Lecture 3

Permutations with repetition. Combinations. Enumeration, ranking and unranking algorithms

Isabela Drămnesc UVT
Computer Science Department, West University of Timişoara, Romania

Outline

- Enumeration, ranking and unranking algorithms for permutations with repetition
- Binary represention of subsets
\triangleright Ranking and unranking algorithms
- Fast generation of all subsets
\triangleright Gray codes; properties
- Lexicographically ordered combinations (or subsets)
- r-combinations: ranking and unranking algorithms

Problem: How many licence plates are possible in U.K.?

Motivation

Licence plates - what for?
\triangleright Also known as vehicle registration plates, are used for authority to be able to track vehicles and determine who the owner of a vehicle is;

Problem: How many licence plates are possible in U.K.?

Motivation

Licence plates - what for?
\triangleright Also known as vehicle registration plates, are used for authority to be able to track vehicles and determine who the owner of a vehicle is;
\triangleright Whenever you purchase a car you have to register it and order plates for your vehicle;

Problem: How many licence plates are possible in U.K.?

 MotivationLicence plates - what for?
\triangleright Also known as vehicle registration plates, are used for authority to be able to track vehicles and determine who the owner of a vehicle is;
\triangleright Whenever you purchase a car you have to register it and order plates for your vehicle;
\triangleright And then, whenever the police need to give a person a parking or speeding ticket, they use the plates number to enter the ticket into the police system.

Problem: How many licence plates are possible in U.K.?

Motivation

Licence plates - what for?

\triangleright Also known as vehicle registration plates, are used for authority to be able to track vehicles and determine who the owner of a vehicle is;
\triangleright Whenever you purchase a car you have to register it and order plates for your vehicle;
\triangleright And then, whenever the police need to give a person a parking or speeding ticket, they use the plates number to enter the ticket into the police system.

How many licence plates are possible in U.K.?

Problem description
In U.K. the license plates are made up of

- the regional flag followed by
- a two-digit local area code,
- a two-digit age identifier (corresponding to the year the vehicle is registered), followed by
- a three-digit sequence of letters.

How many licence plates are possible in U.K.?

Questions! Ideas?

(1) It is a Permutation problem or a Combination problem? Explain;

How many licence plates are possible in U.K.?

Questions! Ideas?

(1) It is a Permutation problem or a Combination problem? Explain;
(2) It is a Permutation with Repetitions problem or without repetitions? Explain.

How many licence plates are possible in U.K.?

Questions! Ideas?

(1) It is a Permutation problem or a Combination problem? Explain;
(2) It is a Permutation with Repetitions problem or without repetitions? Explain.
(3) How to compute Permutations with repetitions? Where to start from?

Permutations with repetition

The r-permutations with repetition of an alphabet $A=\left\{a_{1}, \ldots, a_{n}\right\}$ are the ordered sequences of symbols of the form

$$
\left\langle x_{1}, \ldots, x_{r}\right\rangle
$$

with $x_{1}, \ldots, x_{r} \in A$.
\triangleright The same symbol of A can occur many times
\triangleright By the rule of product, there are $n^{r} r$-permutations with repetition

How many licence plates are possible in U.K.?

Finding the solution step by step

(1) If we consider that the year is set, then we compute how many of the random three-letter sequences are possible at the end of the licence plate;

How many licence plates are possible in U.K.?

Finding the solution step by step

(1) If we consider that the year is set, then we compute how many of the random three-letter sequences are possible at the end of the licence plate;
(2) Next, compute how many two-digit year identifiers are possible;

How many licence plates are possible in U.K.?

Finding the solution step by step

(1) If we consider that the year is set, then we compute how many of the random three-letter sequences are possible at the end of the licence plate;
(2) Next, compute how many two-digit year identifiers are possible;
(3) Next, compute how many of the two-letter area codes, followed by two-digit year identifiers, followed by the random three-letter sequences are possible.

How many licence plates are possible in U.K.?

Finding the solution step by step

(1) If we consider that the year is set, then we compute how many of the random three-letter sequences are possible at the end of the licence plate;
(2) Next, compute how many two-digit year identifiers are possible;
(3) Next, compute how many of the two-letter area codes, followed by two-digit year identifiers, followed by the random three-letter sequences are possible.
(9) The result is ???

Permutations with repetition

Ranking and unranking algorithms in lexicographic order

The r-permutations with repetition can be ordered lexicographically:
$\triangleright\left\langle x_{1}, \ldots, x_{r}\right\rangle<\left\langle y_{1}, \ldots, y_{r}\right\rangle$ if there exists $k \in\{1, \ldots, n\}$ such that $x_{k}<y_{k}$ and $x_{i}=y_{i}$ for all $1 \leq i<k$.

Example $\left(A=\left\{a_{1}, a_{2}\right\}\right.$ with $a_{1}<a_{2}$, and $\left.r=3\right)$

r-permutation with repetition of A	lexicographic rank
$\left\langle a_{1}, a_{1}, a_{1}\right\rangle$	0
$\left\langle a_{1}, a_{1}, a_{2}\right\rangle$	1
$\left\langle a_{1}, a_{2}, a_{1}\right\rangle$	2
$\left\langle a_{1}, a_{2}, a_{2}\right\rangle$	3
$\left\langle a_{2}, a_{1}, a_{1}\right\rangle$	4
$\left\langle a_{2}, a_{1}, a_{2}\right\rangle$	5
$\left\langle a_{2}, a_{2}, a_{1}\right\rangle$	6
$\left\langle a_{2}, a_{2}, a_{2}\right\rangle$	7

Ranking and unranking of r-permutations with repetition

Remarks

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with $a_{1}<a_{2}<\ldots<a_{n}$.

- If we define $\operatorname{index}\left(a_{i}\right):=i-1$ for $1 \leq i \leq n$, and replace a_{i} with index $\left(a_{i}\right)$ in the lexicographic enumeration of the r-permutations, we get

r-permutation with repetition	encoding as number in base n	lexicogaphic rank
$\left\langle a_{1}, \ldots, a_{1}, a_{1}, a_{1}\right\rangle$	$\langle 0, \ldots, 0,0,0\rangle$	0
\vdots	\vdots	\vdots
$\left\langle a_{1}, \ldots, a_{1}, a_{1}, a_{n}\right\rangle$	$\langle 0, \ldots, 0,0, n-1\rangle$	$n-1$
$\left\langle a_{1}, \ldots, a_{1}, a_{2}, a_{1}\right\rangle$	$\langle 0, \ldots, 0,1,0\rangle$	n
\vdots	\vdots	\vdots
$\left\langle a_{1}, \ldots, a_{1}, a_{2}, a_{n}\right\rangle$	$\langle 0, \ldots, 0,1, n-1\rangle$	$2 n-1$
\vdots	\vdots	\vdots

REMARK: The r-permutation with repetition of the indexes is the representation in base n of its lexicographic rank.

Ranking and unranking of r-permutations with repetition

 Exercises(1) How would you approach the vehicle plates problem differently if letters and digits could not occur repeatedly? Explain.
(2) How many different licence plates are possible in ROMANIA based on the license plate set up?
(3) Define an algorithm which computes the rank of the r-permutation with repetition $\left\langle x_{1}, \ldots, x_{r}\right\rangle$ of $A=\{1, \ldots, n\}$ with respect to the lexicographic order.
(9) Define an algorithm which computes r-permutation with repetition $\left\langle x_{1}, \ldots, x_{r}\right\rangle$ with rank k of $A=\{1, \ldots, n\}$ with respect to the lexicographic order.
(5) Define an algorithm which computes the r-permutation with repetition immediately after the r-permutation with repetition $\left\langle x_{1}, \ldots, x_{r}\right\rangle$ of A, in lexicographic order.

The Problem of roses

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:

The Problem of roses

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:
(1) How many different flowers bouquets can be obtained for his future girlfriend?

The Problem of roses

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:
(1) How many different flowers bouquets can be obtained for his future girlfriend?
(2) Which one is the most beautiful?

The Problem of roses

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of
Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:
(1) How many different flowers bouquets can be obtained for his future girlfriend?
(2) Which one is the most beautiful?

Alex needs some help:

The Problem of roses

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of
Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:
(1) How many different flowers bouquets can be obtained for his future girlfriend?
(2) Which one is the most beautiful?

Alex needs some help:
(1) to compute the number of all possible bouquets;

The Problem of roses

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of
Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:
(1) How many different flowers bouquets can be obtained for his future girlfriend?
(2) Which one is the most beautiful?

Alex needs some help:
(1) to compute the number of all possible bouquets;
(2) to write all the bouquet options.

The Problem of roses

(1) It is a Permutation problem or a Combination problem? Explain;

(1) It is a Permutation problem or a Combination problem? Explain;
(2) It is a Combination with Repetitions problem or without repetitions? Explain.

(1) It is a Permutation problem or a Combination problem? Explain;
(2) It is a Combination with Repetitions problem or without repetitions? Explain.
(3) How to compute Combinations with repetitions?

(1) It is a Permutation problem or a Combination problem? Explain;
(2) It is a Combination with Repetitions problem or without repetitions? Explain.
(3) How to compute Combinations with repetitions?
(9) How to generate all the bouquet options?

Combinations

The binary representation of subsets
An r-combination of a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a subset with r elements of A.

There is a bijective correspondence between the set of n-bit strings and the set of subsets of A :

$$
B \subseteq A \mapsto b_{n-1} b_{n-2} \ldots b_{0} \quad \text { where } b_{i}= \begin{cases}1 & \text { if } a_{n-i} \in B \\ 0 & \text { otherwise }\end{cases}
$$

n-bit string $b_{0} b_{1} \ldots b_{n-1} \mapsto$ subset $\left\{a_{n-i} \mid b_{i}=1\right\}$ of A

Example

$A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ where $a_{1}=a, a_{2}=b, a_{3}=c, a_{4}=d, a_{5}=e$.

$$
\begin{array}{|r|l|r}
\emptyset \leftrightarrow 00000 & \{a, b\} \leftrightarrow 00011 & \{c, d, e\} \leftrightarrow 11100 \\
\{a\} \leftrightarrow 00001 & \{a, c\} \leftrightarrow 00101 & \{b, c, d, e\} \leftrightarrow 11110 \\
\{b\} \leftrightarrow 00010 & \{a, d\} \leftrightarrow 01001 & \{a, b, d, e\} \leftrightarrow 11011 \\
\{c\} \leftrightarrow 00100 & \{a, e\} \leftrightarrow 10001 & \{a, c, d, e\} \leftrightarrow 11101 \\
\{d\} \leftrightarrow 01000 & \{b, c\} \leftrightarrow 00110 & \{a, b, c, d\} \leftrightarrow 01111 \\
\{e\} \leftrightarrow 10000 & \ldots & \{a, b, c, d, e\} \leftrightarrow 11111
\end{array}
$$

The n-bit string encoding of a subset

BitString(B : subset of A,
A : ordered set $\left\{a_{1}, \ldots, a_{n}\right\}$)
int bit_string [0 ..n-1]
for $i:=0$ to $n-1$ do
if $a_{i} \in B$ then
bit_string $[n-i]:=1$
else

$$
\text { bit_string }[n-i]:=0
$$

return bit_string

Combination(b[0..n-1]: bit string, A : ordered set $\left\{a_{1}, \ldots, a_{n}\right\}$)
$B:=\emptyset$
for $i:=0$ to $n-1$ do
if $b[i]=1$ then

$$
\text { add } a_{n-i} \text { to } B
$$

return B

The ordering of combinations via bit string encodings

There is a bijective correspondence between the n-bit string encodings and the numbers from 0 to $2^{n}-1$:
$\triangleright n$-bit-string $b[0 \ldots n-1] \mapsto$ number $\sum_{i=0}^{n-1} b[i] \cdot 2^{i} \in\left\{0,1, \ldots, 2^{n}-1\right\}$
\triangleright number $0 \leq r<2^{n} \mapsto n$-bit-string $b[0 . . n-1]$ where

$$
b[i]:=\left\lfloor\frac{c_{i}}{2^{i}}\right\rfloor \text { where } c_{i} \text { is the remainder of dividing } r \text { with } 2^{i+1} \text {. }
$$

Definition

The canonic rank of a a subset B of an ordered set A with n elements is

$$
\operatorname{CanonicRank}(B, A):=\sum_{i=0}^{n-1} b[i] \cdot 2^{i}
$$

where $b[0 . . n-1]$ is the n-bit-string encoding of B as subset of A.

The ordering of combinations via bit string encodings

Example $\left(A=\left\{a_{0}, a_{1}, a_{2}\right\}\right)$

subset	3-bit string encoding $b_{2} b_{1} b_{0}$	canonic rank
\emptyset	000	0
$\left\{a_{0}\right\}$	001	1
$\left\{a_{1}\right\}$	010	2
$\left\{a_{0}, a_{1}\right\}$	011	3
$\left\{a_{2}\right\}$	100	4
$\left\{a_{0}, a_{2}\right\}$	101	5
$\left\{a_{1}, a_{2}\right\}$	110	6
$\left\{a_{0}, a_{1}, a_{2}\right\}$	111	7

REmARK. This way of enumerating the subsets of a set is called canonic ordering, and the 3-bit string $b_{2} b_{1} b_{0}$ is called canonic (or binary) code.

Given an ordered set $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$, and $0 \leq r<2^{n}$
Find the subset B of A with rank r

Enumerating subsets in minimum change order

 Grey codes- Frank Grey discovered in 1953 a method to enumerate subsets in an order so that adjacent subsets differ by the insertion or deletion of only one element.
- His enumeration scheme is called standard reflected Grey code.

Example

With Grey's method, the subsets of $\{a, b, c\}$ are enumerated in the following order:

$$
\},\{c\},\{b, c\},\{b\},\{a, b\},\{a, b, c\},\{a, c\},\{a\}
$$

The 3 -bit-string encodings $b_{0} b_{1} b_{2}$ of these subsets are

$$
000,100,110,010,011,111,101,001
$$

The standard reflected Grey code

Description

We want to enumerate the subsets of $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in minimum change order G_{n}. (G_{n} is the list of those subsets)

The standard reflected Grey code

Description

We want to enumerate the subsets of $A=\left\{a_{1}, \ldots, a_{n}\right\}$ in minimum change order G_{n}. (G_{n} is the list of those subsets)
We proceed recursively:
(1) Compute the list G_{n-1} of subsets of $B=\left\{a_{2}, \ldots, a_{n}\right\}$ in the minimum change order of Gray.
(2) Let G_{n-1}^{\prime} be the list of subsets obtained by adding a_{1} to every element of a reversed copy fo G_{n-1}.
(3) G_{n} is the concatenation of G_{n-1} with G_{n-1}^{\prime}.

Properties of Grey's codes reflected

Assume that B is a subset of the ordered set A with n elements. If

- m is the rank of B in the order of the Grey's enumeration and $m=\sum_{i=0}^{n-1} b_{i} \cdot 2^{i}$
- The codification as a n bit string of B is $c_{0} c_{1} \ldots c_{n-1}$ then
- $c_{i}=\left(b_{i}+b_{i+1}\right) \bmod 2$ for all $0 \leq i<n$, where $b_{n}=0$.
- On the other hand, one can prove that

$$
b_{i}=\left(c_{i}+c_{i+1}+\ldots+c_{n-1}\right) \quad \bmod 2 \text { for all } 0 \leq i<n .
$$

Grey's codes

Example $(A=\{a, b, c\}$ with $a<b<c)$

subset B	Grey rank m	$b_{0} b_{1} b_{2}$ such that $m=\sum_{i=0}^{2} b_{2-i} 2^{i}$	bit string of B $c_{0} c_{1} c_{2}$	rank of B
$\}$	0	000	000	0
$\{c\}$	1	100	100	4
$\{b, c\}$	2	010	110	6
$\{b\}$	3	110	010	2
$\{a, b\}$	4	001	011	3
$\{a, b, c\}$	5	101	111	7
$\{a, c\}$	6	011	101	5
$\{a\}$	7	111	001	1

Notice that $c_{i}=\left(b_{i}+b_{i+1}\right) \bmod 2$ for all $0 \leq i<3$, where $b_{3}=0$.
(1) Use the equations in the previous slide to implement the ordering method RankGrey (B, A) and the enumeration method UnrankGrey (A, r) for enumerating the subsets based on Grey's codes.
(2) Define the method NextGreyRankSubset (A,B) which computes the subset of A which is the immediately next one after the subset B in the enumeration of subsets based on Grey's codes.

k-combinations

Generate the k-combinations

Given an ordered set A with n elements and $0 \leq k \leq n$. Generate all the k-combinations of A.

k-combinations

Generate the k-combinations

Given an ordered set A with n elements and $0 \leq k \leq n$. Generate all the k-combinations of A.
Method 1 (naive and inefficient): generate and test
(1) Generate all the 2^{n} subsets of A
(2) Eliminate the generated subsets which do not have k elements.

k-combinations

Generate the k-combinations

Given an ordered set A with n elements and $0 \leq k \leq n$. Generate all the k-combinations of A.
Method 1 (naive and inefficient): generate and test
(1) Generate all the 2^{n} subsets of A
(2) Eliminate the generated subsets which do not have k elements.
Method 2 (simple recursion): If $A=\{a\} \cup B$ where $a \notin B$ is the smallest element of A then
(1) Generate the list L_{1} of all $(k-1)$-combinations of B, and let L_{2} be the list of all k-combinations of B.
(2) Let L_{3} be the list obtained by adding a to all the elements of L_{1}.
(3) Return the result of the concatenation of L_{2} with L_{3}.

The Lexicographic Ordering of k-combinations

 Request. Preliminary remarks (1)Assume $A=\{1,2, \ldots, n\}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq A$ such that $x_{1}<x_{2}<\ldots<x_{k}$.

Q: Which is the rank of X in the lexicographic enumeration of the k-combinations of A ?

The k-combinations which occur before X in lexicographic order are of 2 kinds:
(1) The ones which contain an element smaller than x_{1}.
(2) The ones which contain the minimum element x_{1}, but the rest of the elements is a $(k-1)$-combination smaller than $\left\{x_{2}, x_{3}, \ldots, x_{k}\right\}$.

The Lexicographic Ordering of k-combinations

 Request. Preliminary remarks (1)Assume $A=\{1,2, \ldots, n\}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq A$ such that $x_{1}<x_{2}<\ldots<x_{k}$.

Q: Which is the rank of X in the lexicographic enumeration of the k-combinations of A ?

The k-combinations which occur before X in lexicographic order are of 2 kinds:
(1) The ones which contain an element smaller than x_{1}.
(2) The ones which contain the minimum element x_{1}, but the rest of the elements is a $(k-1)$-combination smaller than $\left\{x_{2}, x_{3}, \ldots, x_{k}\right\}$.
\Rightarrow the rank of X in the lexicographic enumeration of the k-combinations of A is $N_{1}+N_{2}$ where
$\triangleright N_{1}$ is the number of k-combinations of the first kind
$\triangleright N_{2}$ is the number of the k-combinations of the second kind

The lexicographic ordering of k-combinations Preliminary remarks (2)

Hypothesis: $A=\{1,2, \ldots, n\}$.
How can we compute N_{1} ?

The lexicographic ordering of k-combinations

 Preliminary remarks (2)Hypothesis: $A=\{1,2, \ldots, n\}$.
How can we compute N_{1} ?

- The number of k-combinations of A which contain i as the smallest element is

The lexicographic ordering of k-combinations

Preliminary remarks (2)

Hypothesis: $A=\{1,2, \ldots, n\}$.
How can we compute N_{1} ?

- The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1}$

The lexicographic ordering of k-combinations

Preliminary remarks (2)

Hypothesis: $A=\{1,2, \ldots, n\}$.
How can we compute N_{1} ?

- The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_{1}=\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}$ (the sum rule)

The lexicographic ordering of k-combinations

 Preliminary remarks (2)Hypothesis: $A=\{1,2, \ldots, n\}$.
How can we compute N_{1} ?

- The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_{1}=\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}$ (the sum rule)
We know that $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ (see lecture 1)

The lexicographic ordering of k-combinations

 Preliminary remarks (2)Hypothesis: $A=\{1,2, \ldots, n\}$.
How can we compute N_{1} ?

- The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_{1}=\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}$ (the sum rule)
We know that $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ (see lecture 1)
$\Rightarrow N_{1}=\sum_{i=1}^{x_{1}-1}\left(\binom{n-i+1}{k}-\binom{n-i}{k}\right)=\binom{n}{k}-\binom{n-x_{1}+1}{k}$
How can we compute N_{2} ?

The lexicographic ordering of k-combinations

 Preliminary remarks (2)Hypothesis: $A=\{1,2, \ldots, n\}$.
How can we compute N_{1} ?

- The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_{1}=\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}$ (the sum rule)
We know that $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
(see lecture 1)
$\Rightarrow N_{1}=\sum_{i=1}^{x_{1}-1}\left(\binom{n-i+1}{k}-\binom{n-i}{k}\right)=\binom{n}{k}-\binom{n-x_{1}+1}{k}$
How can we compute N_{2} ?
- N_{2} is the rank of $\left\{x_{2}, \ldots, x_{k}\right\}$ in the lexicographic enumeration of the $(k-1)$-combinations of $\left\{x_{1}+1, x_{1}+2, \ldots, n-1, n\right\}$

The lexicographic ordering of k-combinations

 Preliminary remarks (2)Hypothesis: $A=\{1,2, \ldots, n\}$.
How can we compute N_{1} ?

- The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_{1}=\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}$ (the sum rule)
We know that $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ (see lecture 1)
$\Rightarrow N_{1}=\sum_{i=1}^{x_{1}-1}\left(\binom{n-i+1}{k}-\binom{n-i}{k}\right)=\binom{n}{k}-\binom{n-x_{1}+1}{k}$
How can we compute N_{2} ?
- N_{2} is the rank of $\left\{x_{2}, \ldots, x_{k}\right\}$ in the lexicographic enumeration of the $(k-1)$-combinations of $\left\{x_{1}+1, x_{1}+2, \ldots, n-1, n\right\}$
- $\Rightarrow N_{2}$ can be computed recursively.

From the previous remarks results the following recursive implementation for computing the rank:

- RankKSubset $\left(\left\{x_{1}, \ldots, x_{k}\right\},\{\ell, \ldots, n\}\right)$ computes the rank in lexicographic order of the k-combination $\left\{x_{1}, \ldots, x_{k}\right\}$ of the ordered set $\{\ell, \ell+1, \ldots, n-1, n\}$. Assume that $x_{1}<x_{2}<\ldots<x_{k}$.

RankKSubset $\left(\left\{x_{1}, \ldots, x_{k}\right\}, \quad\{\ell, \ell+1, \ldots, n\}\right)$
if ($n=k$ or $k=0$)
return 0 ,
$p:=x_{1}-\ell+1$
if $(k=1)$
return $p-1$
else
return $\binom{n}{k}-\binom{n-p+1}{k}+\operatorname{RankKSubset}\left(\left\{x_{2}, \ldots, x_{k}\right\},\left\{x_{1}+1, \ldots, n\right\}\right)$

The lexicographic enumeration of k-combinations

 Request. Preliminary remarksHypothesis:

- $A=\{1,2, \ldots, n\}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ with $x_{1}<x_{2}<\ldots<x_{k}$ is the subset of A with rank m in the lexicographic enumeration of all k-combinations of A.
[Keep in mind that $0 \leq m<\binom{n}{k}$.]
$\hat{\mathbf{Q}}:$ Which are the values $x_{1}, x_{2}, \ldots, x_{k}$?

The lexicographic enumeration of k-combinations

Request. Preliminary remarks

(1) The total number of k-combinations of A which contain the element $<x_{1}$ is

$$
\begin{equation*}
\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}=\binom{n}{k}-\binom{n-x_{1}+1}{k} \leq m . \tag{1}
\end{equation*}
$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in\left\{1, \ldots, x_{1}-1\right\}$. This number is $\leq m$ because all these k-combinations are lexicographic smaller than X, which has the rank m.

The lexicographic enumeration of k-combinations

Request. Preliminary remarks

(1) The total number of k-combinations of A which contain the element $<x_{1}$ is

$$
\begin{equation*}
\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}=\binom{n}{k}-\binom{n-x_{1}+1}{k} \leq m . \tag{1}
\end{equation*}
$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in\left\{1, \ldots, x_{1}-1\right\}$. This number is $\leq m$ because all these k-combinations are lexicographic smaller than X, which has the rank m.
(2) The total number of k-combinations of A which contain an element $\leq x_{1}$ is

$$
\begin{equation*}
\sum_{i=1}^{x_{1}}\binom{n-i}{k-1}=\binom{n}{k}-\binom{n-x_{1}}{k}>m \tag{2}
\end{equation*}
$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in\left\{1, \ldots, x_{1}\right\}$. This number is $>m$ because there are $m+1$ integers i between 0 and the rank of X (which is m), and all the k-combinations with such a rank i contain one element $\leq x_{1}$.

The lexicographic enumeration of k-combinations

Request. Preliminary remarks

(1) The total number of k-combinations of A which contain the element $<x_{1}$ is

$$
\begin{equation*}
\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}=\binom{n}{k}-\binom{n-x_{1}+1}{k} \leq m . \tag{1}
\end{equation*}
$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in\left\{1, \ldots, x_{1}-1\right\}$. This number is $\leq m$ because all these k-combinations are lexicographic smaller than X, which has the rank m.
(2) The total number of k-combinations of A which contain an element $\leq x_{1}$ is

$$
\begin{equation*}
\sum_{i=1}^{x_{1}}\binom{n-i}{k-1}=\binom{n}{k}-\binom{n-x_{1}}{k}>m \tag{2}
\end{equation*}
$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in\left\{1, \ldots, x_{1}\right\}$. This number is $>m$ because there are $m+1$ integers i between 0 and the rank of X (which is m), and all the k-combinations with such a rank i contain one element $\leq x_{1}$.
\Rightarrow one can use (1) and (2) to find $x_{1}:\binom{n}{k}-\binom{n-x_{1}+1}{k} \leq m<\binom{n}{k}-\binom{n-x_{1}}{k}$

The lexicographic enumeration of k-combinations

Request. Preliminary remarks

(1) The total number of k-combinations of A which contain the element $<x_{1}$ is

$$
\begin{equation*}
\sum_{i=1}^{x_{1}-1}\binom{n-i}{k-1}=\binom{n}{k}-\binom{n-x_{1}+1}{k} \leq m \tag{1}
\end{equation*}
$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in\left\{1, \ldots, x_{1}-1\right\}$. This number is $\leq m$ because all these k-combinations are lexicographic smaller than X, which has the rank m.
(2) The total number of k-combinations of A which contain an element $\leq x_{1}$ is

$$
\begin{equation*}
\sum_{i=1}^{x_{1}}\binom{n-i}{k-1}=\binom{n}{k}-\binom{n-x_{1}}{k}>m \tag{2}
\end{equation*}
$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in\left\{1, \ldots, x_{1}\right\}$. This number is $>m$ because there are $m+1$ integers i between 0 and the rank of X (which is m), and all the k-combinations with such a rank i contain one element $\leq x_{1}$.
\Rightarrow one can use (1) and (2) to find $x_{1}:\binom{n}{k}-\binom{n-x_{1}+1}{k} \leq m<\binom{n}{k}-\binom{n-x_{1}}{k}$
The other elements x_{2}, \ldots, x_{k} can be computed recursively.

UnrankKSubset ($m, k,\left\{a_{1}, \ldots, a_{n}\right\}$) produces the k-combination $\left\{x_{1}, \ldots, x_{k}\right\}$ with rank m of $\left\{a_{1}, \ldots, a_{n}\right\}$ in lexicographic order. Assume that $x_{1}<\ldots<x_{k}$ and $a_{1}<\ldots<a_{n}$.

```
UnrankKSubset ( \(m, k,\left\{a_{1}, \ldots, a_{n}\right\}\) )
if \((k=1)\)
    return \(a_{k+1}\)
else if \((m=0)\)
    return \(\left\{a_{1}, \ldots, a_{m}\right\}\)
else
    \(u:=\binom{n}{k}\)
    \(i:=1\)
    while \(\binom{i}{k}<u-m\)
        i++
    \(x 1:=n-(i-1)\)
    return \(\left\{a_{n-i+1}\right\} \cup \operatorname{UnrankKSubset}\left(m-u+\binom{n-\times 1+1}{k}, k-1,\left\{a_{n-i+2}, \ldots, a_{n}\right\}\right)\)
```


(slide 11)

Now that we have all the necessary informations, we get back to the Problem of roses.

(1) How many different flowers bouquets can be obtained for Alex's future girlfriend?
(2) Which one is the most beautiful?

Answers ???

References

- S. Pemmaraju, S. Skiena. Combinatorics and Graph Theory with Mathematica. Section 2.3: Combinations. Cambridge University Press. 2003.

