Lecture 3 Permutations with repetition. Combinations. Enumeration, ranking and unranking algorithms

Isabela Drămnesc UVT

Computer Science Department, West University of Timișoara, Romania

- Enumeration, ranking and unranking algorithms for permutations with repetition
- Binary represention of subsets
 - ▷ Ranking and unranking algorithms
- Fast generation of all subsets
 - ▷ Gray codes; properties
- Lexicographically ordered combinations (or subsets)
- r-combinations: ranking and unranking algorithms

Also known as vehicle registration plates, are used for authority to be able to track vehicles and determine who the owner of a vehicle is;

- Also known as vehicle registration plates, are used for authority to be able to track vehicles and determine who the owner of a vehicle is;
- Whenever you purchase a car you have to register it and order plates for your vehicle;

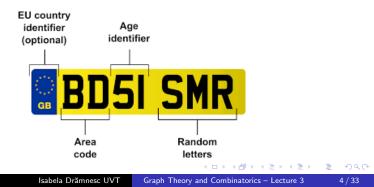
- Also known as vehicle registration plates, are used for authority to be able to track vehicles and determine who the owner of a vehicle is;
- Whenever you purchase a car you have to register it and order plates for your vehicle;
- ▷ And then, whenever the police need to give a person a parking or speeding ticket, they use the plates number to enter the ticket into the police system.

- Also known as vehicle registration plates, are used for authority to be able to track vehicles and determine who the owner of a vehicle is;
- Whenever you purchase a car you have to register it and order plates for your vehicle;
- And then, whenever the police need to give a person a parking or speeding ticket, they use the plates number to enter the ticket into the police system.

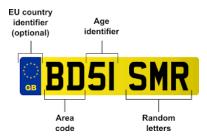
How many licence plates are possible in U.K.? Problem description

In U.K. the license plates are made up of

- the regional flag followed by
- a two-digit local area code,
- a two-digit age identifier (corresponding to the year the vehicle is registered), followed by
- a three-digit sequence of letters.



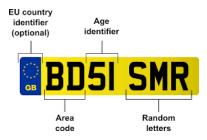
How many licence plates are possible in U.K.? Questions! Ideas?



 It is a Permutation problem or a Combination problem? Explain;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

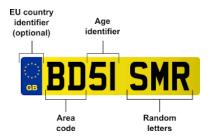
How many licence plates are possible in U.K.? Questions! Ideas?



- It is a Permutation problem or a Combination problem? Explain;
- It is a Permutation with Repetitions problem or without repetitions? Explain.

・ 同 ト ・ ヨ ト ・ ヨ ト

How many licence plates are possible in U.K.? Questions! Ideas?



- It is a Permutation problem or a Combination problem? Explain;
- It is a Permutation with Repetitions problem or without repetitions? Explain.
- How to compute Permutations with repetitions? Where to start from?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

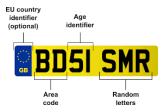
The *r*-permutations with repetition of an alphabet $A = \{a_1, \ldots, a_n\}$ are the ordered sequences of symbols of the form

 $\langle x_1,\ldots,x_r\rangle$

with $x_1, \ldots, x_r \in A$.

- \triangleright The same symbol of A can occur many times
- \triangleright By the rule of product, there are n^r *r*-permutations with repetition

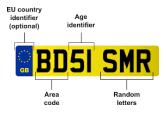
Finding the solution step by step



 If we consider that the year is set, then we compute how many of the random three-letter sequences are possible at the end of the licence plate;

< ロ > < 同 > < 三 > < 三 >

Finding the solution step by step



- If we consider that the year is set, then we compute how many of the random three-letter sequences are possible at the end of the licence plate;
- Next, compute how many two-digit year identifiers are possible;

< ロ > < 同 > < 三 > < 三 >

Finding the solution step by step

- If we consider that the year is set, then we compute how many of the random three-letter sequences are possible at the end of the licence plate;
- Next, compute how many two-digit year identifiers are possible;
- Next, compute how many of the two-letter area codes, followed by two-digit year identifiers, followed by the random three-letter sequences are possible.

< ロ > < 同 > < 三 > < 三 >

Finding the solution step by step

- If we consider that the year is set, then we compute how many of the random three-letter sequences are possible at the end of the licence plate;
- Next, compute how many two-digit year identifiers are possible;
- Next, compute how many of the two-letter area codes, followed by two-digit year identifiers, followed by the random three-letter sequences are possible.
- The result is ???

・ 同 ト ・ ヨ ト ・ ヨ ト

Permutations with repetition Ranking and unranking algorithms in lexicographic order

The *r*-permutations with repetition can be ordered lexicographically:

 $\triangleright \ \langle x_1, \dots, x_r \rangle < \langle y_1, \dots, y_r \rangle \text{ if there exists } k \in \{1, \dots, n\} \text{ such that } x_k < y_k \text{ and } x_i = y_i \text{ for all } 1 \le i < k.$

Example $(A = \{a_1, a_2\}$ with $a_1 < a_2$, and r = 3)

r-permutation with repetition of A	lexicographic rank
$\langle a_1, a_1, a_1 angle$	0
$\langle a_1, a_1, a_2 angle$	1
$\langle a_1,a_2,a_1 angle$	2
$\langle a_1,a_2,a_2 angle$	3
$\langle a_2, a_1, a_1 angle$	4
$\langle a_2, a_1, a_2 angle$	5
$\langle a_2, a_2, a_1 angle$	6
$\langle a_2, a_2, a_2 angle$	7

伺 ト イヨト イヨト

Ranking and unranking of *r*-permutations with repetition Remarks

Let
$$A = \{a_1, a_2, \dots, a_n\}$$
 with $a_1 < a_2 < \dots < a_n$.

If we define *index*(a_i) := i − 1 for 1 ≤ i ≤ n, and replace a_i with *index*(a_i) in the lexicographic enumeration of the r-permutations, we get

<i>r</i> -permutation	encoding as number	lexicogaphic rank
with repetition	in base <i>n</i>	
$\langle a_1,\ldots,a_1,a_1,a_1\rangle$	$\langle 0,\ldots,0,0,0 angle$	0
:	:	÷
$\langle a_1,\ldots,a_1,a_1,a_n\rangle$	$egin{aligned} &\langle 0,\ldots,0,0,n-1 angle \ &\langle 0,\ldots,0,1,0 angle \end{aligned}$	n-1
$\langle a_1,\ldots,a_1,a_2,a_1 \rangle$	$\langle 0,\ldots,0,1,0 angle$	n
:		:
$\langle a_1,\ldots,a_1,a_2,a_n\rangle$	$\langle 0,\ldots,0,1,n-1 angle$	2 n – 1
:	:	:

REMARK: The *r*-permutation with repetition of the indexes is the representation in base n of its lexicographic rank.

9/33

Ranking and unranking of *r*-permutations with repetition Exercises

- How would you approach the vehicle plates problem differently if letters and digits could not occur repeatedly? Explain.
- How many different licence plates are possible in ROMANIA based on the license plate set up?
- Define an algorithm which computes the rank of the r-permutation with repetition (x₁,...,x_r) of A = {1,...,n} with respect to the lexicographic order.
- Define an algorithm which computes *r*-permutation with repetition $\langle x_1, \ldots, x_r \rangle$ with rank *k* of $A = \{1, \ldots, n\}$ with respect to the lexicographic order.
- Define an algorithm which computes the *r*-permutation with repetition immediately after the *r*-permutation with repetition (x₁,..., x_r) of A, in lexicographic order.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:

• How many different flowers bouquets can be obtained for his future girlfriend?

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:

- How many different flowers bouquets can be obtained for his future girlfriend?
- Which one is the most beautiful?

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:

- How many different flowers bouquets can be obtained for his future girlfriend?
- Which one is the most beautiful?

Alex needs some help:

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:

- How many different flowers bouquets can be obtained for his future girlfriend?
- Which one is the most beautiful?

Alex needs some help:

• to compute the number of all possible bouquets;

The story

Alex is a second year bachelor student at Faculty of Mathematics and Informatics from West University of Timisoara. He fell in love with a colleague of his own year and after a few days he decided that it's time to declare her his love. So, he went to the flower shop to buy her a bouquet of 7 roses. The flower shop had white, yellow and red roses. And because he is a computer scientist, he asked himself:

- How many different flowers bouquets can be obtained for his future girlfriend?
- Which one is the most beautiful?

Alex needs some help:

- to compute the number of all possible bouquets;
- to write all the bouquet options.

伺下 イヨト イヨト

It is a Permutation problem or a Combination problem? Explain;

• • • • • • •

- It is a Permutation problem or a Combination problem? Explain;
- It is a Combination with Repetitions problem or without repetitions? Explain.

- It is a Permutation problem or a Combination problem? Explain;
- It is a Combination with Repetitions problem or without repetitions? Explain.
- I How to compute Combinations with repetitions?

- It is a Permutation problem or a Combination problem? Explain;
- It is a Combination with Repetitions problem or without repetitions? Explain.
- I How to compute Combinations with repetitions?
- How to generate all the bouquet options?

Combinations

The binary representation of subsets

An *r*-combination of a set $A = \{a_1, a_2, ..., a_n\}$ is a subset with *r* elements of *A*.

There is a bijective correspondence between the set of n-bit strings and the set of subsets of A:

 $B \subseteq A \mapsto b_{n-1}b_{n-2}\dots b_0 \quad \text{where } b_i = \begin{cases} 1 & \text{if } a_{n-i} \in B \\ 0 & \text{otherwise.} \end{cases}$ *n*-bit string $b_0b_1\dots b_{n-1} \mapsto \text{subset } \{a_{n-i} \mid b_i = 1\} \text{ of } A$

Example

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$
 where $a_1 = a, a_2 = b, a_3 = c, a_4 = d, a_5 = e$.

$\emptyset \leftrightarrow 00000$	$\{a, b\} \leftrightarrow 00011$	$\{c, d, e\} \leftrightarrow 11100$
$\{a\} \leftrightarrow 00001$	$\{a,c\} \leftrightarrow 00101$	$\{b, c, d, e\} \leftrightarrow 11110$
$\{b\} \leftrightarrow 00010$	$\{a,d\} \leftrightarrow 01001$	$\{a, b, d, e\} \leftrightarrow 11011$
$\{c\} \leftrightarrow 00100$	$\{a,e\} \leftrightarrow 10001$	$\{a, c, d, e\} \leftrightarrow 11101$
$\{d\} \leftrightarrow 01000$	$\{b,c\} \leftrightarrow 00110$	$\{a, b, c, d\} \leftrightarrow 01111$
$\{e\} \leftrightarrow 10000$		$\{a, b, c, d, e\} \leftrightarrow 11111$

・日・ ・ヨ・ ・ヨ・

```
BitString(B: subset of A,

A: ordered set \{a_1, \ldots, a_n\})

int bit_string[0 \ldots n - 1]

for i:=0 to n - 1 do

if a_i \in B then

bit_string[n - i] := 1

else

bit_string[n - i] := 0

return bit_string
```

```
Combination(b[0..n-1]: bit string,

A: ordered set \{a_1,...,a_n\})

B:=\emptyset

for i:=0 to n-1 do

if b[i] = 1 then

add a_{n-i} to B

return B
```

The ordering of combinations via bit string encodings

There is a bijective correspondence between the *n*-bit string encodings and the numbers from 0 to $2^n - 1$:

$$\triangleright \quad n\text{-bit-string } b[0 \dots n-1] \mapsto \text{number } \sum_{i=0}^{n-1} b[i] \cdot 2^i \in \{0, 1, \dots, 2^n-1\}$$

ho number $0 \le r < 2^n \mapsto n$ -bit-string b[0 ... n - 1] where

$$b[i] := \left\lfloor \frac{c_i}{2^i} \right\rfloor$$
 where c_i is the remainder of dividing r with 2^{i+1} .

Definition

The canonic rank of a a subset B of an ordered set A with n elements is

$$\mathsf{CanonicRank}(B,A) := \sum_{i=0}^{n-1} b[i] \cdot 2^i$$

where b[0..n-1] is the *n*-bit-string encoding of *B* as subset of *A*.

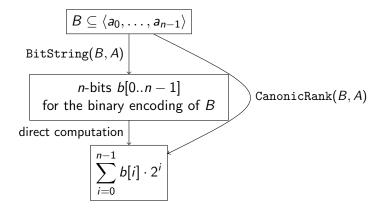
・ロット (雪) (日) (日)

Example $(A = \{a_0, a_1, a_2\})$

subset	3-bit string encoding	canonic rank
	$b_2 b_1 b_0$	
Ø	000	0
$\{a_0\}$	001	1
$\{a_1\}$	010	2
$\{a_0, a_1\}$	011	3
$\{a_2\}$	100	4
$\{a_0, a_2\}$	101	5
$\{a_1, a_2\}$	110	6
$\{a_0, a_1, a_2\}$	111	7

REMARK. This way of enumerating the subsets of a set is called canonic ordering, and the 3-bit string $b_2b_1b_0$ is called canonic (or binary) code.

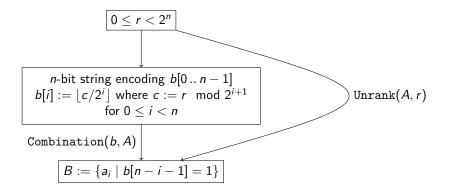
The ordering of combinations via bit string encodings (2)



The ordering of combinations via bit string encodings (3)

Given an ordered set $A = \{a_0, a_1, \dots, a_{n-1}\}$, and $0 \le r < 2^n$

Find the subset B of A with rank r



Enumerating subsets in minimum change order Grey codes

- Frank Grey discovered in 1953 a method to enumerate subsets in an order so that adjacent subsets differ by the insertion or deletion of only one element.
- His enumeration scheme is called standard reflected Grey code.

Example

With Grey's method, the subsets of $\{a, b, c\}$ are enumerated in the following order:

$$\{\}, \{c\}, \{b, c\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \{a\}$$

The 3-bit-string encodings $b_0 b_1 b_2$ of these subsets are

000, 100, 110, 010, 011, 111, 101, 001

We want to enumerate the subsets of $A = \{a_1, \ldots, a_n\}$ in minimum change order G_n . (G_n is the list of those subsets)

• • = • • = •

We want to enumerate the subsets of $A = \{a_1, \ldots, a_n\}$ in minimum change order G_n . (G_n is the list of those subsets) We proceed recursively:

- Compute the list G_{n-1} of subsets of $B = \{a_2, \ldots, a_n\}$ in the minimum change order of Gray.
- 2 Let G'_{n-1} be the list of subsets obtained by adding a_1 to every element of a reversed copy fo G_{n-1} .
- G_n is the concatenation of G_{n-1} with G'_{n-1} .

伺 ト イ ヨ ト イ ヨ ト

Assume that B is a subset of the ordered set A with n elements. If

- *m* is the rank of *B* in the order of the Grey's enumeration and $m = \sum_{i=0}^{n-1} b_i \cdot 2^i$
- The codification as a *n* bit string of *B* is $c_0c_1...c_{n-1}$

then

- $c_i = (b_i + b_{i+1}) \mod 2$ for all $0 \le i < n$, where $b_n = 0$.
- On the other hand, one can prove that

$$b_i = (c_i + c_{i+1} + \ldots + c_{n-1}) \mod 2$$
 for all $0 \le i < n$.

Example $(A = \{a, b, c\}$ with a < b < c)

subset	Grey rank	$b_0 b_1 b_2$	bit string	rank
В	т	such that	of B	of B
		$m = \sum_{i=0}^{2} b_{2-i} 2^{i}$	<i>c</i> ₀ <i>c</i> ₁ <i>c</i> ₂	
{}	0	000	000	0
{ <i>c</i> }	1	100	100	4
{ <i>b</i> , <i>c</i> }	2	010	110	6
{ <i>b</i> }	3	110	010	2
$\{a,b\}$	4	001	011	3
$\{a, b, c\}$	5	101	111	7
$\{a,c\}$	6	011	101	5
{a}	7	111	001	1

Notice that $c_i = (b_i + b_{i+1}) \mod 2$ for all $0 \le i < 3$, where $b_3 = 0$.

- Use the equations in the previous slide to implement the ordering method RankGrey(B,A) and the enumeration method UnrankGrey(A,r) for enumerating the subsets based on Grey's codes.
- Obtained the method NextGreyRankSubset(A,B) which computes the subset of A which is the immediately next one after the subset B in the enumeration of subsets based on Grey's codes.

Given an ordered set A with n elements and $0 \le k \le n$. Generate all the k-combinations of A.

< 同 > < 三 > < 三 > -

э

Given an ordered set A with n elements and $0 \le k \le n$. Generate all the k-combinations of A.

Method 1 (naive and inefficient): generate and test

- Generate all the 2^n subsets of A
- Eliminate the generated subsets which do not have k elements.

伺 ト イヨ ト イヨト

Given an ordered set A with n elements and $0 \le k \le n$. Generate all the k-combinations of A.

Method 1 (naive and inefficient): generate and test

- Generate all the 2^n subsets of A
- Eliminate the generated subsets which do not have k elements.

Method 2 (simple recursion): If $A = \{a\} \cup B$ where $a \notin B$ is the smallest element of A then

- Generate the list L_1 of all (k 1)-combinations of B, and let L_2 be the list of all k-combinations of B.
- Let L₃ be the list obtained by adding a to all the elements of L₁.
- **③** Return the result of the concatenation of L_2 with L_3 .

▲□ ▼ ▲ □ ▼ ▲ □ ▼ ● ● ● ●

The Lexicographic Ordering of *k*-combinations Request. Preliminary remarks (1)

Assume $A = \{1, 2, ..., n\}$ and $X = \{x_1, x_2, ..., x_k\} \subseteq A$ such that $x_1 < x_2 < ... < x_k$.

Q: Which is the rank of *X* in the lexicographic enumeration of the *k*-combinations of *A*?

The *k*-combinations which occur before X in lexicographic order are of 2 kinds:

- **1** The ones which contain an element smaller than x_1 .
- The ones which contain the minimum element x₁, but the rest of the elements is a (k 1)-combination smaller than {x₂, x₃,..., x_k}.

< 同 > < 三 > < 三 > -

The Lexicographic Ordering of *k*-combinations Request. Preliminary remarks (1)

Assume $A = \{1, 2, ..., n\}$ and $X = \{x_1, x_2, ..., x_k\} \subseteq A$ such that $x_1 < x_2 < ... < x_k$.

Q: Which is the rank of *X* in the lexicographic enumeration of the *k*-combinations of *A*?

The *k*-combinations which occur before X in lexicographic order are of 2 kinds:

- **1** The ones which contain an element smaller than x_1 .
- The ones which contain the minimum element x₁, but the rest of the elements is a (k 1)-combination smaller than {x₂, x₃,..., x_k}.

 \Rightarrow the rank of X in the lexicographic enumeration of the k-combinations of A is $N_1 + N_2$ where

- \triangleright N₁ is the number of k-combinations of the first kind
- \triangleright N₂ is the number of the *k*-combinations of the second kind

HYPOTHESIS: $A = \{1, 2, ..., n\}.$

How can we compute N_1 ?

Hypothesis: $A = \{1, 2, ..., n\}.$

How can we compute N_1 ?

• The number of *k*-combinations of *A* which contain *i* as the smallest element is

Hypothesis: $A = \{1, 2, ..., n\}.$

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1}$

Hypothesis: $A = \{1, 2, ..., n\}.$

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule)

Hypothesis: $A = \{1, 2, ..., n\}.$

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule) We know that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n}{k}$ (see lecture 1)

HYPOTHESIS: $A = \{1, 2, ..., n\}.$

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule) We know that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (see lecture 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \left(\binom{n-i+1}{k} - \binom{n-i}{k} \right) = \binom{n}{k} - \binom{n-x_1+1}{k}$

How can we compute N_2 ?

HYPOTHESIS: $A = \{1, 2, ..., n\}.$

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule) We know that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (see lecture 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \left(\binom{n-i+1}{k} - \binom{n-i}{k} \right) = \binom{n}{k} - \binom{n-x_1+1}{k}$

How can we compute N_2 ?

N₂ is the rank of {x₂,..., x_k} in the lexicographic enumeration of the (k − 1)-combinations of {x₁ + 1, x₁ + 2,..., n − 1, n}

HYPOTHESIS: $A = \{1, 2, ..., n\}.$

How can we compute N_1 ?

• The number of k-combinations of A which contain i as the smallest element is $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (the sum rule) We know that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (see lecture 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \left(\binom{n-i+1}{k} - \binom{n-i}{k} \right) = \binom{n}{k} - \binom{n-x_1+1}{k}$

How can we compute N_2 ?

- N₂ is the rank of {x₂,..., x_k} in the lexicographic enumeration of the (k − 1)-combinations of {x₁ + 1, x₁ + 2,..., n − 1, n}
- \Rightarrow N_2 can be computed recursively.

伺 ト イ ヨ ト イ ヨ ト

From the previous remarks results the following recursive implementation for computing the rank:

RankKSubset({x₁,...,x_k}, {ℓ,...,n}) computes the rank in lexicographic order of the k-combination {x₁,...,x_k} of the ordered set {ℓ, ℓ + 1,...,n − 1, n}. Assume that x₁ < x₂ < ... < x_k.

```
RankKSubset (\{x_1, ..., x_k\}, \{\ell, \ell + 1, ..., n\})

if (n = k \text{ or } k=0)

return 0,

p := x_1 - \ell + 1

if (k = 1)

return p - 1

else

return \binom{n}{k} - \binom{n-p+1}{k} + \text{RankKSubset}(\{x_2, ..., x_k\}, \{x_1 + 1, ..., n\})
```

A (1) A (2) A (2) A

Hypothesis:

- A = {1, 2, ..., n} and X = {x₁, x₂, ..., x_k} with x₁ < x₂ < ... < x_k is the subset of A with rank m in the lexicographic enumeration of all k-combinations of A.
 [Keep in mind that 0 ≤ m < (ⁿ_k).]
- **Q**: Which are the values x_1, x_2, \ldots, x_k ?

1 The total number of k-combinations of A which contain the element $\langle x_1 \rangle$ is

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m.$$

$$\tag{1}$$

where $\binom{n-i}{k-1}$ is the number of *k*-combinations in which the smallest element is $i \in \{1, \ldots, x_1 - 1\}$. This number is $\leq m$ because all these *k*-combinations are lexicographic smaller than *X*, which has the rank *m*.

伺下 イヨト イヨト

1 The total number of k-combinations of A which contain the element $\langle x_1 \rangle$ is

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m.$$

$$\tag{1}$$

where $\binom{n-i}{k-1}$ is the number of *k*-combinations in which the smallest element is $i \in \{1, \ldots, x_1 - 1\}$. This number is $\leq m$ because all these *k*-combinations are lexicographic smaller than *X*, which has the rank *m*.

2 The total number of k-combinations of A which contain an element $\leq x_1$ is

$$\sum_{i=1}^{x_1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1}{k} > m.$$

$$(2)$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1, \ldots, x_1\}$. This number is > m because there are m+1 integers *i* between 0 and the rank of X (which is m), and all the k-combinations with such a rank *i* contain one element $\leq x_1$.

・ロト ・ 雪 ト ・ ヨ ト ・

1 The total number of k-combinations of A which contain the element $\langle x_1 \rangle$ is

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m.$$

$$(1)$$

where $\binom{n-i}{k-1}$ is the number of *k*-combinations in which the smallest element is $i \in \{1, \ldots, x_1 - 1\}$. This number is $\leq m$ because all these *k*-combinations are lexicographic smaller than X, which has the rank *m*.

2 The total number of k-combinations of A which contain an element $\leq x_1$ is

$$\sum_{i=1}^{x_1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1}{k} > m.$$

$$(2)$$

where $\binom{n-i}{k-1}$ is the number of *k*-combinations in which the smallest element is $i \in \{1, ..., x_1\}$. This number is > m because there are m+1 integers *i* between 0 and the rank of X (which is *m*), and all the *k*-combinations with such a rank *i* contain one element $\leq x_1$.

 $\Rightarrow \text{ one can use (1) and (2) to find } x_1 \colon \binom{n}{k} - \binom{n-x_1+1}{k} \leq m < \binom{n}{k} - \binom{n-x_1}{k}$

・ロト ・ 同ト ・ ヨト ・ ヨト

() The total number of k-combinations of A which contain the element $\langle x_1 \rangle$ is

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m.$$

$$(1)$$

where $\binom{n-i}{k-1}$ is the number of *k*-combinations in which the smallest element is $i \in \{1, \ldots, x_1 - 1\}$. This number is $\leq m$ because all these *k*-combinations are lexicographic smaller than *X*, which has the rank *m*.

2 The total number of k-combinations of A which contain an element $\leq x_1$ is

$$\sum_{i=1}^{x_1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1}{k} > m.$$

$$(2)$$

where $\binom{n-i}{k-1}$ is the number of k-combinations in which the smallest element is $i \in \{1, \ldots, x_1\}$. This number is > m because there are m+1 integers *i* between 0 and the rank of X (which is m), and all the k-combinations with such a rank *i* contain one element $\leq x_1$.

⇒ one can use (1) and (2) to find x_1 : $\binom{n}{k} - \binom{n-x_1+1}{k} \le m < \binom{n}{k} - \binom{n-x_1}{k}$ The other elements x_2, \ldots, x_k can be computed recursively.

The lexicographic enumeration of *k*-combinations

```
UnrankKSubset(m, k, \{a_1, \ldots, a_n\}) produces the k-combination
\{x_1, \ldots, x_k\} with rank m of \{a_1, \ldots, a_n\} in lexicographic order.
Assume that x_1 < \ldots < x_k and a_1 < \ldots < a_n.
UnrankKSubset(m, k, \{a_1, \ldots, a_n\})
if (k = 1)
    return a_{k+1}
else if (m = 0)
    return \{a_1,\ldots,a_m\}
else
   u := \binom{n}{k}
   i = 1
   while \binom{i}{k} < u - m
       i++
   x1:=n-(i-1)
   return \{a_{n-i+1}\} \cup \text{UnrankKSubset}(m-u+\binom{n-x+1}{k}, k-1, \{a_{n-i+2}, \dots, a_n\})
```

伺 ト イ ヨ ト イ ヨ ト

Solution for the Problem of roses (slide 11)

Now that we have all the necessary informations, we get back to the Problem of roses.

- How many different flowers bouquets can be obtained for Alex's future girlfriend?
- Which one is the most beautiful?

Answers ???

• S. Pemmaraju, S. Skiena. *Combinatorics and Graph Theory with Mathematica*. Section 2.3: Combinations. Cambridge University Press. 2003.

• • • • • • •