DDR3 512 MB DDR2
Secondary storage 2 x 2 TB SATA 7200 rpm HDD 64 GB SSD
Keyboard, mouse Optimus Maximus none
Videocard AMD Radeon HD6870 2 GB Integrated on-chip (PowerVR SGX543MP2)
Monitor 2 x 30” LCD 9.7” LCD multitouch
Network card Intel(R) PRO/1000 EB Wi-Fi, 3G
Optical drive Blu-ray Disk Burner -

2.1 Processors
CPU Organization

• Control Unit

– fetches instructions from the main memory and determines their type.

• ALU

– performs operations needed to carry out the instructions,
– e.g.: addition, boolean AND.

• Registers

– small high-speed memory used to store temporary results and certain
control information,

– general purpose and special purpose, e.g.:
Program Counter (PC) - points to the next instruction to be exe-
cuted,
Instruction Register (IR) - holds the instruction that is currently
executed.

Data Path

• The registers, together with the ALU and several buses form the data
path.

• Instructions:

– register-memory
∗ fetch words from memory,
∗ store words back into memory.

– register-register (data path cycle)
∗ fetch operands from registers into the input registers,
∗ bring the content into the ALU,

32

Figure 10: The data path of a typical von Neumann machine.

∗ perform operation into the ALU,
∗ store result back intro a register.

Example: Figure 10 illustrates an addition operation on a typical von
Neumann machine.

– The data path cycle is the core of the CPU.

Instructions execution

• The CPU executes the instructions in a series of small steps:

1. Fetch the next instruction from memory into an instruction register.
2. Change the program counter to point to the next instruction.
3. Determine the type of instruction just fetched.
4. If the instruction uses a word in the memory, determine where it is.
5. Fetch the word, if needed, into a CPU register.
6. Execute the instruction.
7. Go to step 1 to begin executing the next instruction.

• The above sequence is the fetch-decode-execute cycle, central to the op-
eration of all computers.

• The way the CPU works can be described into some programming lan-
guage. Figure 11 illustrate such an interpreter.

33

Figure 11: An interpreter for a simple computer (written in Java).

34

Interpretation of instructions

• Instruction interpreter - a program that can imitate the functions of a
CPU (fetch, examine, execute).

• Hardware-software equivalence!

• Design decision for a new language L:

– direct hardware implementation,
– implementation of a software interpreter,
– hybrid solutions.

• Instructions were initially simple (1950’s), then more and more complex.

• Transition to complex instructions: sequence of simple instructions occur-
ing frequently or special cases (floating point, array operations).

• Hardware implementation of complex instructions → more powerful com-
puters.

• Economic factors:

– hardware instructions - higher cost (Cray supercomputers).
– solution: interpretation.

RISC vs. CISC

CISC (Complex Instruction Set Computer) (term coined later, in opposi-
tion to RISC.)

– since 1950’s the instructions were interpreted,
– more and more instructions (DEC VAX: several hundred instructions,

more than 200 ways to specify operands),
– interpretation provided a way to add new instructions quickly,
– interpretation provised easy bux fixing,
– interpretation ensured backward compatibility.

RISC (Reduced Instruction Set Computer)

– 1980, David Patterson and Carlo Séquin (Berkeley): VLSI CPU with-
out interpretation,

– coined the term RISC and named the CPU RISC I (→ SPARC),
– 1981 John Hennessy (Stanford): MIPS CPU (→ MIPS),
– no backward compatibility to clog the design,

35

– key idea: instructions can be issued quickly and executed in hard-
ware (too many in comparison with CISC instructions in order to be
outperformed).

RISC vs. CISC ?

– too much invested in CISC software, hardware, RISC has not taken
over,

– hybrid approaches (CISC architecture with RISC core - Intel Pentium
+ successors):
simple (and more common) instructions executed in one data path
cycle,
complex instructions (occurring rarely) interpreted in the usual way.

Design principles for modern computers

• All instructions directly executed by hardware.

– CISC instructions should be broken down into RISC instructions.

• Maximize the rate at which the instructions are issued.

– it is less important how long instructions will take to execute,
– parallelism could play an important role.

• Instructions should be easy to decode.

– instructions should be regular, with fixed length and a small number
of fields.

• Only Loads and Stores should reference the memory.

– operands for all other operations should come from and return to
registers.

• Provide plenty of registers

– access to memory is slow → the more registers, the better.

• Attention: The above principles are relative to the current technological
resources and limitations!

36

Figure 12: (a) A five stage pipeline. (b) The state of each stage as a function
of time (nine clock cycles).

Improving computer performance

• Brute force: make chips faster by increasing the clock speed. (Limited by
the technological development at a fixed moment in time.)

• Parallelism: doing more things at once - get more performance for a given
clock speed.

– Instruction level parallelism - get more instructins per second out of
the machine.

– Processor (thread) level parallelism - use more processors to share
the work on the same problem.

– Data level parallelism - spread data over multiple system (e.g. “cloud”).

Instruction-level parallelism: pipelines

• Pipelining: divide instruction execution into small steps, each supported
by a dedicated piece of hardware (as illustrated in Figure 12).

Instruction level parallelism: superscalar architectures

• “One pipeline good, two pipelines better.”

– pairs of instructions that do not conflict over resources or do not
depend on eachother can be sent on different pipelines,

– correctness of this process is ensured by the compiler, or using extra
hardware,

37

Figure 13: Dual five-stage pipeline with a common instruction fetch unit.

Figure 14: A superscalar processor with five functional units.

– Example: Intel processors (Pentium):
∗ the u pipeline: arbitrary instructions,
∗ the v pipeline: integer and floating-point instructions.
∗ this led to important performance gains (Pentium up to 2 times
faster than 486).

– Figure 13 illustrates the use of two pipelines.

• “Two pipelines good, four pipelines better”?

Actually, no - too much hardware duplication.

• For high-end CPUs: one pipeline, but with multiple functional units, as
illustrated in Figure 14.

38

Figure 15: An array processor of the ILLIAC IV type.

Processor-level parallelism: array computers

• Array processors - large number of identical processors, performing the
same sequence of instructions on different sets of data.

• ILLIAC IV, 1972 (4 quadrants of 8 x 8 square grid of processor-memory
elements), only 1 quadreant built (cost overrun 4 times) - 50 megaflops
(mil. floating point ops / second).

• Architecture known as SIMD (Single Instruction-stream Multiple Data),
different form the standard von Neumann architecture.

• The design of an ILLIAC IV quadrant is illustrated in Figure 15.

• A modern incarnation is the Fermi GPU, illustrated in Figure 16.

• Vector processor - similar to the array processors, with the difference of
having a heavily pipelined adder, special registers - vector registers (Cray-
1, 1974).

• No array computers are in use today, but the same principle is used in
Intel x86-* processors for multimedia instructions (MMX, SSE).

Processor-level parallelism: multiprocessors/multicomputers

• Multiprocessors - systems with multiple full-blown CPUs.

39

Figure 16: SIMD core of the Fermi GPU.

– easy to build for small number of processors (up to 64), difficult for
more.

– Figure 17 illustrates possible implementation schemes for multipro-
cessor systems.

• Multicomputers - systems of interconnected computers, each with its mem-
ory.

– several topologies for the connections: 2D, 3D, grid, trees, rings,
– up to 10000 CPUs.
– Hybrid approaches - multicomputers that simulate a shared memory.

Processor clock

• Instruction execution is driven by a high-frequency processor clock.

e.g.

– 3.5 GHz computer (3.5 billion Herz),
– the clock ticks 3.5 billion times a second,

• Execution time (clock cycles):

– instructions may take 1, 2, 3, . . . clock cycles,
– different instructions have different power,

40

– processor speed is not a measure of processor power (megaherz/gigaherz
myth).
Examples:
∗ AMD vs. Intel,
∗ Intel vs. PowerPC,
∗ Intel Pentium M vs. Pentium 4.

2.2 Primary Memory / Secondary Memory / Input/Out-
put (Old Slides)

41

The Primary Memory

Primary MemoryPrimary Memory

● Memory = the part of a computer where programs and data are stored.
● Primary memory (fast, small, volatile) vs. secondary memory (slow, large, persistent).
● Synonyms (British) – storage, store (more and more used to refer to disk storage).

Bits
● basic unit of memory (holding 0 or 1);
● binary arithmetic “more efficient” (= easier to distinguish between 2 physical values rather than between 10);
● Example: BCD(*) (Binary Coded Decimal) vs. binary:

1944:
 BCD: 00001 1001 0100 0100
 binary: 0000011110011000

BCD: 09999
binary: 065,535

(*) [use 4 bits to represent one digit, 16 combinations possible, 6 not used, the rest 0 ,..., 9]
● Scenario: invention of a highly reliable electronic device to store 0, ..., 9.

 4 digits: 09999;
 in binary, 4 digits: 015;

 [in this case, the binary representation is less efficient]

Primary MemoryPrimary Memory

42

Memory AddressesMemory Addresses

● memories consist of a number of cells (locations) – used to store information;
● each cell has a number, which gives its address;
● if an address is expressed on m bits, the maximum number of addressable cells is 2m.

The organization of a 96 bit memory, on 8 bits (a),
12 bits (b) and 16 bits (c), respectively.

Primary MemoryPrimary Memory

Memory Addresses (continued)Memory Addresses (continued)

● a cell = smallest addressable unit;
● most computer manufacturers have standardized a 8bit cell, called byte;
● bytes are grouped into words;
● word = instructions operate on entire words

32 bit machines will have 32 bit registers;
64 bit machines will have 64 bit registers.

Ordering bytes:
● big endian, lefttoright
(SPARC, IBM mainframes);
● little endian (b), righttoleft
(Intel).

● Problems with data transfer
from one format to the other!

Primary MemoryPrimary Memory

43

Units for Measuring MemoryUnits for Measuring Memory

The multiplication factor for the next unit is 1024 = 210 .

Primary MemoryPrimary Memory

Error Correcting CodesError Correcting Codes

● memories can occasionally produce errors;
● to avoid such problems, memories use errordetecting or errorcorrecting codes;
● an n bit word (codeword) usually contains m data bits and r redundant bits:

n = m + r
● Hamming distance = the minimum number of bits that are different between 2

codewords;
● Example:

10001001 and 10110001 have the Hamming distance 3;
● with Hamming distance d, d single bit errors are required to convert from one

into another;
● for a n bit codeword (n = m + r), there are 2n codewords that can be formed, of

which only 2m are legal; whenever the computer detects an illegal codeword,
an error has occurred;

● Example: parity bits.

Primary MemoryPrimary Memory

44

Cache MemoryCache Memory

● historically, CPUs have always been much faster than memories;
● this leads to inefficiencies in execution (CPU has to wait for the data from the memory);
● technologically, it is possible to have fast enough memories, but this is not economically viable;
● solution: use a small amount of very fast – cache memory at the CPU level;
● the most heavily used words are kept in the cache;
● CPU first looks in the cache, and only then in the main memory;
● logically, the cache lies between the main memory and the CPU, in practice it can be located in

several other places.

Primary MemoryPrimary Memory

Cache Memory (continued)Cache Memory (continued)
● programs run faster if the data they need is in the cache and not in the main memory;

HOW TO ACHIEVE THAT ?
● locality principle: memory references made in a short time interval tend to use only a small fraction

 of the total memory;
● if a word is read or written k times in a short interval, then 1 slow reference to the main memory

is needed, and k1 references to cache – the bigger the k the better;
● memories and cache are organized in cache lines: whenever a word is needed from the memory,

the whole cache line will be loaded;
● cache design issues:

 size of cache: 16KB,, 2 MB, 6MB – the bigger the more expensive the CPU;
 organization of cache;
 whether instructions and data are kept in different caches:

 unified cache: simpler to build, balance between instructions and data;
 split cache (Harvard architecture): allows parallel accesses, good with pipelines;

 number of caches: not uncommon to have one on the CPU, one off chip but still in the same
package, and a third one further away.

Primary MemoryPrimary Memory

45

Memory PackagingMemory Packaging
● initially, memory chips were separate units (1Kb1Mb), plugged directly in sockets;
● at present, memory chips are packaged into circuit boards, which are sold as units;
● memory units:

 SIMM (Single Inline Memory Module):
 72 connectors;
 32 bits transfers;
 paired for 64 bit transfers, each doing half;
 typical sizes: 32MB, 64MB, ...

 DIMM (Double Inline Memory Module):
 84 goldplated connectors;
 64 bits transfer;
 typical sizes: 64MB, ...
 variants: SODIMM (Small Outline DIMM) – laptops.

● Usually no error detecting/correcting features, as average error rate: 1/10 years.

Primary MemoryPrimary Memory

RAM TypesRAM Types

● SRAM (Static RAM)
 used for cache, motherboard memories, digital signal

processing;
 retains its contents as long as power remains applied;

● NVRAM (NonVolatile RAM)
 userprogrammable memory chip whose data is retained

 when power to the chip is turned off;
 modems, MP3 players;

● DRAM (Dynamic RAM)
 stores each bit of data in a separate capacitor > leaks;
 use refresh logic to refresh the memory;
 bigger, better, faster, more:

 Fast Page Mode DRAM;
 EDO RAM (Extended Data Out DRAM);
 SDRAM (Synchronous DRAM) ;
 DDR SDRAM (Double Data Rate Synchronous DRAM);
 RDRAM (Rambus DRAM).

Primary MemoryPrimary Memory

46

The Secondary Memory

Secondary MemorySecondary Memory

● The trouble with the registers, cache, main memory is that although more and more is available,
there isn't enough to go around to store all that needs to be stored.

● Example: 50.000.000 books (U.S. Library of Congress) each with 1 MB of textand 1 Mb pictures
 would fit on about 100 TB.
● Solution: use a multilevel memory hierarchy.

Memory HierarchiesMemory Hierarchies

Secondary MemorySecondary Memory

47

● On the 5 level memory hierarchy, as we move down, 3 parameters increase:
1. the access time:

 registers (nanoseconds),
 cache (small multiple of registers),
 main memory (tens of nanoseconds),

[~~~~~ huge gap ~~~~~]
 disc access (at least 10 milliseconds),
 tape, optical disc (seconds, taking into account handling).

2. the storage capacity:
 registers (~ 128 bytes),
 cache (a few MB),
 main memory (~ 1 GB),
 magnetic disks (hundreds of GB, now TB),
 etc...

3. number of bits/$ (or favorite currency)
 prices change rapidly,
 main memory: $/ MB;
 magnetic disks: cents/ MB;
 magnetic tape: $/GB.

Memory Hierarchies (continued)Memory Hierarchies (continued)

Secondary MemorySecondary Memory

Performance ComparisonPerformance Comparison

Operation Clock cycles

CPU instructions 13
Register access 1
Cache access 1
Main memory access 10
Disk seek time 10,000,000

Secondary MemorySecondary Memory

48

The Hard DiskThe Hard Disk

Secondary MemorySecondary Memory

Magnetic DisksMagnetic Disks
● magnetic disk =

 one or more aluminum platters with a magnetizable coating;
 a disk head floating above the surface on an air cushion, at the end of an arm;

 when a positive or negative current passes through the head, it magnetizes the
surface of the platter (write);

 when the head passes over the platter area, a positive or negative current is induced
on the head (read);

The geometry of a disk track (circular sequence of bits written as the disk
makes a complete rotation):

Secondary MemorySecondary Memory

49

Organization of Magnetic DisksOrganization of Magnetic Disks

● tracks are divided up in sectors of fixed length;
● sectors = preamble (allows synchronization of the head) + data (512 bytes) +

error correcting code (ECC);
● EEC: Hamming code (single errors) or ReedSolomon code (multiple errors);
● between each sector there is an intersection gap;
● unformatted disk capacity – total of sectors, incl. preambles, data, EEC, intersection gaps;
● formatted disk capacity – just the data capacity;
● storage capacity is influenced by:

 radial density: number of tracks per radial centimeter (8002000);
 linear bit densities: number of bits per track centimeter (~ 100.000);

● most disks consist of several platters stacked vertically, each with its own arm and head;
● all arms are gaged together, so they move to different radial positions all at once;
● cylinder = the set of tracks at a given radial position;

Secondary MemorySecondary Memory

PerformancePerformance
● a disk with 4 platters:

● factors that influence the performance of a magnetic disk:
 seek: the time needed to move the heads at a certain radial position (515 ms);
 rotational latency: the time needed for the desired sector to be placed under the head (48 ms);

● rotation speeds: 4200, 5400, 7200 ... RPM;
● transfer rates 520 MB/sec;
● burst rate: transfer rate when the head is over the first bit in the sector;
● sustained rate: much smaller than the burst rate.

Secondary MemorySecondary Memory

50

Disk ControllersDisk Controllers

● disk controllers are chips (sometimes full CPUs) associated with each drive;
● their task:

 accept commands from software: READ, WRITE, FORMAT;
 control the arm motion;
 detect, correct errors;
 buffering of multiple sectors;
 caching sectors;
 remapping bad sectors.

Floppy DisksFloppy Disks

● miniature disks (difference: head on the surface, small capacity – up to 1.44 MB);
● cheap, unreliable !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!; [always make multiple copies]
● surprisingly not yet extinct (springsummer 2008, in fact essential to the economy!!!!)
● (retrocool? not likely).

Secondary MemorySecondary Memory

IDE disksIDE disks
● Integrated Drive Electronics – mid 1980s

 controller integrated with the driver;
 backward compatible (BIOS calling conventions);
 because of backward compatibility, it could address with 4 bits for the head,

6 bits for the sectors, 10 bits for the cylinder max disk:
16 heads, 63 sectors, 1024 cylinders ~ 1,032,192 sectors ~ 528 MB;

● EIDE (Extended IDE)
 support for a second addressing scheme, LBA (Logical Block Addressing);
 224 1 sectors;
 the controller has to convert LBA addresses to head, sector, cylinder addresses;
 other improvements: ability to control up to 4 drives, higher transfer rate;
 can also control CDROM drives, tape drives, etc.

● ANSI standard: ATAPI (Advanced Technology Attachment Packet Interface);
● This technology is comparatively cheap, widely used for the garden variety PCs;
● Drawback: internal only (limitations on cable length);
● The terms (E)IDE and ATA are used interchangeably.

Secondary MemorySecondary Memory

51

SATA disksSATA disks

● Successor of ATA (or IDE, now retrospectively called PATA);
● SATA/150 (2003)

 1.5 GHz (~1200 MBits/s transfer rate due to encoding 8B/10B),
 new cable design (less clutter inside boxes),
 hotswappable,
 native command queuing (NCQ) – handle several I/O requests;

● SATA/300 (2004)
 3.0 GHz;

● eSATA:
 SATA technologies can be used for external devices,

 more performance than current external solutions,
 yet to become widely available.

Secondary MemorySecondary Memory

● Small Computer System Interface (“scuzzy”)– 1986
● since then, increasingly fast versions have been standardized:

 SCSI 1: 8 data bits, 5 MHz bus, 5 MB/sec transfer,
 Fast SCSI: 8 data bits, 10 MHz bus, 10 MB/sec transfer,
 Wide Fast SCSI: 16 data bits, 10 MHz bus, 20 MB/sec transfer,
 Ultra SCSI: 8 data bits, 20 MHz bus, 20 MB/sec transfer,
 Wide Ultra SCSI: 16 data bits, 20 MHz bus, 40 MB/sec transfer,
 Ultra2 SCSI: 8 data bits, 40 MHz bus, 40 MB/sec transfer,
 Wide Ultra2 SCSI: 16 data bits, 40 MHz bus, 80 MB/sec transfer,
 Ultra3 SCSI: 16 data bits, 40 Mhz DDR bus, 160 MB/sec transfer, CRC, error correction (1999),
 Ultra320 SCSI: 16 data bits, 80 Mhz DDR, 320 MB/sec,
 Ultra640 SCSI – pushing the hardware limits, very short cables, impractical,

 New research and development: Serial SCSI (various approaches);
● standard disk controllers for UNIX workstations (Sun, HP, SGI), Macs, highend Intels;
● SCSI: controller + several devices (harddisks, CDROMs, scanners, etc.)

 each device has a unique ID;
 each device has 2 connectors: one for input and one for output;
 each output connected to the input of the next device, last device terminated;

● SCSI controllers and peripherals act as initiators or targets:
 commands and responses occur in phases,
 arbitration allows all the devices to run at once (as opposed to EIDE, where only one
device can run at a time;

SCSI DisksSCSI Disks

Secondary MemorySecondary Memory

52

Secondary MemorySecondary Memory

SUMMARY: Disk PerformanceSUMMARY: Disk Performance

RAIDRAID
● Redundant Array of Inexpensive [/Independent] Disks:

 as opposed to SLED (Single Large Expensive Disk);
 specific disk organization can improve performance/reliability;
 a RAID controller + many disks (RAID SCSI obvious choice);
 visible to the system as a single disk.

● RAID levels:
Level 0: distribute data over multiple disks: stripping;

 no parallelism, reliability potentially worse than SLED;
Level 1: RAID 1 + backup;

 distributed (fast) read / write twice bad;
 backup disks (fault tolerance);

Level 2: working on word basis;
 distribute bits over a large number of disks (and add Hamming code);

Level 3: simplified version of level 2: use parity bit instead;
 fault tolerance in case of 1 drive failing;

Level 4: like level 0, with 1 disk used for parity;
 fault tolerance, but poor performance for small updates;

Level 5: like level 0, with parity bits distributed among the disks;
 good performance, but in event of a crash, reconstructing the content is difficult;

Secondary MemorySecondary Memory

53

RAID LevelsRAID Levels

Secondary MemorySecondary Memory

Other RAID configurationsOther RAID configurations
● combinations are possible (e.g. RAID 1+0/0+1/5+0);
● proprietary RAID formats: RAID 1.5, 7, S, Z, ServerRAID 1E, etc.

CDROMsCDROMs

● 1980 Philips + Sony introduce the CD (Compact Disk);
 the red book (ISO 10149):

 size: 120 mm across, 1.2 mm thick, 15 mm hole;
 high power infrared laser burns 0.8 micron holes in a coated glass master disk;
 a mold is made from the master > copies;
 playback: lowpower laser diode – infrared light – detects pits and lands;
 pits and lands written on a continuous spiral (22,128 revolutions, 5.6 km long);
 rotation rate 530RPM200RPM;
 the first commercially successful digital storage medium;

Secondary MemorySecondary Memory

54

CDROMs (continued)CDROMs (continued)

● 1984 Sony and Philips CDROM (Compact Disk – Read Only Memory)
 yellow book data format specifications:

 encode every byte on 14 bites – ECC;
 logical data layout:

 mode 1: above;
 mode 2: for applications that do not need error correction;
 CDROM speeds: 1x – [153,600 bytes/s – 175,200 bytes/s];

 green book (1986 – Philips): graphics, audio, video;
 CDROM filesystem: ISO 9660 – any OS.

Secondary MemorySecondary Memory

CDRecordablesCDRecordables
● orange book (1989):

 reflective gold layer instead of aluminum;
 a layer of dye: cyanine (green) or pthalocyanine (yelloworange);
 CDR laser –write mode: high power (816 mW) to melt the dye;
 CDR laser – read mode: 0.5 mW;

 CDRs allow incremental writing (multisession): multiple VTOCs (Volume Table
of Contents);

 primarily intended for data backup and recovery;

Secondary MemorySecondary Memory

55

CDRewritablesCDRewritables

● CDRW
 use same media as CDR, but an alloy of silver, indium, antimony and tellurium

instead of dye;
 CDRW lasers: highpower to melt the alloy (write), medpower to melt the alloy

back to land (format, erase), lowpower (read);

CD* Conclusions, SummaryCD* Conclusions, Summary
● Size: 650 – 700 – 800 MB;
● Copyright issues:

 music, software industry: write protection:
 multigigabyte file lengths;
 introduce errors;
 nonstandard gaps.

Secondary MemorySecondary Memory

DVDsDVDs
● “digital video/versatile disk” Nov. 1996 (Japan), Mar. 1997 (US);
● A DVD can contain:

 DVDVideo (movies (video and sound)) [regions];
 DVDAudio (highdefinition sound);
 DVDData (containing data);

● The disc medium can be:
 DVDROM (read only, manufactured by a press)
 DVD+R/RW (R=Recordable once, RW = ReWritable)
 DVDR/RW (R=Recordable once, RW = ReWritable)
 DVDRAM (random access rewritable)

● DVD formats:
 DVD5: single sided, single layer, 4.7 GB
 DVD9: single sided, double layer, 8.5 GB
 DVD10: double sided, single layer on both sides, 9.4 GB;
 DVD14: double sided, double layer on one side, single layer on other, 13.2 GB;
 DVD18: double sided, double layer on both sides, 17.1 GB;

Secondary MemorySecondary Memory

56

DVDs (continued)DVDs (continued)

Example: a doublesided, dual layer DVD disk;

● DVDs achieve higher capacity than CDs by using:
 smaller pits (0.4 microns vs. 0.8 microns for CDs);
 tighter spiral (.74 microns vs. 1.6 microns for CDs);
 red laser (0.65 microns vs. 0.78 microns for CDs).

Secondary MemorySecondary Memory

DVDs, new formats, based on “blue” lasersDVDs, new formats, based on “blue” lasers
● BluRay (Sony, Disney, Apple, and more):

 23.3/25/27 GB (single layer), 46.6/50/54 GB (dual layer) [12 cm]
 7.8 GB (single layer), 15.6 GB (dual layer) [8 cm]

● HD DVD (Toshiba, Intel, Microsoft, and more) [as of spring 2008, dropped] :
 15 GB (single layer), 30/45 GB (dual layer) [12 cm].

INPUT / OUTPUT
Buses and Interfaces

INPUT / OUTPUTINPUT / OUTPUT

57

The Physical Structure of a Personal ComputerThe Physical Structure of a Personal Computer

● a metal box with a large printed circuit board, the motherboard which contains...
● the CPU chips,
● slots in which DIMM modules can be clicked,
● chipsets,
● sockets for I/O boards,
● bus(es) – high speed (for modern I/O boards), low speed (for older I/O boards),
● code in ROM.

Input / OutputInput / Output

The Logical Structure of a Personal ComputerThe Logical Structure of a Personal Computer

Input / OutputInput / Output

58

● each I/O device has a controller;
● some of the controllers (some video controllers, harddisk) are located on the I/O boards;
● other controllers (keyboard) are located on the motherboard;
● the job of a controller: control the device and handle bus access for it;
● example – disk controller:

 when a program wants data from the disk it gives a command to the disk controller,
 the disk controller issues the seek command – to locate the data on the disk,
 the drive outputs bit streams – the controller assembles these into words and writes

them to the main memory;
● controllers that read/write data from/to the memory are performing Direct Memory

Access (DMA):
 when the transfer is completed, the controller causes an interrupt, the CPU
suspends the program it runs and starts an interrupt handler to check for errors,
take appropriate actions, etc.
 when the interrupt handler has finished, the CPU resumes the execution of the
program it was running.

ControllersControllers

Input / OutputInput / Output

The BusThe Bus

● the bus is used both by the CPU and the I/O devices;
● the bus arbiter decides which gets the bus next;
● in general I/O devices have priority, because they cannot usually be stopped (e.g. disks);
● whenever the CPU is alone, it will use the bus;
● when a I/O device is also running, upon request it will be given access to the bus

(cycle stealing – slows down the computer);
● this approach worked fine with the early computers, however soon enough the bus

could no longer cope with the load (faster CPUs, faster I/O devices);
● example IBM PC, PS/2 range:

 new, faster bus, but at the time, a whole industry of I/O devices for the slower bus;
 the slower bus was ISA (Industry Standard Architecture);

● solution make computers with 2 or more buses:
 ISA or EISA (Extended ISA);
 PCI (Peripheral Component Interconnect) (Intel – public domain, de facto industry
standard);
 USB (Universal Serial Bus) up to 127 devices.

Input / OutputInput / Output

59

The Logical Structure of a Personal Computer (revisited)The Logical Structure of a Personal Computer (revisited)

Input / OutputInput / Output

Buses RevisitedBuses Revisited

● system bus(es): CPUMemory bus
 Dual Independent Bus (DIB) architecture:

 “frontside bus”: CPUMemoryI/O;
 “backside bus”: CPUCache;
 over time, the terms "FSB" and "system bus" came to be used interchangeably;

● I/O buses

Input / OutputInput / Output

60

USB (Universal Serial Bus)USB (Universal Serial Bus)
● new standardized connector for attaching I/O devices;
● truely plugandplay;
● joint development of Compaq, Digital, IBM, Intel, Microsoft, NEC

and Northern Telecom;
● USB 1.1 1998;
● USB 2.0 2000;

Input / OutputInput / Output

AGP – Accelerated Graphics PortAGP – Accelerated Graphics Port
● Remark: bus vs. interface;
● AGP – addressed the need for massive data volumes needed to render 3D graphics;
● a separate connector, operates off the processor bus;
● Direct Memory Execute (DIME) – use system memory as if on the video card;

Input / OutputInput / Output

61

Buses and Interfaces: Summary (1)Buses and Interfaces: Summary (1)
● ISA Sound cards, modems

 2 MB/s to 8.33 MB/s
 Phased out

● EISA Network, SCSI adapters
 33 MB/s
 Almost entirely phased out; superseded by PCI

● PCIGraphics cards, SCSI adapters, new generation sound cards
133 MB/s (standard 32bit, 33MHz bus)
Standard addin peripheral bus

● AGP Graphics cards
 528 MB/s (2x mode), 2 GB/s (8x mode);
 Standard in all Intelbased PCs from the Pentium II; coexists with PCI

● USB I/O Devices
 1.512 MB/s (1.1) – 480 MB/s (2.0);

● IEEE 1394 FireWire I/O Devices
 12.5, 25, or 50 MB/s, the cable interface speeds of 100, 200 and 400 MB/s;

● PCI Express: replacement for AGP, PCI
 up to 8 GB/s

Input / OutputInput / Output

Buses and Interfaces: Summary (2)Buses and Interfaces: Summary (2)

Input / OutputInput / Output

62

INPUT / OUTPUT
DEVICES

Input / Output DevicesInput / Output Devices

User Input Devices: KeyboardsUser Input Devices: Keyboards
● computer keyboard = an array of switches, each of which sends the PC a unique signal when pressed;
● types: mechanical (spring loaded) and rubber membrane;
● on PCs: key pressed > interrupt > keyboard interrupt handler (part of OS);

 key released > another interrupt;
 key combinations (CTRLALTDEL);

● increasingly complex, with programmable buttons, etc.

User Input Devices: MiceUser Input Devices: Mice
● mouse: I/O device designed to interact with graphical user interfaces (GUIs);
● a plastic box – sits on the table next to the keyboard;
● its moves reflect the moves of a pointer on the screen;
● 1, 2, 3, more buttons; scroll wheels;
● the mouse sends a sequence of 3 bytes to the computer, with every movement;
● constructive types:

 mechanical,
 optomechanical,
 optical.

Input / OutputInput / Output

63

User Input Devices: Mice (continued)User Input Devices: Mice (continued)

Input / OutputInput / Output

CRT MonitorsCRT Monitors
● Catode Ray Tube Monitor:

 electron guns (R, G, B);
 pixel: 3 (R, G, B) phosphor dots;
 horizontal scan;
 vertical scan;

● resolution: the number of pixels per unit of area;
● refresh rate: number of frames displayed per second;

VSF = HSF / number of horizontal lines x 0.95
 VSF = vertical scanning frequency (refresh rate) and HSF = horizontal scanning frequency (kHz)
● flickerfree images require at least 75 Hz refresh rates.

Input / OutputInput / Output

64

CRT Monitors (continued)CRT Monitors (continued)

● disadvantages of CRTs:
 they're heavy and bulky;
 they're power hungry typically 150W for a 17in monitor;
 their highvoltage electric field, high and low frequency magnetic fields

and xray radiation have proven to be harmful to humans in the past;
 the scanning technology they employ makes flickering unavoidable, causing

eye strain and fatigue;
 their susceptibility to electromagnetic fields makes them vulnerable in military
 environments;
 their surface is often either spherical or cylindrical, with the result that straight

lines do not appear straight at the edges.

Input / OutputInput / Output

Flat Panel DisplaysFlat Panel Displays

● liquid crystals = almost transparent substances, exhibiting the properties of both
solid and liquid matter. Light passing through liquid crystals follows the alignment
of the molecules that make them up a property of solid matter. In the 1960s it
was discovered that charging liquid crystals with electricity changed their
molecular alignment, and consequently the way light passed through them
a property of liquids;

● Liquid Crystal Display (LCD): a display technology that relies on polarising
filters and liquid crystal cells rather than phosphors illuminated by electron
beams to produce an onscreen image:

 lowcost, dualscan twisted nematic (DSTN)
 high image quality thin film transistor (TFT).

● LCD display screens:
 laptops;
 PDAs;
 increasingly more desktop monitors.

Input / OutputInput / Output

65

Flat Panel Displays (continued)Flat Panel Displays (continued)

Input / OutputInput / Output

TerminalsTerminals
● charactermap terminals:

 hold characters + attributes (color, intensity, etc.) in the video memory

● bitmap terminals:
 hold pixels in the video memory:
 resolution 640x480 (VGA), 800x600 (SVGA), 1024x768(XVGA), 1280x960,
 1280x1024...
 color palette: 256, ...
 specialized hardware on the video controller for scrolling, other video
 manipulation.

Input / OutputInput / Output

66

Terminals (continued)Terminals (continued)

● RS232C Terminals:
 terminals that are not directly connected with the computer (esp. for mainframes);
 RS232C – a standard developed by Electronics Industries Associations (EIA);

 UART: Universal Asynchronous Receiver Transmitter.

Input / OutputInput / Output

Monochrome PrintersMonochrome Printers
● matrix printers:

 cheap, reliable but poor in graphics, slow, noisy;
 industrial use: supermarket, ATM receipts;
 724 electromagnetically activable needles across a printline;
 increase quality by increasing the number of needles, overlapping dots (see fig.):

● inkjet printers:
 lowcost(*) home printing;
 a movable print head containing a print cartridge sprays ink through tiny nozzles
 onto paper;
 at each nozzle, ink droplets are electrically boiled until they explode on the paper,
 then each nozzle is cooled, the void thus created sucking in the next ink droplet;
 print resolution: 3006007201440 dpi
 cheap, good quality, but slow, with expensive ink cartridges, inksoaked output.

Input / OutputInput / Output

67

Monochrome Printers (continued)Monochrome Printers (continued)

● laser printers:
 moderate cost, reliable, fast, high image quality;
 same technology as copy machines;
 printing languages – printing engines:

Adobe Postscript;
HP PCL;

Printer:
 printing engine,
 CPU,
 memory (fonts – builtin, downloadable).

● printing techniques: halftoning
 image broken in 6x6 pixel cells;
 gray values: 0255;
 37 gray zones;

Input / OutputInput / Output

Color PrintersColor Printers
● colors:

 transmitted light images: CRT (RGB);
 reflected light images: printed (photos, glossy pictures) CYMK:

 cyan (all red absorbed),
 yellow (all blue absorbed),
 magenta (all green absorbed),
 black (to fix imperfections);

● gamut: the complete set of colors that a display or printer can produce;
● no gamut matches the real world:

 limited color sets (16,777,216 discrete colors),
 imperfections in technologies reduce the number further,
 colors not always uniformly distributed in the color spectrum,
 human perception is not uniform (rods and cons in the retina);

● RGBCYMK (monitorprinter) transformation is not straightforward:
 pixels on the monitor have 256 intensities, printers must halftone;
 monitors have a dark background, paper is white;
 RGB and CYMK gamuts are different.

Input / OutputInput / Output

68

Color Printers (continued)Color Printers (continued)
● all types of color printers use CYMK;
● color ink printers:

 4 print cartridges (printers cheap, cartridges very expensive),
 two types of ink: (1) dyebased [bright colors, but they fade in UV light] and
 (2) pigmentbased [do not fade, but not so bright and tend to clog the nozzles];

● solid ink printers:
 4 solid blocks of waxy ink, that are melted, then pressed into the paper,
 up to 10 minutes for a printer to melt the wax;

● color laser printers:
 4 toners,
 require a lot of memory (55 MB for 1200 dpi image, for a 80 square inch image),
 expensive, but fast printing, lasting colors;

● wax printers:
 wide ribbons of fourcolor wax (page size),
 thousands of heating elements, to melt the wax which is then pressed on the paper;
 used to be the main color printing technology;

● dye sublimation printers:
 sublimation: solid changing into gas without going through liquid;
 heating element (256 temperatures), can produce almost continuous colors;
 no halftoning, high quality images (on special paper).

Input / OutputInput / Output

ModemsModems

● I/O devices used to transmit data over telephone lines;
● modulation: a technique for transmitting data over telephone lines:
 (a) the digital signal,
 (b) amplitude modulation,
 (c) frequency modulation,
 (d) phase modulation
 of the carrier wave;
● data is transmitted serially, as streams
 of bits;
● 8 bits character+start/stop bit = 10 bits;
● 28,80057,600 bits/sec;
● fullduplex: transmit and receive in the
 same time (different frequencies);
● halfduplex;
● simplex;
● improving performance: using different
 modulations at the same time;

Input / OutputInput / Output

69

ISDNISDN

● early 1980's: a standard for digital telephony: ISDN (International Services Digital
 Network) proposed by European PTTs (Post, Telegraph, Telephone Administrations);
● WWW – the killer application;
● 2 independent digital channels, 64,000 bits/sec each, plus a single channel, 16,000
 bits/sec; equipment at both ends combine the 3 channels into a 144,000 bps digital
 channel;
● an ISDN connection for home use:

Input / OutputInput / Output

ADSL

● technologies developed to offer phone companies a way into the cable TV business:
 xDSL (Digital Subscriber Line);
● very fast(download speeds up to 52 Mbit/s, upload speeds from 64 Kbit/s to over

2 Mbit/s)
● variants:

 asymmetric (ADSL),
 highbit rate (HDSL),
 singleline (SDSL),
 veryhighdatarate (HDSL);

● many constructive variants for ADSL modems (USB, Ethernet);

Input / OutputInput / Output

70

Character Codes: ASCIICharacter Codes: ASCII

● ASCII (American Standard Code for Information Exchange): codes characters
on 7 bits (128 characters);

Input / OutputInput / Output

Character Codes: ASCII (Continued)Character Codes: ASCII (Continued)
● Extended ASCII: to address the need for more (e.g. national) characters:

Input / OutputInput / Output

71

Character Codes: UNICODECharacter Codes: UNICODE

● the basic idea of UNICODE is to assign each character and symbol a 16 bit value,
code point;

● each major alphabet has a sequence of consecutive zones in UNICODE:
 Latin (336), Greek (144), Cyrillic (256), Armenian (96), Devanagari (128),
 Gurmukhi (128), Oryia (128), Telugu (128), Kannada (128),
 diacritical marks (112), punctuation marks (128), subscripts, superscripts (48),
 currency (48), math symbols (256), geometric shapes (96), dingbats (192),
 symbols for Chinese, Japanese, Korean: 1024 phonetic symbols (katakana,
 bopomofo), unified Han ideographs (20,992) used in Chinese and Japanese,
 Korean Hangul syllables (11,156),
 6400 characters for local use;

● there are still some problems:
 50,000 kanji in a full Japanese dictionary (excluding names),
 demand for at least 20,000 new entries from the Chinese,
 braille.

Input / OutputInput / Output

THE REST... THE REST...

● NETWORKING: COMPUTER NETWORKS course;
● VARIOUS OTHER I/O DEVICES:

Lab Sessions – Students Presentations.

Input / OutputInput / Output

72

Figure 17: (a) A single bus multiprocessor. (b) A multicomputer with local
memories.

73

3 The Digital Logic Level
In this Section

• Study the basic building blocks computers are made of (gates).

• Look at a special two-valued algebra (Boolean algebra) used to study these
basic components.

• Examine fundamental circuits, obtained by combining gates (including
circuits for doing arithmetic).

• Examine how gates can be used to store information (memories).

• Examine the CPU, CPU-peripherals interfaces.

3.1 Gates and Boolean Algebra
Gates

• Digital circuit: one of two values are present:

– 0-1 volt represents one value (e.g. binary 0),
– 2-5 volt represents the other value (e.g. binary 1).

• Gates are tiny electronic devices that can compute functions of these 2
valued signals.

• Gates are the basic building blocks of computers, and are made of tran-
sistors.

• Transistors are electronic devices that act as very fast binary switches.

• A transistor has 3 connections to the outside world:

– the collector,
– the base,
– the emitter.

• Figure 18 illustrates a transistor, and how transistors can be combined to
form basic gates.

• Gates are obtain from combinations of transistors and can be seen as
functions of input, as soon as the representation of the digital values is
decided (e.g. “high” - Vcc) is logical 1, and “low” - ground is logical 0).
In Figure 18 (b), (c) assumes the choice mentioned here.

• The basic gates and their behavior as functions of their inputs are repre-
sented in Figure 19.

74

Figure 18: (a) A transistor as an inverter and two transistors combined to form
(b) a NAND gate and (c) a NOR gate.

Figure 19: The basic gates and their behavior.

75

Figure 20: (a) The majority function as a truth table and (b) the corresponding
circuit.

• Since the AND and OR gates each need 3 transistors, the NAND and
NOR gates are used instead in practice.

• Constructive technologies:

– bipolar: TTL (Transistor-Transistor Logic), ECL (Emitter-Coupled
Logic) [high speed],

– MOS (Metal Oxide Semiconductor) [slower but less power hungry]:
PMOS, NMOS, CMOS (used in memories).

Boolean algebra

• Boolean algebra is used to describe the circuits that can be built by com-
bining gates.

• It “captures the essence” of the logical operations AND, OR, NOT.

• Boolean functions are represented by truth tables.

• The majority function M = f(A,B,C), i.e. the ternary function that
returns the value that appears as an input the most times, is represented
in Figure 20.

76

• The truth table representation of boolean functions may become cumber-
some with the increase in the number of inputs.

• To make things easier, one can use the notation for multiplication (AND)
and addition (OR) and overbar for negation.

• The compact representation of the majority function:

M = ABC +ABC +ABC +ABC

• The compact representation records the configuration of inputs for output
1.

• A function of n variables can be described by giving a “sum” of at most
2n “product” terms (DNF).

• This formulation leads to a straightforward way to implement a boolean
function using standard gates.

• However, many times there are more efficient ways to implement digital
circuits.

Implementation of Boolean Functions

• Some representation conventions: whenever lines cross, no connection is
implied unless a heavy dot marks the connection.

• Given a boolean function, its implementation is done in the following way:

1. Write down the truth table for the function.
2. Provide inverters to generate the complement of each input.
3. Draw an AND gate for each term with a 1 in the result column (from

the truth table).
4. Wire the AND gates to the appropriate inputs.
5. Feed the output of all the AND gates into an OR gate.

• It is simpler to construct circuits that have fewer, simpler gates:

– Replace multi-input gates with two-input gates: A+B+C+D with
(A+B) + (C +D).

– Replace various types of gates with only one type (this is possible,
see Figure 21, {NAND} and {NOR} are complete sets of boolean
connectives).

77

Figure 21: The basic gates represented in terms of NAND, NOR: (a) NOT, (b)
AND and (c) OR.

Figure 22: Two equivalent Boolean functions.

78

Figure 23: Some laws of Boolean algebra.

Circuit equivalence

• Circuit equivalence is exploited to reduce the number of gates and simplify
a circuit.

• Start with a Boolean function and apply the laws of Boolean algebra to
simplify it, see Figure 22.

• The laws of boolean algebra are illustrated in Figure 23

• Figure 24 shows alternative notations for different gates.

• Figure 25 shows equivalent representations of the implementation of ex-
clusive OR (XOR).

Representation conventions and digital devices

• According to the assignment of 0,1 to voltages (e.g. 0V, 5V respectively)
in digital devices, distinguish:

– positive logic: 0 for 0V, 1 for 5V,
– negative logic: 1 for 0V, 0 for 5V.

• Figure 26 shows how the same device can implement different gates with
different choices of representation.

79

Figure 24: Some alternative notations for (a) NAND, (b) NOR, (c) AND, (d)
OR.

Figure 25: (a) XOR and some of its equivalent implementations (b), (c), (d).

80

Figure 26: (a) Digital device in (b) positive logic and (c) negative logic.

3.2 Basic Digital Logic Circuits
Integrated Circuits

• Gates are packed on units called Integrated Circuits - ICs or chips.

• ICs: a number of gates on a plaque, pins.

• Classification of ICs:

– (Small Scale Integration): 1 to 10 gates,
– MSI (Medium Scale Integration): 10 to 100 gates,
– LSI (Large Scale Integration): 100 to 100,000 gates.
– VLSI (Very Large Scale Integration): > 100,000 gates.

• Figure 27 shows a SSI chip with 4 gates, 14 pins (12 + power and ground
connectors) and a notch to ensure correct orientation.

• A gate delay of 1-10 nsec occurs.

• Implementation issues:

– A circuit with 5,000,000 NANDs would need 15,000,002 pins x 0.1
inch, i.e. approx 18km long chip.

– Solution: design circuits with a high gate/pin ratio.

Combinatorial circuits - Multiplexers

• Combinatorial circuits are circuits with multiple inputs and multiple out-
puts, where the outputs are uniquely determined by the current inputs.

• A multiplexer is a circuit with 2n data inputs, n control inputs and 1
output, see Figure 28.

• Multiplexers can be used for parallel-to-serial converters.

• Demultiplexers are the inverse circuits.

• Figure 29 shows the use of a multiplexer to implement the majority func-
tion.

81

Figure 27: A SSI chip.

Figure 28: A multiplexer.

82

Figure 29: (a) A MSI multiplexer, (b) used to implement the majority function.

Combinatorial circuits - Decoders

• Decoders have n inputs and 2n outputs - the number formed by the input
is used to select (i.e. set to 1) exactly one of the 2n output lines. See
Figure 30.

• Example of use: memory addressing.

Combinatorial circuits - Comparators

• A comparator circuit compares two words, see Figure 31.

Combinatorial circuits - Programmable Logic Arrays

• Boolean functions can be written as “sums” of “products”.

• Programmable Logic Arrays (Pleas) (see Figure 32) are circuits that can
be used to implement arbitrary boolean functions by providing:

– n input lines (2n internally by also providing their negations),
– m AND gates each with inputs a subset of the input lines,
– a n×m matrix of fuses that specify which input goes into the ANDs,
– p OR gates that take as input outputs of the m AND gates,
– a matrix of m × p fuses to specify which AND output goes into the

OR input,

• The circuit is programmed by blowing some of the fuses.

83

Figure 30: A 3 to 8 decoder.

Figure 31: A comparator.

84

Figure 32: A 12 input 6 output programmable logic array.

Arithmetic circuits - Shifters

• Shifters have n inputs, n outputs and a control line (controlling the direc-
tion of the shift - 0 for left and 1 for right), see Figure 33.

Arithmetic circuits - Adders

• A half adder computes the sum and carry of two bits, see Figure 34.

• A full adder also takes into account the carry bit from the right (carry in),
see Figure 35.

• Full bit adders can be put together to form n bit adders.

• This type of adders is known as ripple carry adders.

• Ripple carry adders have disadvantages - delay.

• Improvement - carry select adder:

– divide a 2n bit adder into an n bit lower half and an n bit upper half,

85

Figure 33: An 8 bit shifter.

Figure 34: A half adder.

86

Figure 35: A full adder (a) specification and (b) circuit.

– duplicate the upper half hardware,
– one of the upper halves gets 0 as a right carry, the other one gets 1

as a right carry,
– the two upper halves run in parallel,
– for the final result, one of the two circuits is selected (according to

the result of the carry from the lower half).
– 100% increase in speed at the cost of 50% more hardware.

Arithmetic Circuits - Arithmetic Logic Units

• Arithmetic Logic Units (ALU) are circuit that perform basic word opera-
tions: AND, OR, NOT, sum.

• Figure 36 illustrates a 1 bit ALU. The inputs F0,F1 control the operations
to be performed, ENA,ENB enable inputs, INVA forces A.

• n bit ALUs are obtained by combining n 1 bit ALUs (bit slices), see
Figure 37.

Clocks

• Clocks (see Figure 38) are circuits that provide synchronization of devices
by emitting series of pulses with a precise width and with precise intervals
between pulses (clock cycle time).

• The clock is usually controlled by a crystal oscillator.

87

Figure 36: 1 bit ALU.

Figure 37: 8 bit ALU.

88

Figure 38: Clocks: (a) subdivisions of the clock cycle by inserting a delay, getting
4 references (b) rising edge of C1/ falling edge of C1/rising edge of C2/falling
edge of C2 and (c) asymmetric clock - basic clock shifted and ANDed with the
original circuit.

3.3 Memory
Latches

• Latches are circuits that “remember” previous input values.

• A SR latch, see Figure 39 has the following:

– inputs: S, for setting, R for resetting,
– outputs, Q, Q.

• SR latches are not uniquely determined by the current inputs:

– S = R = 0 has 2 stable states, depending on the value of Q,
– S = 1 has the effect Q = 1,
– R = 1 has the effect Q = 0,
– the circuit “remembers” whether S or R was last on.

Clocked latches

• Adding a clock (enable, strobe) to the SR latch, prevents it from changing
the state, except at specified times, see Figure 40.

• SR latches have a problem: S = R = 1 (the latch jumps to one of the
stable states at random).

89

Figure 39: A NOR SR latch.

Figure 40: A clocked SR latch.

• Clocked D latches fix the ambiguity of SR latches by avoiding the situation
that leads to the ambiguity, see Figure 41.

Flip-flops

• Flip-flops - are circuits that sample the value on a certain line at a par-
ticular time and store it.

• The clock transition occurs during the clock transition – from 0 to 1 (the
rising edge) or from 1 to 0 (the falling edge), and not on plateaux.

Figure 41: A clocked D latch.

90

Figure 42: (a) Pulse generator and (b) pulse signal.

Figure 43: A D flip-flop.

• Flip-flops differ from latches in that they are edge triggered as opposed to
level triggered.

• Flip-flops can be obtained by combining a pulse generator (Figure 42)
with a latch (Figure 43).

• Figure 44 illustrates the various representations of latches and flip-flops.

• Latches and flip-flops may have additional inputs (Set, Preset to force
Q = 1, Reset, Clear, to force Q = 0)

Registers

• Flip-flops are packed together on ICs to form registers, see Figure 45.

91

Figure 44: Representations of (a), (b) latches and (c), (d) flip-flops.

Figure 45: An 8 bit register.

92

Memory chips

• Memory chips are more complicated than the registers.

• Figure 46 illustrates a memory chip holding 4 3 bit memory words.

• Inputs:

– 3 data inputs (I0 − I2),
– 2 address inputs (A1,A2),
– 3 control inputs: CS (chip select), RD(read or write), OE (output

enable).

• Outputs: 3 data outputs (O0 −O2).

• The chip has 14 pins (as opposed to the 8 bit register before).

• CS selects the memory chip, RD with value 1 (read) or 0 (write).

• Write:

– CS ∗ RD ∗OE will be 0, so no output,
– CS ∗ RD together with A1A2 will enable one of the write gates,
– I0I1I2 will be written in the flip-flops corresponding to the selected

word.

• Read:

– CS ∗ RD ∗OE will be 1, so the output is enabled,
– CS ∗ RD will be 0, so will the write gates,
– A1A2 will select the word whose content is sent to the output.

Noninverting buffers

• In practice, the same lines are used for input and output.

• Noninverting buffers, see Figure 47, allow the interruption of cable, such
that the memory chip will not attempt to get input and output at the
same time.

• Noninverting buffers are tri-state devices (they can output 0, 1 or nothing
at all).

93

Figure 46: A 4 x 3 bit memory.

Figure 47: (a) A noninverting buffer (IN: data, control, OUT: data), (b) the
effect of the control being 1, (c) the effect of the control being 0, (d) an inverting
buffer.

94

Figure 48: The organization of a 4 Mbit memory chip: (a) 512K x 8, (b) 4096K
x 1.

Memory organization

• The previous design can be easily extended.

• For efficiency reasons, the number of words should be powers of 2.

• Memory chips observe Moore’s law.

• There are various ways in which to organize chips. In Figure 48 we have
4 Mbit chips organized in different ways: 512K x 8, 4096K x 1 (memories
tent to be measured in bits, not in bytes).

• Terminology:

– asserting - setting a value (positive, if the line is set to 1, negative
otherwise),

– negating - the opposite of asserting (same as disconnecting).

• The 512K x 8 chip:

– CS (Chip Select) asserted to select the chip.
– WE (Write Enable) asserted to indicate that data is being written.
– OE (Output Enable) asserted to drive the output signals.

• The 4096 x 1 chip:

– internally, it is a 2048 x 2084 matrix of 1 bit cells,

95

– the chip writes/reads 1 bit at a time,
– RAS (Row Address Strobe),
– CAS (Column Address Strobe).

• The organization of memories as matrices of n x n reduces the number of
pins needed, but addressing is slower, since it has to be done twice, once
for rows, once fore columns.

RAMs and ROMs (revisited)

• RAMs (Random Access Memories) are memories that can be read and
written.

– Static RAMs:
∗ constructed using D flip-flops,
∗ keep their contents as long as there is power,
∗ very fast (popular as level 2 cache memories).

– Dynamic RAMs:
∗ use transistors and capacitors instead,
∗ have to be refreshed every few milliseconds,
∗ need less transistors per bit (1+capacitor vs. 6 for a flip-flop),
∗ high density but slower,
∗ FPM (Fast Page Mode) - matrix of bits,
∗ EDO (Extended Data Output) - improve memory bandwidth.

– S(ynchronous)DRAM is a combination of static and dynamic RAM
(used in large caches and main memory) (FPM and EDO are asyn-
chronous).

• ROMs (Read Only Memories)

– cheaper to build (in large numbers), but the mask may cost,
– PROM (Programmable ROM) eliminates the cost of the mask, can

be written (programmed) once,
– EPROM (Erasable PROM) can be reused,
– EEPROM - improvement over PROM - no special device needed to

program it.
– examples of EEPROM - flash memory.

• Observer the transition: ROM → NVRAM (Nonvolatile RAM).

96

3.4 CPU Chips and Buses
CPU Chips

• All modern CPUs are contained on a single chip.

• All interactions to the outside world is done through the processor’s pins.

• These pins communicate with memory chips and I/O chips through buses.

• Address pins:

– the CPU puts a memory address on the address pins to load the word
(instruction) from the respective address.

• Data pins:

– the memory sends the instruction to the data pins,

• Control pins:

– the CPU also needs arguments, so it informs the memory over the
control pins that is wants to read data,

– the memory tells the CPU over the control lines whether data is
available.

– bus control: the CPU tells the bus what it wants to do (whether it
wants to use it),

– interrupts: input from the I/O devices to the CPU,
– bus arbitration: needed to regulate traffic on the bus (CPU counts

as an I/O device in this context),
– coprocessor signalling: pins for making and granting requests to/from

the coprocessor,
– status: provide or accept status information,
– miscellaneous: various, e.g. backward compatibility.

• Other pins: power, ground, clock signal.

• Key parameters for CPU performance:

– the number of address pins: m can address 2m addresses (usual values
for m are 16, 20, 32, 64).

– the number of data pins: n can transfer an n bit word at once (usual
values for n are 8, 16, 32, 64).

• Figure 49 illustrates a typical microprocessor.

97

Figure 49: The logical pinout of a generic microprocessor.

Computer buses

• Buses = electrical pathway between multiple devices.

• Types: Internal buses (ALU-registers), external buses (CPU-memory-I/O
devices), see Figure 50.

• Bus protocols are sets of well defined rules about how the bus works, and
which all devices connected to the bus must obey.

• Examples: Omnibus (PDP-8), Unibus (PDP-11), Multibus (8086), ISA
bus (PC/AT), EISA (80386), PCI bus (many PCs), SCSI (PCs, work-
stations), Nubus (Macintosh), USB (modern PCs), FireWire, VME bus
(physics lab equipment), Camac bus (high energy physics).

• Some devices attached to the bus are active and can initiate transfers -
masters, whereas some of them are passive - slaves.

• Example:

– CPU - master, memory - slave: fetching instructions and data,
– CPU - master, I/O device - slave: initiating data transfer,
– CPU - master, coprocessor - slave: CPU handling instructions to the

coprocessor,
– I/O - master, memory - slave: DMA.

98

Figure 50: A computer system with multiple buses.

– coprocessor - master, CPU - slave: coprocessor fetching operands
from the CPU.

• Bus drivers - essentially digital amplifiers for bus masters (signals are not
powerful enough to power the bus, usually),

• Bus receivers - chips that connect the slaves to the bus.

• Bus transceivers - for devices that can be both masters and slaves.

• A bus, like a CPU, has address, data and control lines, but there is not
necessarily a one-to-one mapping between the CPU pins and the bus sig-
nals (decoders are places between the CPU and the bus).

Bus design issues

• The more address and data lines, the better.

• However, more lines make the bus more expensive, a tradeoff may be
necessary.

• Example: Figure 51 illustrates the evolution of the address buses for Intel
processors, backward compatibility leading to a messy design.

• To increase the data transfer through the buses:

– increase the number of data wires (same design problems mentioned
above),

– decrease the bus cycle time (difficult - bus skew - different signals
have different speeds, backward compatibility issues).

– recent trend: transition to serial buses - high speed and simple design.

• Multiplexed buses use the same wires for both data and address signals
(slower bus).

99

Figure 51: The evolution of an address bus over time (a) enough for addressing
1 Mb, (b) extended to address 16 Mb, (c) extended further to address 1 Gb.

Bus clocking - synchronous buses

• Synchronous buses - driven by a crystal oscillator, all bus activities take
an integral number of these bus cycles.

• Figure 52 illustrate the timing of a read operation on a synchronous bus.

Bus clocking - asynchronous buses

• Synchronous buses are geared towards the slowest device in the configu-
ration.

• Asynchronous buses do not have a master clock, but a synchronization
signal.

• A full handshake - set of interlocking signals ensure the correctness of
operations.

• Figure 53 illustrates a read operation on an asynchronous bus.

• Note that despite the apparent obvious advantage, most of the buses are
still synchronous (compatibility, investment, simplicity).

Bus arbitration

• Bus arbitration decides which device gets to use the bus.

• In the case of centralized arbitration, see Figure 54, access is granted by
a bus arbiter.

100

Figure 52: Timing of a read operation on a synchronous bus.

Figure 53: A read operation on an asynchronous bus.

101

Figure 54: Centralized bus arbitration: (a) with daisy chaining and (b) multi-
level daisy chaining.

Figure 55: Decentralized bus arbitration.

• Access is granted to the arbiter to the nearest device that requests access
daisy chaining.

• There could be several access levels of access priorities.

• In systems with only one bus the CPU gets the lowest priority.

• Decentralized bus arbitration is possible, see Figure 55:

– prioritized bus request lines (more bus lines, number of devices lim-
ited to the number of request lines),

– decentralized daisy chaining (same behavior as the centralized case,
but cheaper and easier to implement).

102

Figure 56: Block operations on buses.

Block operations

• Block read/writes are used in some cases, e.g. when using caching, as
illustrated in Figure 56.

• On multiprocessors read-modify-write cycles are used to prevent individ-
ual processors modifying critical data structures at the same time. The
processor that gets the bus does not release it before the operation was
completed.

Handling interrupts

• When the CPU commands an I/O device to do something, it expects back
an interrupt.

• Interrupt controllers are chips that arbiter the interrupts.

• Figure 129 illustrates the 8259A controller.

• Up to 8 devices can be connected to the 8259A controller.

• More can be connected using multiple controlled cascaded.

• The procedures for handling interrupts are stored in hardware tables -
interrupt vectors.

3.5 Example CPUs
An Intel CPU

103

Figure 57: The 8259 interrupt controller.

Figure 58: The logical pinout of an Intel CPU (i7).

104

Figure 59: Pipelining DRAM memory requests on Core i7.

Intel i7 CPU: DRAM pipelining

• In general CPUs are faster than main memory (RAM),

• Pipelining the bus can help.

• Bus requests (called transactions) have six stages:

1. The bus arbitration phase.
2. The request phase.
3. The error reporting phase.
4. The snoop phase.
5. The response phase.
6. The data phase.

• Figure 59 illustrates pipelining the bus requests on an intel CPU.

UltraSPARC

• Although also used in workstations, the more important use of Ultra-
SPARC processors is in large shared memory multiprocessor servers.

• Figure 60 illustrates an UltraSPARC III core.

• Later examples of the architecture are UltraSPARC T1, T2.

• Features:

– 2 main internal L1 caches: 32 KB instructions, 64 KB data,
– L2 caches off the chip (choose your own),

105

Figure 60: The main features of the core of an UltraSPARC system.

– UPA (Ultra Port Architecture) connects (multiple) processors with
(multiple) memories.

– UltraSPARC Data Buffer II (UDB II) is a chip that is used to de-
couple the CPU from the memory, to allow them to work asyn-
chronously.

picoJava

• picoJava / II was a research project at Sun Microsystem, never used com-
mercially, but licensed to other companies (Fujitsu, Siemens, NEC).

• microJava II - a particular implementation (illustrated in Figure 61):

– uses the PCI (convenience),
– flash PROM interface (stores the program),
– 64 bit wide memory bus, 32 bit wide PCI bus,
– no level 2 cache.
– runs native Java programs.

• A similar project is the ARM Jazelle extension.

Interfacing: Intel 8255A

• I/O chips connect I/O devices to the computer bus.

106

Figure 61: A microJava 701 system.

Figure 62: The Intel 8255a PIO chip.

• Example: UART (Universal Asynchronous Receiver Transmiter), PIO
(Parallel Input/Output).

• Intel 8255A – typical PIO (illustrated in Figure 62):

– can talk to registers on ports A, B, C.
– or can be used for handshaking with external devices.
– additional lines:

∗ 8 bit data lines,
∗ chip select,
∗ address lines,
∗ reset,
∗ read, write lines.

– to address more ports, several such chips may be cascaded.

107

Figure 63: Location of EPROM, RAM and PIO in the 64KB address space of
an enbedded device.

Address Decoding

• PIO chips can me configured as part of the I/O space or the memory
space, as needed.

• memory-mapped I/O: assign 4 bytes of the memory space for the PIO
(e.g. in a simple embedded device - toy), see Figure 63.

• the CS pin of the PIO is wired to the address lines of the bus (see Fig-
ure 64):

– full address decoding - wiring to every line,
– partial address decoding - wire only those lines that are relevant to

the address space (but this ties up the address space - no memory
upgrade).

• if the corresponding address is issued, the PIO takes it from the address
lines of the bus.

108

Figure 64: (a) Full address decoding. (b) Partial address decoding.

109

4 The Microarchitecture Level
4.1 An Example Microarchitecture
Overview - the microarchitecture level

• The job of the microarchitecture level is to implement ISA (the instruc-
tion set architecture), i.e. to provide a frame for the execution of the
instructions that form ISA.

• The design and structure of the microarchitecture level depend on the ISA
being implemented, as well as cost and performance goals of the computer

– RISC designs: simple instructions that can be executed in one clock
cycle,

– CISC designs: complex instructions that take more than one clock
cycle.

An example microarchitecture for IJVM

• Example microarchitecture: Mic-1, implementing IJVM (Integer Java Vir-
tual Machine).

• JVM (Java Virtual Machine)/(Sun Microsystems) - a virtual machine that
runs Java everywhere – Web pages, mobile phones, etc.

• The microarchitecture will contain:

– a microprogram (in ROM), whose job is to fetch, decode and execute
IJVM instructions.

– state variables that can be accessed by all the functions of the mi-
croprogram (example: PC - the program counter).

• The instructions of IJVM are very simple, with just a few fields (usu-
ally one or two): opcode which identifies the type of instruction, and an
operand field.

Data path

• The data path is the part of the CPU that contains the ALU, its inputs
and outputs.

• Figure 65 illustrates the data path of our example microarchitecture:

– it has 32 bit registers (with symbolic names assigned - PC, MDR,
MAR, etc.) which are accessible only at the level of the microarchi-
tecture,

– the registers put their content on bus B (except the scratch register
H, which has its own bus, A),

110

– the ALU performs logic-arithmetic operations, it has 6 controls (see
Figure 66 for their combninations):
∗ F0, F1 to determine the operation,
∗ ENA, ENB enable operands,
∗ INVA - inverting the left input,
∗ INC - force a carry in the low order bit.

Figure 65: The data path of the example Mic-1 microarchitecture.

Data path timing
• The data flow on the data path (register-bus-ALU-register) determines

implicit subcycles, see Figure 67:

1. set up control signals - ∆w,
2. load register content on bus B - ∆x,
3. ALU and shifter operation - ∆y,
4. results propagate along bus C back to the registers - ∆z.

• the ALU and shifter work all the time, but until ∆w + ∆x + ∆y they
produce garbage.

• ∆w +∆x+∆y +∆z has to be smaller than the clock cycle.

111

Figure 66: Useful control combinations for the ALU.

Memory operation

• There are two different ways to communicate with the memory:

– a 32 bit word addressable port for ISA level data words.
– a 8-bit byte addressable port for ISA level instructions.

• The 32 bit word addressable port:

– controlled by 2 registers - MAR (Memory Address Register) and
MDR (Memory Data Register),

– MAR contains the address of the word that should be read into MDR.

• The 8 bit port is controlled by one register, PC (Program Counter), read-
ing into the low-order 8 bit of the MBR (Memory Byte Register).

– this can be either unsigned (and it is transformed into 32 bit values
by adding 24 zeros in front), used for table indexing, or

– signed (values from -128 to 127 trasformed into 32 bit words).

Data path control

• For controlling the data path the following (29) signals are needed, see
Figure 65:

112

Figure 67: Timing diagram for a data path cycle.

– 9 signals to control enabling registers onto the B bus for ALU input,
– 9 signals to control writing data from the C bus,
– 8 signals to control ALU and shifter,
– 2 signals to indicate memory read/write via MAR/MDR (not shown),
– 1 signal to indicate memory fetch via PC/MBR (not shown).

• The values of the signals specify one data path cycle: put values from the
registers onto the B bus, carry out the ALU+shifter operations, store the
results back into registers from C bus.

• Example operation - memory read:

– assert memory read at the end of the cycle k (after loading MAR),
– memory data is available at the very end of cycle k + 1,
– memory data can be used at cycle k + 2 (from MDR),
– and this is taking into account 100% cache hit rate.

Microinstructions

• A Mic-1 microinstruction packages together the signals needed to drive a
data path cycle, and get the next microinstruction (for the next data path
cycle).

• Figure 68 illustrates the structure of a Mic-1 microinstruction:

– Addr contains the address of the potential next microinstruction,

113

Figure 68: The format of a Mic-1 microinstruction.

– JAM - determines how the next microinstruction is selected, (JMPC
- jump, JAMN - jump when negative, JAMZ - jump when zero)

– ALU - ALU and shifter controls,
– C - selects which registers are written from the C bus,
– Mem - controls the memory access,
– B - selects the source for the B bus (encodes one a value from 0 to 8

on 4 bits).

The Mic-1 microarchitecture

• Figure 69 illustrates the complete block diagram for the Mic-1 microar-
chitecture.

• Additional to the registers and signals already mentioned:

– MPC (Microprogram Counter) - contains the address (in the control
store) of the next microinstruction to be loaded,

– MIR (Microinstruction Register) - contains the microinstruction driv-
ing the data path,

– N, Z negative, zero (respectively) flags of the ALU.

Mic-1 operation

1 MIR is loaded from the word in the control store pointed by MPC during
∆w, before ∆x,

2 Control signals propagate from MIR into the data path:

– one register is loaded onto the B bus,

114

Figure 69: The Mic-1 microarchitecture.

– ALU is told which operation to perform,
– at ∆w +∆x the ALU inputs are stable.

3 ALU and shifter execute: at ∆w+∆x+∆y the ALU and shifter outputs
are stable.

4 Write into registers (from C bus): by ∆w + ∆x + ∆y + ∆z the results
from ALU and shifter are in the registers, flipflops N, Z have been read
and the next microinstruction is into MPC.

Microinstruction sequencing

• Microinstructions in the control store are not executed sequentially.

• Determining the next microinstruction:

– copy the NEXT_ADDRESS to MPC and in the same time
– inspect JAM:

∗ Case JAM = 000 do nothing else, MPC points to the next mi-
croinstruction,

∗ Case JAM ̸= 000:
MPC[8] = (JAMZ ∧ Z) ∨ (JAMN ∧N) ∨NEXT_ADDRESS[8])

115

– MPC can take two possible values (see Figure 70):
∗ NEXT_ADDRESS,
∗ NEXT_ADDRESS with the high-order bit or-ed with 1.

– When the JMPC bit is set, the 8 MBR bits are or-ed bitwise with the
8 lower-bits of NEXT_ADDRESS (box labelled “O” in Figure 69),
which allows the implementation of multiway branch (jump) at any
256 addresses determined by the bits in MBR.

Figure 70: A microinstruction with JAMZ set to 1 has two potential successors.

116

4.2 An Example ISA: IJVM
IJVM

• IJVM - the ISA implemented by the Mic-1 (i.e. the macroarchitecture),

• stacks - memory area for variables:

– local variables cannot be stored at absolute addresses,
– LV - a register that points to the base of the local variable (frame),
– SP - stack pointer,
– LV - SP define a local variable frame,
– variables are referred to by the offset from LV,
– basic stack operations are PUSH, POP,
– operand stacks are used for arithmetic operations (Figure 71 illus-

trates this use for a1 = a2 + a3).
– each procedure has its own stack, see Figure 72.

Figure 71: The use of an operand stack for doing arithmetic computation.

Figure 72: Use of a stack to store local variables. (a) While A is active. (b)
After A calls B. (c) After B calls C. (d) After C and B return and A calls D.

The IJVM memory model

• The IJVM memory, illustrated in Figure 73 is partitioned in:

• The constant pool:

117

– cannot be written by any IJVM program,
– constants, strings, pointers to other memory areas live here,
– CPP contains the pointer to this memory location.

• The local variable frame:

– local variables of the program,
– pointed to by the LV register.

• The operand stack pointed by SP (top address),

• The method area:

– memory area containing the program,
– referred to by PC.

• CPP, LV, SP address words, PC addresses bytes.

Figure 73: The IJVM memory model.

The IJVM instruction set

INVOKEVIRTUAL

• INVOKEVIRTUAL (see Figure 75) is an instruction for invoking another
method:

– push the pointer to the called object (procedure)
– then push the parameters for the called object,
– the parameter of INVOKEVIRTUAL (disp) contains:

118

Figure 74: The IJVM ISA instructions.

∗ bytes 0-1: number of parameters,
∗ bytes 2-3: size of local variable frame,
∗ from byte 4, the first opcode (instruction) to be executed.

– Executing INVOKEVIRTUAL amounts to:
∗ setting SP to the top of the new stack,
∗ store old LV and PC of the old frame,
∗ set LV to the base of the new frame,
∗ set PC to byte 4 (next instruction).

IRETURN

• Return from the procedure call:

– deallocate space,
– restore stack to former state,
– the return value pushed on top of the stack,
– restore the PC.

• The execution of IRETURN is represented in Figure 76.

119

Figure 75: (a) Memory before executing INVOKEVIRTUAL. (b) Memory after.

Compiling JAVA to IJVM

• The example illustrated in Figure 77 shows how Java and IJVM relate.

• Java code is compiled to IJVM instructions.

• The IJVM instructions have a numeric format, assembly language repre-
sentation is provided for easy reading by humans.

• Figure 78 illustrates the state of the memory when executing the example
program.

120

Figure 76: (a) Memory before executing IRETURN. (b) Memory after.

Figure 77: (a) Java fragment. (b) The corresponding Java assembly language.
(c) The IJVM program in hexadecimal.

121

Figure 78: The stack after each instruction from Figure 77.

122

4.3 Implementation of the Instruction Set
Microinstructions: equational notation

• Our goal is to show how the instructions of the IJVM (Figure 74) are
implemented at the level of the microarchitecture, by specifying the signals
that go through the data path.

• To achieve the above, we specify an equational Micro Assembly Language
(MAL), a high level language that reflects the characteristics of the archi-
tecture.

• Basic operations on the data path during one clock cycle (specified in
MAL, illustrated in Figure 79):

– one register is gated to the bus B,
– one the A bus choices are -1, 0, 1 or the content of H,
– one operation is selected for the ALU,
– a register is written.

• Other operations allowed:

– ≪ 8 shifting bytes,
– goto label for unconditional branching,
– conditional branching (based on flags N, Z):

if (Z) goto L1; else goto L2

– conditional branching (based on JMPC): goto (MBR or value).

Summary of Mic-1 registers

• The Mic-1 registers are used to describe the IJVM memory, or to hold
operands:

– MAR (Memory Address Register) - used to hold an address in the
local variable frame. Used in connection with the memory access
signals rd (the address from where to read), wr (the address where
to write data).

– MDR (Memory Data Register) - used to hold the data that is to be
written into the memory (at address indicated by MAR), or where
data is brought from memory (address indicated by MAR).

– PC (Program Counter) - the address of the next instruction in the
method area, used in connection with the fetch signals (which brings
the opcode corresponding to the instruction into MBR),

123

Figure 79: MAL description of permitted operations: SOURCE is a register
that outputs on bus B, destination is a register that can be written from bus C.

– MBR (Memory Byte Register) - holds the opcode of the IJVM in-
struction pointed by PC.

– SP (Stack Pointer), the address of the top of the stack.
– LV (Local Variable), the address of the bottom of the local variable

frame.
– CPP (Constant Pool Pointer), an address from the constant pool.
– TOS (Top of the Stack), the data contained in the memory location

at the top of the stack (the one pointed by SP).
– OPC - scratch register, usually used to save the address of the opcode

for a branch instruction while PC is incremented.

The Mic-1 microprogram

• The Mic-1 microprogram is illustrated in Figures 80,81,82,83,84.

124

Figure 80: The Mic-1 microprogram (1).

Figure 81: The Mic-1 microprogram (2).

125

Figure 82: The Mic-1 microprogram (3).

Figure 83: The Mic-1 microprogram (4).

126

Figure 84: The Mic-1 microprogram (5).

127

4.4 Designing the Microarchitecture Level
Design issues

• The design of the microarchitecture level is full of tradeoffs, of which the
most important: speed vs. cost.

• Improving speed:

– faster circuits (beyond the scope of this lecture),
– increase the speed of execution by:

∗ reducing the number of clock cycles needed to execute an (IJVM)
instruction,

∗ simplify the organization, such that the clock cycles can be shorter,
∗ overlap the execution of instructions.

• Mic-1 is moderately simple and moderately fast.

• However, simple machines are not fast, and fast machines are not simple.

Merge the interpreter loop with the microcode

• Instead of executing the main fetch loop at the beginning of an instruction,
do it at the end of each instruction, i.e. merge the interpreter loop into
the end of each microcode sequence, see Figure 85.

• Moreover, in some cases, the interpreter loop may be used to take advan-
tage of “dead” cycle (like it is the case for POP, see Figure 86).

Figure 85: Main loop fused into the execution of POP.

Figure 86: Further integration of the interpreter loop.

128

A 3 bus architecture

• Allow bus A to be a full bus (i.e. allow all registers to access all buses).

• This way, 2 registers can be added.

Instruction Fetch Unit

• An instruction fetch unit (IFU):

– is an independent unit for fetching and processing instructions:
∗ increment the PC
∗ fetch bytes from the byte stream,
∗ assemble the operands.

– it avoids the use of the ALU for fetching instructions and operands.

• There are two possible approaches:

1. The IFU can interpret each opcode, determining how many addi-
tional fields must be fetched,

2. The IFU makes available at all times the next 8 and 16 bit pieces
whether or not it makes any sense to do so. The main execution unit
can ask for what it needs.

• Figure 87 illustrates the data path of a microarchitecture with 3 buses and
an instruction fetch unit (called Mic-2). The corresponding microprogram
is shown in Figures 88,89,90.

129

Figure 87: Mic-2, a 3 bus architecture with IFU.

130

Figure 88: Mic-2 microprogram (1).

Figure 89: Mic-2 microprogram (2).

131

Figure 90: Mic-2 microprogram (3).

132

Pipelining

• Latches can be used to partition the data path (see Figure 91), so that
multiple instructions can be executed in the same time (see Figure 92).
This extension is Mic-3.

• Further refining the design, we have Mic-4, see Figure 93 with stages in
the pipeline handling the sequencing of microoperations, see Figure 94.

Figure 91: The 3 bus pipelined data path of Mic-3.

133

Figure 92: Graphical illustration of the Mic-3 pipeline.

Figure 93: The main components of Mic-4.

134

Figure 94: Mic-4 pipeline.

135

4.5 Improving Performance
Approaches to improving performance

• Cache memory.

• Branch prediction.

• Out-of-order execution and register renaming.

• Speculative execution.

Cache memory

• Cache: small, fast memory that holds the most recently used words.

• Improving bandwidth and latency: separate data and instrctions - split
caches, especially level 1 caches.

• Locality principles:

– spatial locality: memory locations close to the requested one are
likely to be accessed and are brought from the memory.

– temporal locality: recently addressed memory locations are accessed
again, locations not recently accessed are discarded from the cache.

– Taking into consideration the locality principles may improve pro-
grams significantly.

• Cache principles:

– cache lines
– when a memory word is referenced by a program, the cache controller

checks whether the word is in the cache, if not it brings it with its
own cache line, after making room by discarding some cache lines.

Direct-mapped caches

• Simplest form of cache, see Figure 95.

• Each cache entry consists of:

– a valid bit indicating whether the entry has valid data,
– a tag field consisting of a unique value identifying the memory line,
– a data field holding a cache line of 32 bytes.

• A word in memory can be stored in a single position in cache:

– the LINE field identifies in which cache line it is,
– the TAG field checks whether the right line is in the cache,

136

– the WORD field determines the position of the word in the cache
line.

• Problem with direct mapped caches:

– if two words in the memory, which use the same position in the cache
(or even the same cache line) both are heavily used (i.e. need to be
in the cache),

– then the respective line will have to be discarded and loaded very
often (and the advantages of caching are lost).

Figure 95: (a) A direct mapped cache. (b) A 32 bit virtual address mapping
memory words into the cache.

Set-associative caches

• Allow one word in the memory to be stored in various (fixed number n
of) places in the cache, see Figure 96.

• Usually n = 2 or n = 4.

• When a word has to be brought into the memory, but the corresponding
cache line is occupied, the other alternatives are tried.

• If all the lines are occupied, the least recently used (LRU) line is discarded
from the cache to make room for the line coming from the memory.

137

Figure 96: A four way associative cache.

Branch prediction

• Real world code is full of branch instructions, see Figure 97, also remember
pipelines, like the one for Mic-4, Figure 94:

– unconditional branches (BR) create problems:
∗ instruction decoding occurs in the second stage in the pipeline,
while the first stage already fetches the next instruction, al-
though a jump is performed

∗ the next instruction can be put into a delay slot - it is still exe-
cuted but the result will be used if/when it is needed.

– for conditional branches:
∗ (BNE) the fetch unit does not know which instruction to load
until much later in the pipeline,

∗ the pipeline has to stall until it is known whether the branch is
taken or not.

– The problems are addressed by using branch prediction techniques.

• Dynamic branch prediction: the CPU guesses whether a branch is taken
using a cache-like history table.

• Possible organizations of the history tables are illustrated in Figure 98:

– using 1 bit predictor, saying whether the branch was taken last time
or not,

– using 2 bits for prediction, the second bit says whether the guess was
true last time - if the second bit is 0, the first bit is changed, so the
first error (end of loop) does not change prediction,

138

Figure 97: (a) A program fragment. (b) Corresponding translation into generic
assembly language, with branching instructions.

– prediction bits plus target address of the last branch.

• Static branch prediction requires previous knowledge about the structure
of the program, i.e. it requires special compiler support.

Figure 98: (a) A 1-bit branch history. (b) A 2-bit branch history. (c) Mapping
betwern branch history address and target address.

Out-of-order execution

• Modern CPUs a re superscalar.

• The decoding unit feeds multiple functional units.

• In-order execution:

– instructions are issued in the order they appear in the program, e.g.
1-2-3-4.

– instruction 2 may depend on instruction 1 and has to wait for it to
finish execution,

– however, if instruction 3 does not depend of the previous ones, but
it will wait as well

139

• Out-of-order execution:

– the decode unit may change the order of the instructions (e.g. 1-3-
2-4).

– problem: the same register R may be written both by instruction 1
and 3.

• Register renaming: the CPU has secret registers, invisible to the programs:

– the decode unit may change the instructions to read/write from/to
secret registers,

– instruction 3 is changed to write to S,
– instruction 4 is changed from reading from R to reading from S.

Speculative execution

• Out-of-order execution only operates within basic blocks.

• Speculative execution allows the code to be moved beyond the block
boundaries.

• Figure 99 illustrates a code sequence and its partition into code blocks.

• With speculative execution:

– code may be executed before it is known that it will be needed,
– both branches of the conditional may be executed simultaneously

with the block that computes the condition.

• Speculative execution requires additional instruction and compiler sup-
port.

140

Figure 99: (a) Program fragment . (b) Corresponding basic block graph.

141

4.6 Example Microarchitectures
Intel i7

• Figures 100, 101, illustrate the Intel Pentium 2 microarchitecture, with
details of the instruction fetch unit (IFU) and the dispatch unit.

• Although this is an ancient processor, it shows how the design incorporates
the techiques mentioned above.

• The structure of the instruction set (Intelx86 has CISC instructions) influ-
ences the complexity of the various components of the microarchitecture.

Figure 100: Block diagram of the i7 microarchitecture.

OMAP4430 (ARM)

• Figures 102, 103 illustrate the microarchitecture and pipeline of OMAP4430
(ARM), a RISC machine.

ATmega168 microcontroller

• Figure 104 illustrate the microarchitecture of ATmega168 microcontroller.

142

Figure 101: Simplified pipeline of the i7 microarchitecture.

Figure 102: The OMAP4430 microarchitecture.

143

Figure 103: The pipeline of OMAP4430.

Figure 104: The microarchitecture of ATmega168 microcontroller.

144

5 The Instruction Set Architecture Level
5.1 Overview of the Instruction Set Architecture Level
The Instruction Set Architecture

• The Instruction Set Architecture level (ISA) = essentially, the set of in-
structions that can be executed on a machine.

• Initially ISA was the only level of the machine.

• It is referred to as “the architecture”.

• While it is possible to build machines that execute high level language
programs (C++, etc.), this may lead to loss of performance (compilation
vs. interpretation), and such machines would only run programs written
in the respective language.

• The common approach: programs written in the high level languages are
translated into a common intermediate form - the ISA level, and hardware
executes the ISA-level instructions.

• A representation of the ISA level is given in Figure 105.

Figure 105: The ISA level - the interface between high level programming lan-
guage and hardware.

ISA design

• In theory, designing the ISA level should be a compromise between the
needs that come from the high level languages (efficient “hardware” exe-
cution of some instructions) and the possibilities of the implementation in
hardware.

145

• In practice, backward compatibility (i.e. old code should run on the new
machine, old instructions should be present) is a major factor in the design
of the ISA.

• ISA design factors:

– a good ISA should define a set of instructions that can be imple-
mented efficiently in current and future technologies,

– a good ISA should provide a clean target for compiled code (regularity
and completeness).

Properties of the ISA level

• Tanenbaum: “since the ISA is the interface between the hardware and the
software, it should make hardware designers happy (easy to implement)
and make the software designers happy (easy to generate good code for).”

• The ISA level is defined by how the machine appears to a machine language
programmer (but not many people do that anymore).

• The ISA-level code can be redefined as the compiler’s output.

• To output ISA code, a compiler has to know

– the memory model,
– registers,
– data types,
– instructions

of the architecture.

• In principle other details are not relevant (e.g. pipelined, microprogrammed,
superscalar, etc.).

• However, in practice some of the details are important (e.g. the compiler
can issue alternating integer and floating point instructions for a super-
scalar design where these can be handled in parallel).

Architecture documents

• For some (most) architectures, the ISA level is specified in a document
provided by:

– the manufacturer (Intel),
– an industry consortium (V9 SPARC, JVM).

• These documents contain normative sections (imposing requirements) and
informative sections.

146

• For most machines there are at least 2 modes:

– kernel mode, to run the operating system and all instructions,
– user mode, that restricts the instructions that can be executed.

5.2 Memory models
• Memory is divided into memory cells, each with its own address.

• Most widely used are 8 bit cells (bytes), but cells from 1 to 60 bits have
been used.

• Bytes are grouped into 4-byte or 8-byte words, with instructions manipu-
lating entire words.

• Many architectures require words to be aligned to natural boundaries.

• Alignment is required because memories operate more efficiently.

• Non-alignment is often present due to backward compatibility (e.g. Pen-
tium 4 needing to run 8080 code).

• Figure 106 illustrates memory alignment.

• Most machines have a linear address space, some have separate address
space for data and for instructions.

• Memory semantics: LOAD after STORE - serialized memory requests,
SYNC instructions (to block any other memory access until the current
one has ended).

Figure 106: (a) Aligned memory. (b) Non-aligned memory.

147

5.3 Registers
• All computers have registers visible at the ISA level (however not all reg-

isters visible at the microarchitecture level will be visible from ISA),

• Two types of registers:

– special purpose: stack pointer, program counter, etc.
– general purpose: hold local variables, intermediate results, etc.

• On some machines, these types of registers are interchangeable (e.g. on
SPARC R1-R25).

• Even when registers are interchangeable, there may be some conventions
on how to use them (indicated in the ISA specification document).

• Some registers are only available in kernel mode (registers that control the
cache, I/O functionality, other hardware functions).

• PSW (Program Status Word) or flags registers - hybrid kernel/user regis-
ter containing various miscellaneous bits needed by the CPU:

– N - the result was Negative,
– Z - the result was Zero,
– V - the result was an oVerflow,
– C - the result caused a Carry in the leftmost bit,
– P - the result had even Parity.

Memory, registers - example: IA32

• IA32(x86) can be traced back to 8088 (8008, 4004).

• It has 3 operating modes:

1. real mode: same as 8088 (if any program does anything wrong, it
crashes),

2. virtual 8086 mode: run 8088 programs in a protected mode, the OS
creates and environment where these programs are run, eliminating
system crashes.

3. protected mode: full 32 bit instruction set, 4 privilege levels (0 -
operating system, 3 - user, 1,2 hardly ever used).

• Address space: 16,384 segments, each from address 0 to 232 − 1, only
segment 0 used by most OS (Windows, Unix), 32 bit words.

• Figure 107 illustrates the IA 32 registers:

– general purpose, 32 bit:

148

∗ EAX (arithmetic),
∗ EBX (pointers),
∗ ECX (looping),
∗ EDX (multiplication and division, together with EAX)

each also holding 8 and 16 bit registers,
– general (but more restricted) purpose, 32 bit registers:

∗ ESI, EDI (hold pointers into memory),
∗ EBP (stack base pointer),
∗ ESP (stack pointer),

– segment registers (CS to GS), for backward compatibility,
– EIP - the program counter, EFLAGS - the PSW.

Figure 107: The registers of the IA 32 architecture.

Memory, registers - example: UltraSPARC II

• UltraSPARC II is a 64 bit machine compliant with SPARC 9 specifications.

• 264 addressable array of memory.

• The SPARC ISA is clean, though the organization of registers is somewhat
complex, to make procedure calls more efficient.

149

• Registers: 32 64-bit general purpose registers (R0-R31), see Figure 108,
32 floating point registers.

• The use of registers indicated in Figure 108 is strongly recommended “un-
les you have a Black Belt in SPARC Guru and really, really know what
you are doing.”

• Floating point registers can be used for single precision (32 bit), double
precision (64 bit), or grouped together for quad precision (128 bits).

Figure 108: Registers of UltraSPARC II.

• Implementation of procedure calls (see Figure 109):

– 32 general purpose registers are always visible,
– register windows implement efficient procedure calls,
– the number of the register window is stored in the CWP,
– this technique requires register renaming.

• UltraSPARC II is a load/store architecture, i.e. only LOAD and STORE
access memory directly.

Memory, registers - JVM

• Memory model: 4 main regions:

– local variable frame
– the operand stack,
– the method area,
– the constant pool

150

Figure 109: UltraSPARC II register window.

(pointed respectively by LV, SP, PC, CPP).

• All memory access is made by offsets of the above registers (no pointers
or absolute memory is used – Java code should run everywhere, but not
spy).

• Each memory region is limited (64 Kb), so for dynamically created data
structures use the heap (e.g. int a[] = new int[4096]).

• The garbage collector cleans up the heap when its allocated space runs
out.

• JVM does not have any general-purpose registers that can be loaded or
stored under program control, it is a pure stack machine.

• The problem with stack machines is that they require a large number of
memory references.

• To deal with the above problem, multiple instructions are folded together.

5.4 Data Types
• All computers process data, the main issue is whether a data type is

hardware supported.

151

• Numeric data types:

– integer: 8, 16, 32, 64 bits (most represented in two’s complement),
signed or unsigned,

– floating point: 32, 64, 128 bits,
– decimal (Cobol friendly machines).

• Non-numeric data types:

– characters (ASCII, UNICODE),
– boolean,
– pointers.

Data types examples

• Intel: integers, floating point (see Figure 110), characters, strings.

• UltraSPARC II: integers, floating point (see Figure 111), no support for
characters.

• JVM: Java is a strongly typed language, every object has a type (numerical
types in Figure 112).

Figure 110: Numerical data types for the Intel architecture.

Figure 111: Numerical data types of UltraSPARC II.

152

Figure 112: Numerical data types of JVM.

5.5 Instruction Formats
• An instruction consists of an opcode, possibly together with additional

information, such as where the operands come from, where they go (i.e.
addressing).

• Figure 113 illustrates the possible formats of an instruction.

• Instructions can take one, a subdivision, or several memory words, see
Figure 114.

Figure 113: Common instruction formats: (a) Zero-address instruction. (b)
One-address instruction. (c) Two address instruction. (d) Three-address in-
struction.

Figure 114: Possible relationships between instructions and word length.

Design criteria for instruction formats

• Instruction design depends on technology:

153

– fast memory (or desire to produce cheap processors) suggests a stack
based design: JVM

– slow memory suggests a design with many registers: SPARC.

• Short instructions are better than longer instructions (with respect to
memory space).

• However, short instructions may be difficult to decode.

• Memory bandwidth bottlenecks favours short instructions.

• The opcode should allow the extension of the instruction set.

• Number of bits in an address field (bytes vs. words) - short addresses and
good memory resolution can be traded against eachother.

Expanding opcodes

• Figure 115 show how to choose opcodes for 16 bit instructions.

• In practice, choosing opcodes is not as regular as this.

• Key approaches:

– shorter opcodes for the most widely used instructions (minimize the
average length),

– shorter opcodes for instructions that need longer addresses.

Example instruction format: Intel IA32

• The Intel 32 bit instructions are highly irregular, with up to six variable
length fields, five of which are optional, see Figure 116.

• The prefix allowed the extension of the opcode when Intel ran out of codes
for instructions.

• Mode contains 3 regions, first (rightmost) being sometimes used as an
extension of the opcode (11 bit), mode allowing only 4 ways to address
operands, one of them always being a register, etc.

• This design is the result of backward compatibility requirements.

154

Figure 115: An expanding opcode with 15 3 address instructions, 14 2 address
instructions, 31 one address instructions and 16 zero address instructions. The
fields xxxx, yyyy, zzzz are 4 bit address fields.

Example instruction formats: UltraSPARC

• Simple instructions, aligned to memory, see Figure 117

• In time, more instructions were added, however, most conform to the
format.

• First two bits are used to determine the instruction format and tell hard-
ware where to get the rest of the opcode:

1a both sources are registers,
1b 1 register and one constant (±4096), destination is a register,
2 places in a register a constant,
3 nonpredictive loops,
4 the CALL instruction.

Example instruction formats: JVM

• Very simple instructions, see Figure 118.

155

Figure 116: Format of the Intel 32 bit instruction.

Figure 117: The instruction format of UltraSPARC.

• Formats 1, 2, 3 are used for most instructions (all but 8 instructions).

• Special cases of instructions of type 2, 3 were coded as format 1: ILOAD_0 [1, 2, 3, 4, 5]
for ILOAD 0 [1, 2, 3, 4, 5].

5.6 Addressing
• Addressing modes are about the sources of operands in instructions.

• Example: possible implementations of ADD DESTINATION, SOURCE1, SOURCE2:

– using memory locations (expensive, memory addresses are large),
– using registers (expensive, values have to be loaded into registers)

DESTINATION = SOURCE1 + SOURCE2
or better, with a destructive variant:
REGISTER1 = REGISTER2 + SOURCE1
even better, use the accumulator to store one operand,
and even better, use the stack (no registers needed).

156

Figure 118: JVM instructions format.

Addressing Modes

• Immediate addressing – specify an operand as part of the instruction (used
to specify a small integer constant):

MOV R1 4.

• Direct addressing – give the full address of the operand in the memory
(used to access global variables with known values at compile time).

• Register addressing – conceptually the same as direct addressing, but use
registers instead of a memory location (nearly all instructions of Ultra-
SPARC II use this mode).

• Register indirect addressing - the operand comes or goes from/to mem-
ory, but the address is contained in a register (pointers), as illustrated in
Figure 119.

• Indexed addressing - refer to memory words as an offset of a register (see
Figure 120 for an example, R1 is used to hold the accumulated OR, R2
is the index to step through the array, R3 holds the constant 4096 (the
lowest index not to be used, R4 is a scratch register, to hold each result
as it is formed)).

157

Figure 119: Adding the elements of an array.

Figure 120: Or-ing elements in an array.

• Base-index addressing - the memory address is computed by adding 2
registers, and optionally an offset:

LOOP: MOV R4, (R2 + R5)
AND R4, (R2 + R6)

• Stack addressing is done using reverse Polish notation (see Figure 121).

• For branching instructions, any of the following addressing modes can be
used:

– register indirect addressing (but it could cause bugs hard to detect),
– indexed mode (same problem),
– offset from PC.

Addressing modes: examples

• Figure 122 illustrates the addressing modes supported by our example
architectures.

158

Figure 121: Reverse Polish notation correspondent to infix terms.

Figure 122: A comparison of supported addressing modes.

5.7 Instruction types
• Instruction types:

– data movement instructions,
– dyadic instructions,
– monadic instructions,
– comparison and conditional branches,
– procedure calls instructions,
– loop control,
– I/O.

• “Data movement” or “data duplication” instructions - move data from one
place to another.

• Two reasons for this:

– assignment of values to variables (A = B),
– copy data to stage it for efficient access and use.

159

• Four possible types of data movement instructions (not all of them possible
on all machines):

– memory-memory,
– memory-register,
– register-memory,
– register-register.

• Data movement instructions may also indicate the amount of data moved:

– one word,
– less than a word (usually in increment of bytes),
– multiple words.

Dyadic operations

• Combine two operands to produce a result.

• Typical dyadic operation:

– arithmetic instructions (integer, floating point),
– boolean instructions (not all possible boolean instructions are imple-

mented, usually AND, OR, NOT, often XOR, NOR, NAND).
– Special uses for AND, OR include extracting the bytes from words,

by using byte masks (exercise: how?).

Monadic operations

• One operand.

• Typical monadic operations are shifting, rotating contents of the operands.

• Right shifts are often performed with sign extension (fill in the vacated
positions with the sign).

• Shifts are used in efficient implementations of multiplication and division
by powers of 2.

• Monadic and dyadic operations are often grouped by functionality and
not the number of their arguments.

160

Comparisons and conditional branches

• Instructions to test data and alter the sequence of instructions to be exe-
cuted, based on these results.

• This is usually performed as a sequence of two instructions:

– test some condition,
– is the condition is met, branch to some particular memory address.

• Typical conditions:

– is a bit 0?
– is a word 0?
– do two sequences have the same size?

• Some machines set condition code bits that are used to indicate specific
conditions: overflow, carry.

• Subtle points:

– comparing 2 numbers (large negative and large positive can cause
overflow when substracted),

– ordering numbers (“is 011 greater than 100?”) - decide whether they
are signed or not.

Procedure call instructions

• Used to invoke a group of instructions that perform a certain task (pro-
cedure).

• Other names: subroutines (esp. in assembly languages), method (Java).

• When a procedure is finished, it has to return to the statement after the
call.

• Therefore, the return address should be transmitted to the procedure, or
stored somewhere:

– fixed memory location (may cause problems with multiple procedure
calls),

– first word of the procedure, return by indirect branching (may lead
to problems with recursive procedure),

– register (again, problems with multiple procedure calls - not too many
possible),

– stack.

161

Loop control

• Instructions that allow the execution of a group of instructions a fixed
number of times.

• All these involve a counter that is increased/decreased every time it goes
through the loop, and it is tested for a condition - when the condition
holds, the loop is terminated.

• Figure 123 illustrate possible loop instructions.

Figure 123: Looping with test (a) at the end and (b) test at the beginning.

I/O

• A large variety of I/O instructions are possible, but some of the most
important are:

– programmed I/O with busy waiting,
– interrupt-driven I/O,
– DMA I/O.

• Programmed I/O with busy waiting:

– used in low-end microprocessors (embedded systems, real-time sys-
tems),

– these usually have one input instruction and one output instruction,
– each instruction selects one of the I/O devices, and a single character

is transferred between the fixed register in the processor and the
I/O/.

162

– Figure 124 illustrates this type of I/O.
– the disadvantage of programmed I/O: the CPU spends most of the

time in a tight loop waiting for the I/O device to become ready (OK
for washing machines CPUs).

Figure 124: A Java code fragment using programmed I/O.

• Interrupt-driven I/O:

– every time a device becomes ready, an interrupt issues a signal,
– the processor is free between interrupts,
– interrupts can be expensive, especially if they are in great number (1

for each character).

• DMA I/O:

– back to programmed I/O, but let somebody else do it (the DMA
controller),

– DMA controller: a chip with at least 4 registers (address, how many
words are transferred, what device and what direction), see Fig-
ure 125,

– DMA is not for free: cycle stealing - take the bus away from the
CPU.

5.8 Flow of control
• Flow of control refers to the sequence in which instructions are executed

dynamically, during program execution.

163

Figure 125: A system with a DMA controller.

• Figure 126 illustrates possible flows.

• Dijkstra (1968): “GO TO statement considered harmful”→ the structured
programming revolution.

Figure 126: Program counter as a function of time (a) without branching, (b)
with branching.

164

• Procedures are considered the most important technique for structuring
programs.

• The flow of control comes back at the address following the caller’s address
(see Figure 127).

• Procedures can be seen as high level instructions.

• Interesting case - recursive procedures

Figure 127: Procedure calls.

• Coroutines - procedures that run “in the same time” but do not start all
over again when they are called (see Figure 128).

• Useful in simulating parallel processes.

• Traps are a kind of automatic procedure calls initiated by some condi-
tion caused by the program, usually an important but rarely occurring
condition (e.g. overflow).

• Trap handlers are procedures that perform appropriate actions (e.g. error
messages).

165

Figure 128: When a coroutine is resumed, execution starts from where it left
off.

• Common conditions for traps: floating-point overflow, floating-point un-
derflow, integer overflow, protection violation, undefined opcode, stack
overflow, attempt to start inexistent I/O device, attempt to fetch a word
from an odd numbered address, division by 0.

• Traps are synchronous with the program (they appear in the same spot
every time the program runs with the same arguments).

• Interrupts are changes in the flow of control caused no by the running
program, but by something else, usually some I/O device.

• Interrupts stop the running program and control is passed to interrupt
handlers.

• Interrupts are asynchronous with the program (interrupts are, at best,
only indirectly caused by the program).

• Interrupt transparency is important: when an interrupt happens, some ac-
tions are taken and code runs, but after, the computer should be returned
to exactly the same state it had before the interrupt.

• In real life, interrupts may appear from many I/O devices in the same
time

166

– first solution is for interrupt routines to disable any other interrupt,
until they are finished (this is problematic for devices that cannot
tolerate much delay),

– second solution is to attach priority levels to I/O devices, high for
time-critical devices, see Figure 129.

Figure 129: A machine with 3 I/O devices, a printer, a disk, a RS232 line, with
priorities 2, 4, 5 respectively. (IRS - Interrupt service routine).

5.9 Example ISAs
Intel 32 bit ISA

• The Intel 32 bit integer ISA is illustrated in Figure 130.

UltraSPARC ISA

• Figure 131 illustrates the UltraSPARC integer instructions.

JVM ISA

• An overview of the JVM ISA is illustrated in Figure 132.

167

Figure 130: Intel 32 bit integer ISA.

5.10 Comparison of the Instruction Sets
• Intel 32 bit ISA:

– classic two-address 32 bit CISC machine, with a long history, pecu-
liar and irregular addressing modes, many instructions that reference
memory,

– driving factors:
1. backward compatibility,
2. backward compatibility,

168

Figure 131: UltraSPARC integer ISA.

3. backward compatibility.
– compilers hard to write for the irregular instructions,
– too few registers.

• UltraSPARC:

– state-of-the-art ISA design,
– 64 bit ISA, many registers, instructions (mostly 3 register opera-

tions),
– instructions have the same size.

• JVM:

169

Figure 132: The JVM ISA.

– designed initially for applets (small programs), short instructions (1.8
bytes average),

– 64 bit stack, instructions bundled together,
– the core of JVM is a deeply pipelined 3 register load/store RISC

engine.

170

6 The Operating System Machine Level
• Operating system = a program that adds a variety of new instructions and

features above and beyond the ISA level, usually implemented in software
(but not necessarily so).

• Examples: Windows (XP/Vista/7), UNIX, GNU/Linux, OSX.

• The level that implements the operating system is the Operating System
Machine Level.

• OSM includes most of the ISA instructions, but also adds others - system
calls.

• The OSM level is always interpreted:

– when a program executes an OSM instruction, the OS carries it out
step by step,

– when a program executes an ISA instruction, this is carried out di-
rectly by the underlying level.

Overview

• In the following, we give a brief description of:

– virtual memory - a technique that makes the machine appear to have
more memory than it actually has,

– file I/O - higher level I/O operations (as compared to ISA I/O),
– parallel processing - how multiple processes can be executed at the

same time, how they communicate, synchronize.

6.1 Virtual Memory
• In the early days, computers had very little memory (Algol 60 was written

for only 1024 words of memory).

• First solution to deal with this - overlays: divide the program such that
each resulting piece fits into the main memory. One piece would be in the
main memory, the rest in the secondary memory.

• The programmer had to divide the program and keep track of overlays (a
process prone to errors).

• Overlays were used well into 1990s (DOS/Windows 3.1).

• Virtual memory (proposed by researchers in Manchester in 1961) is a
technique that performs overlaying automatically.

• Virtual memory is available now to most computers.

171

• The key idea in the method is to separate the concepts of address space
and memory locations (see Figure 133).

Figure 133: Virtual memory: mapping virtual addresses to memory locations.

Paging

• Paging is a technique for automatic overlaying.

• Pages are chunks of programs read from the disk.

• Common terms:

– virtual address space: the address a program can refer to,
– physical address space: the hardwired memory available on the ma-

chine,
– memory map (page table): relates virtual addresses to physical spaces.

• Programs are written as if the whole virtual spacing is available.

• The paging mechanism is transparent: the programmer does not need to
handle this explicitly.

• The memory management unit (MMU) is a device on the CPU chip or
in its close proximity, that maps virtual addresses to their corresponding
physical address.

• When a reference is made to an address that is not present in the memory,
a page fault occurs, this is indicated as a trap and the operating system
locates it in the secondary memory and brings it into the main memory.

• Paging models:

– demand paging: load pages on demand, as they are needed,
– working set model: load the most used pages for each program (the

working set).

172

Segmentation

• The paging model is one-dimensional (one memory space).

• Typically, several memory spaces are needed (symbol table, source text,
constant table, parse tree, stack call).

• Possible solutions within the one-dimensional models are not satisfactory:

– preallocating (thus limiting) segment space is not practical,
– handling explicitly the management of preallocated space overflow

amounts to going back to overlays.

• Segmentation offers a solution to handle the multiple address spaces.

• Advantages of segmentation:

– avoids recompilation (needed in the one-dimensional case),
– facilitates communication between programs,
– memory protection (not possible to write data over instructions).

• Figure 134 gives a comparison of paging and segmentation.

Figure 134: A comparison of paging and segmentation.

6.2 Virtual I/O Instructions
• I/O instructions are one of the areas where the ISA and OS levels differ:

– ISA I/O instructions are potentially dangerous, as they allow almost
unrestricted access,

– programming ISA I/O is tedious and complex.

• Files are an abstraction used in organizing virtual I/O:

– a file consists of a sequence of bytes written to an I/O device,
– any further structure of files is up to the application programs.

173

• File I/O is done by system calls for opening, reading, writing, closing files:

– opening: the OS must locate the file on disk and bring it to memory,
– reading: which file is to be read, pointer to a buffer where data should

be placed, number of bytes to read,
– after reading, the file is closed and the OS can use the file for another

read/write.

• Mainframe operating systems have a more complicated concept of files: a
file is a sequence of logical records, each with a well-defined structure.

• Virtual I/O instructions are implemented taking into account how files
are organized and stored:

– files can be allocated in consecutive sectors on the disk (simple to
handle - CDROMS),

– files can be allocated in nonconsecutive sectors (hard disks) - a file
index keeps track of the correspondence between addresses and disk
locations (UNIX) or the file is organized as a linked list (MS DOS,
Windows 9x).

• Directories are further abstractions, used to group and organize files.

• System calls are provided for directory management:

– creating a file and placing it in a directory,
– deleting a file from a directory,
– rename a file,
– change the protection status of a file.

• In modern operating systems, directories are files themselves (→ hierar-
chies of directories).

6.3 Virtual Instructions for Parallel Processes
• A process is an application program in execution.

• When an user starts a program, a new process is created, and the operating
system manages its execution.

• Modern operating systems allow several processes to run in parallel:

– by executing these processors on different processors (true paral-
lelism),

– by simulating parallel processing (see Figure 135).

• A process consists of:

174

Figure 135: Process parallelism (a) True parallelism. (b) Simulated parallelism.

– its executable code loaded from disk into the memory,
– its stack, where program data is located,
– its heap, where the program may allocate additional data,
– its registers (including the program pointer and stack pointer),
– additional information (e.g. user privileges).

• The possible states of a process can be:

– executing: the CPU is executing instructions of the process,
– ready: the process is ready for execution, but the CPU is executing

some other process,
– blocked: the process is waiting for some input (e.g. keyboard, data

from some other process).

• The operating system must provide instructions for dynamic process cre-
ation.

• A process (parent) can control the process it created (child) - virtual
instructions must be provided to stop, restart, terminate child processes.

• Synchronization of processes is an important task in any operating system,
and various techniques are implemented (e.g. semaphores - more in the
OS lecture).

• At any time, the operating system holds a pool of ready processes.

• Preemptive scheduling - the assignment of processes to simulate paral-
lelism:

175

– the executing process receives a time slice,
– after the time slice has expired, the OS preempts the process,
– the process is put into the ready pool and another is scheduled for

execution,
– rapid switching creates the illusion that the processes are active si-

multaneously.

• To request an OS service, a process performs a system call (trap):

– a special processor instruction gives the control to the OS,
– the OS takes data from registers and decides which services to per-

form,
– the OS invokes the system service that interacts with the hardware

device,
– the OS returns control to the application.

6.4 Example Operating Systems
UNIX

• Figure 136 illustrates the types of system calls in UNIX, whereas Fig-
ure 137 gives the structure of a typical Unix system.

Figure 136: A rough breakdown of UNIX calls.

Windows (NT)

• Figure 138 illustrates the structure of Windows (NT).

176

Figure 137: A typical UNIX system.

Figure 138: The structure of Windows (NT).

177

7 The Assembly Language Level
Overview

• The assembly language level is implemented by translation, and not by
interpretation (like the underlying levels).

• The source is the assembly language program (sequence of text state-
ments).

• The target is the machine language, each statement being translated into
one machine instruction, thus generating an object file.

• The translator is the assembler, which performs the following tasks:

– translate symbolic instruction names into numerical instruction codes,
– translate register names into register numbers,
– translate symbolic variables names into numerical memory locations.

Why use assembly language?

• An assembly language programmer has access to all the features of the
target machine (e.g. parity bit registers).

• Assembly language programming is tedious, complex, slow (assembly pro-
grams are developed slower by a considerable factor compared to high
level languages) and prone to error - why use it?

• Performance:

– assembly language programs can be considerably faster than high
level counterparts,

– they can be much smaller (good for programming embedded appli-
cations),

– they make better use of limited resources.

• Access to the machine:

– the assembly language has complete access to the hardware,
– it can implement device controllers, handle OS interrupts, etc.

• Figure 139 shows a small fragment of assembly code in various languages.

178

Figure 139: Implementing I+J = N (a) on Intel IA32, (b) Motorola 680x0 (c)
UltraSPARC.

Pseudoinstructions

• An assembly language program can contain instructions to the assembler
itself - pseudoinstructions (assembler directives).

• Examples (MASM - Microsoft Intel assembler):

– SEGMENT, ENDS - start/end a segment,
– ALIGN - control the alignment of the data,
– EQU - give a symbolic name to an expression,
– DW - allocate storage for 32 bit words,
– IF, ELSE, ENDIF - conditional assembly:

WORDSIZE EQU 16
IF WORDSIZE EQU 16
WSIZE: DW 32ELSE
WSIZE: DW 16

ENDIF.

Macros

179

• A macro is a name for a code segment, that can be used over and over
again (see Figure 140):

– a macro definition gives a name to a piece of code,
– a macro call inserts the macro intro the code,
– macros can be parametrized.

• The use of macros eliminates the overhead of procedures.

Figure 140: Swapping (a) without macros, (b) with macros.

The assembly process

• The natural way to process an assembly language program is for the as-
sembler to read one instruction and translate it into a machine instruction:

– this leads to problems with conditional jump instructions (forward
references),

– solution: two-pass assemblers:
∗ pass one: collect symbol information (labels) into the symbol
table,

∗ pass two: each statement is read, assembled, output (information
has to be given to the linker, for linking up procedures).

– the symbol table can be organized in various ways, to allow fast
retrieval:
∗ array of pairs,
∗ sorted array,
∗ hash coding.

180

• In real life, most programs consist of more than one procedure.

• The procedures must be linked together (by the linker).

• The complete translation of a source program requires two steps:

1. assembly (compilation) of the source procedures,
2. linking of the object modules.

• Figure 141 illustrates the translation process for assembly programs.

Figure 141: From source(s) to executable: the assembly process.

• Each module contains: entry point table (list of symbols), external refer-
ence table (list of external symbols used), relocation dictionary (addresses
in the program that need to be relocated),

• The linker must:

1. collect the table of modules,
2. assign start addresses to modules,
3. find all memory instructions and
4. procedure calls instructions

to linearize the program (with respect to memory locations).

• Dynamic linking occurs during the execution:

– modules may be used by multiple processes,
– implementation in modern operating systems:

∗ DLL (Dynamic Link Libraries) in Windows,
∗ shared library in UNIX.

• The use of dynamic linking reduces the size of the program file.

181

References
[East, 1990] East, I. (1990). Computer Architecture and Organization. Pitman

Publishing, London.

[Harris and Harris, 2007] Harris, D. and Harris, S. (2007). Digital Design and
Computer Architecture. Elsevier.

[Hennessy and Patterson, 2012] Hennessy, J. L. and Patterson, D. A. (2012).
Computer Architecture: A Quantitative Approach. Elsevier, fifth edition
edition.

[Hsu, 2001] Hsu, J. Y. (2001). Computer Architecture: Software Aspects,
Coding, and Hardware. CRC Press.

[Tanenbaum, 2005] Tanenbaum, A. S. (2005). Structured Computer
Organization. Prentice Hall.

182

