
Extra homework 1

1. Write a function in Racket which behaves as CAR (without using CAR).

2. Write a function in Racket which behaves as CDR (without using CDR).

3. Write a function in Racket which behaves as CONS (without using CONS).

4. Write a function in Racket which returns the second element from a list
(without using SECOND).

5. Write a function in Racket which behaves as THIRD (without using THIRD).

6. Write a function in Racket which behaves as + (without using +).

7. Explore 1 the theory of natural numbers using Racket. We know,

• 0 is natural number,

• if x is natural number, then also s(x) (the successor) is natural num-
ber, and

• we define these in Lisp as a function nat/1 which is true when its
argument is a natural number:

0 i s natura l number
I f x i s natura l number , then the s u c c e s s o r o f x
i s natura l number .

With 0 and s (the function for successor) you can define the sum + of two
natural numbers x, y:

0 + y = y,
s(x) + y = s(x + y).

8. Write a function in Racket which recognizes a palindrome2.

9. Write a function in Racket that returns the maximum element from a list
of integers.

10. Write a function shift left (List1) such that the returned list is List1 ”as
a rotational shift” with one element to the left. Example:

> (s h i f t l e f t ’ (1 2 3 4 5))
(2 3 4 5 1)

> (s h i f t l e f t ’ (2 3 4 5 1))
(3 4 5 1 2)

1Define addition (already done as an example), multiplication, exponentiation, less than,
less or equal than, divide, subtraction (attention, only the binary version matters), is divisible
by

2A palindrome is a word, a phrase, a number (or any other sequence of objects) which
has the property that if read from any direction is the same (you are allowed to use spaces
between words). [source:wikipedia.org]

1

11. Write a function shift right (List1) such that the returned list is List1 ”as
a rotational shift” with one element to the right. Example:

> (s h i f t r i g h t ’ (1 2 3 4 5))
(5 1 2 3 4)

> (s h i f t r i g h t ’ (5 1 2 3 4))
(4 5 1 2 3)

12. Write a tail recursive program which calculates the factorial of a natural
number.

13. Write a program delete vowels(String) in order to delete the vowels from a
string.

14. Write a program change string in order to change a string by transforming
all the vowels into V, all the consonants into C and all the remaining
characters into 0.

15. Write a program sum of which returns the sum of the elements from a list.
Write also the tail recursive version. Example:

> (sum of ’ (1 −3 2 0))
0

16. Write a program square sum which returns the sum of squares of the ele-
ments from a list. Write also the tail recursive version. Example:

> (square sum ’(1 −3 2 0))
14

17. Write a program arithmetic average which calculates the arithmetic average
of the numbers from a list. Write also the tail recursive version. Example:

> (a r i th met i c ave rage ’ (1 −10 2 9))
1

18. Define a binary relation prefix/2 between lists and their prefixes. Sugges-
tion: (), (a) and (a b) are the prefixes of the list (a b).

19. Define a binary relation sufix/2 between lists and all their suffixes. Sug-
gestion: (), (b) and (a b) are the suffixes of the list (a b).

20. Define a binary relation sublist /2 between lists and their sublists.

21. Implement in Racket the insertion sort algorithm for lists which contain
integer numbers. This algorithm can be described as:

Given a list, delete the head, sort the tail of the list, then insert the head
of the list into the sorted version of the tail of the list such that the result
will be a sorted list.

22. Implement in Racket the selection sort algorithm for lists which contain
numbers. This algorithm can be described as:

Given a list, find the minimum element and place it on the first position,
and repeat the process for the tail of the list.

2

23. Implement in Racket the quick sort algorithm for lists which contain num-
bers. This algorithm can be described as:

Given a list, split in two sublists – one sublist contains all the elements
smaller than one element of the list (pivot) and the other sublist contains
all the elements greater than the pivot. Then sort the two sublists and
concatenate them.

24. Implement in Racket the merge sort algorithm for lists which contain
numbers. This algorithm can be described as:

Given a list, split in two sublists which have (almost) the same length.
Sort the two sublists and then combine them such that the result will be
a sorted list.

25. Write a function two times longer(L1, L2) which returns true if the list L2
is two times longer than L1. You are not allowed to calculate the length
of the lists.

26. Write a function fib (N,F) which is true if F is the Nth Fibonacci3 number.
Calculate (fib 5), (fib 10), (fib 50). Write also the tail recursive version.

27. Implement the extended euclidian algorithm4 in order to calculate the
greatest common divisor of two integer numbers.

28. Write a function without doubles 1(my−list) which returns a list without
doubles. The elements have to be in the same order as in the input list
and keep the last occurrence of the element which occurs two (or multiple)
times.

Example:

> (w i thout doub l e s 1 ’ (1 2 3 4 5 6 4 4))
(1 2 3 5 6 4)

29. Write a function without doubles 2(my−list) which returns a list without
doubles. The elements have to be in the reverse order of the input list and
keep the first occurrence of the element which occurs two (or multiple)
times.

Exemplu:

> (w i thout doub l e s 2 ’ (1 2 3 4 5 6 4 4))
(6 5 4 3 2 1)

30. Write a function delete all occ (Element,my−List) which deletes all the oc-
currences of an element from a list.

Exemplu:

> (d e l e t e a l l o c c a ’ (a b c a d a))
(b c d)

> (d e l e t e a l l o c c a ’ (b c d))
(b c d)

3See http://en.wikipedia.org/wiki/Fibonacci number
4See http://en.wikipedia.org/wiki/Extended Euclidean algorithm

3

31. Write a function delete first (Element,my−List) which deletes the first oc-
currence of an element from a list.

> (d e l e t e f i r s t a ’ (a b c a d a))
(b c a d a)

> (d e l e t e f i r s t a ’ (b c d))
(b c d)

32. Write a function count occ(my−List) which returns a list with pairs [ele-
ment, number of occurrences in list], where ’element’ is the element from
the list my-List, and number of occurrences in list is an integer number
corresponding to the number of occurrences of the element in the list.
Such a pair has to appear for each of the elements from the list.

Exemplu:

> (count occ ’ (a b a a b c))
((c 1) (b 2) (a 3))

33. Write a function element position(element my−List) which returns the po-
sition of an element in a list.

Exemplu:

> (e l e m e n t p o s i t i o n 2 ’ (1 2 3 4 5))
1

>(e l e m e n t p o s i t i o n 2 ’ (1 2 3 2 4 5))
1

34. Write a function delete nth(my−list, n) which deletes each Nth element
from a list.

Exemple:

> (d e l e t e n t h ’ (a b c d e f) 2)
(a c e)

> (d e l e t e n t h ’ (a b c d e f) 1)
n i l

> (d e l e t e n t h ’ (a b c d e f) 0)
n i l

> (d e l e t e n t h ’ (a b c d e f) 10)
(a b c d e f)

35. Write a function even num(my−list) which returns the list of even numbers
from a list. Do not use the predicate even?. Exemple:

> (even num ’(1 2 3 4 4 5 7 8))
(2 4 4 8)

36. Write a function odd num(my−list) which returns the list of odd numbers
from a list. Do not use the predicate odd?. Exemple:

4

> (odd num ’(1 2 3 4 4 5 7 8))
(1 3 5 7)

37. Write a function module of(my−list) which returns the list containing the
absolute value of the numbers from a list. Do not use the function ABS.
Exemple:

> (module of ’ (1 −2 3 −4 4 5 −7 8))
(1 2 3 4 4 5 7 8)

38. Write a function equal−length(list1 , list2) which returns true if the two
lists have the same length and false otherwise.

39. Write a function order(elem1, elem2, my−list) which returns true if elem1
occurs before elem2 in the list and false otherwise.

Exemple:

> (order 1 2 ’ (1 2 3 4 4 5 7 8))
T

> (order ’ a ’b ’ (d a c f g g lg b))
T

> (order ’ a ’b ’ (o y b l a c f g g lg))
NIL

> (order ’ a ’b ’ (d a c f g g lg))
NIL

40. Write a function equal elem(list1 , list2) which returns true if list1 and
list2 have the same elements.

Examples:

> (equa l e l em ’ (1 2 3 4) ’ (1 2 3 4))
T

> (equa l e l em ’ (a d c) ’ (a d c))
T

> (equa l e l em ’ (a c d) ’ (a c))
NIL

> (equa l e l em ’ (a c) ’ (a c d))
NIL

> (equa l e l em ’ () ’ (1))
NIL

> (equa l e l em ’ () ’ ())
NIL

5

