
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 8

PREVIOUS COURSE

CONTENT

 Graphical User Interfaces

 Abstract Windows Toolkit

 Components

 Containers

 Layout Managers

 Action Management

 Drawing Components

COURSE CONTENT

 Introduction

 Arhitecture

 Root pane container model

 Swing threads

 Components

AWT - ABSTRACT

WINDOWS TOOLKIT

 First Java API used for building GUI applications

 Offers

 A robust mechanism for exceptions handling

 Layout managers

 Disadvantages

 Portability

 Limitation regarding the way in witch components are rendered
(ex. on Windows OS uses DirectX to render components)

 Facilities

 does not have support for some components like icons and
tooltips

SWING

 A set of custom graphical components which look-and-

feel is settled at runtime

 First official version in 1998

 Included in Java distributions > 1.1.5

 Corrects AWT problems

 The components names start with J

NEWS SWING VS. AWT
 Actions

 synchronized actions model

 Tooltips

 Timer

 Useful for animations

 Event dispatcher thread

 Client properties

 Keyboard shortcuts

 Focus management, mnemonics and
menu accelerators, keymaps

 Borders

 Icons

 Cursors

 Double Buffering

 New layout managers

 box, spring, grouped

 Simple dialog windows

 Components

 JFileChooser, JColorChooser, JTable
(TableModel), ...

COMPONENTS

AWT/SWING

AWT COMPONENTS

 Heavyweight

 Associated with native

components named peers

 Same behavior but the look

and feel is platform

dependent

 package: java.awt

SWING COMPONENTS

 Lightweight

 The components are

rendered by JVM (Java

Virtual Machine)

 package: javax.swing

COMPONENTS

AWT/SWING

LIGHTWEIGHT

 Can contain transparent
pixels

 Can have a different form
from rectangular because
they contain transparent
pixels

 Mouse events are treated
through parent components

HEAVYWEIGHT

 Are opaque

 Are rectangular

 Mouse events are not

treated through parent

components

OBS: In Java version < 1.7 when a lightweight component was above a

heavyweight component , the heavyweight component was always render above

COURSE CONTENT

 Introduction

 Arhitecture

 Root pane container model

 Swing threads

 Components

MODEL VIEW

CONTROLLER

 Architectural pattern which separates the presentation to

logical level

 Swing components that use MVC pattern

 Model

 Encapsulated date state for each component

 View

 The way in which the component is visible on screen

 Controller

 the way in which the component interacts with events

(keyboard, mouse, focus, etc)
Model

Controller

View

MODEL VIEW

CONTROLLER

 The pattern is a little different from the classical one

 Doe not exists a clear separation between View and

Controller

 The separation from Model is clear

MODEL VIEW

CONTROLLER

 MV/C

 For more simple components the default model is used

 MVC

 Complex components

 JList

 JTable

 JTree

JComponent

Swing Model(s)

View

Controller reporteză

referă la

modifică

MODEL

 Each component has its model class

 For JTable is Table Model

 The model provides data to the component

 When the model is modified all listeners are notified by an
event

 What models ca be used

 Default

 Custom implementation, if it assures a more efficient data
control inside the component

VIEW

 Each component has its own view

 Responsible with component rendering

 Named UI Delegates

 ButtonUI, SliderUI, etc

 Some of the view properties can be found in component

class

 Example

 Font properties

 Background properties

 Size properties

COURSE CONTENT

 Introduction

 Arhitecture

 Root pane container model

 Swing threads

 Components

ROOT PANE

 Manages

 Content pane

 Menu bar

 Others containers

COURSE CONTENT

 Introduction

 Arhitecture

 Root pane container model

 Swing threads

 Components

SWING THREADS

 A well-written Swing program uses concurrency to create a user
interface that never "freezes"

 the program is always responsive to user interaction, no matter
what it's doing

 Swing threads

 Initial threads

 the threads that execute initial application code.

 The event dispatch thread

 where all event-handling code is executed. Most code that interacts
with the Swing framework must also execute on this thread.

 Worker threads

 also known as background threads, where time-consuming
background tasks are executed

 The programmer does not need to provide code that explicitly
creates these threads: they are provided by the runtime or the
Swing framework

INITIAL THREAD

 What they do?

 Create a Runnable object that initializes the GUI and
schedule that object for execution on the event dispatch
thread

 Once the GUI is created, the program is primarily driven by
GUI events, each of which causes the execution of a short
task on the event dispatch thread

 Application code can schedule additional tasks on the
event dispatch thread (if they complete quickly, so as not to
interfere with event processing) or a worker thread (for
long-running tasks)

INITIAL THREAD

 Are created by invoking the methods

 javax.swing.SwingUtilities.invokeLater

 simply schedules the task and returns

 public static void invokeLater(Runnable r)

 Example

Runnable doWorkRunnable = new Runnable() {

 public void run() { doWork(); }

};

SwingUtilities.invokeLater(doWorkRunnable);

 javax.swing.SwingUtilities.invokeAndWait

 waits for the task to finish before returning

 public static void invokeAndWait(Runnable r)

EVENT DISPATCH

THREAD

 It is automatically started by JVM when an application

contains graphical components

 Is a background thread used in Java to process events

from the Abstract Window Toolkit (AWT) graphical user

interface event queue

 Responsible for method call

 paint()

 actionPerformed()

 all others methods that are used for events handling

 Allows the safe modification of the components

WORKER THREADS

AND SWINGWORKER

 execute a long-running task

 uses one of the worker threads (background threads)

 javax.swing.SwingWorker. SwingWorker

UNIQUE THREAD

RULE

 AWT components methods are thread safe

 the concurrent access to the components doe not affect

their state

 Swing components are NOT thread safe

 Once a Swing component has been realized, all code that

might affect or depend on the state of that component

should be executed in the event-dispatching thread

 Some methods like repaint(), revalidate(), inavalidate(),

methods that modifies the listeners list are thread safe

being handled by event thread

UNIQUE THREAD

RULE
 Resolves the problem of modification of the components by an external execution

thread

 Example:

public class MyApplication {

public static void main(String[] args) {

 JFrame f = new JFrame("Labels");

 // Add components to

 // the frame here... M f.pack();

 f.show();

 // Don't do any more GUI work here...

 }

}

 the code runs on the "main" thread.

 f.pack() call realizes the components under the JFrame

 the components in the GUI are shown with the setVisible (or show) call. Technically the
setVisible call is unsafe, because the components have already been realized by the
pack call. However, because the program doesn't already have a visible GUI, it's
exceedingly unlikely that a paint request will occur before setVisible returns.

 The main thread executes no GUI code after the setVisible call. This means that all GUI
work moves from the main thread to the event-dispatching thread, and the example is, in
practice, thread safe.

COURSE CONTENT

 Introduction

 Arhitecture

 Root pane container model

 Swing threads

 Components

HOW TO CREATE AN

APPLICATION

 Creation

 Frame/JFrame

 Panel/JPanel

 Componente

 Listenere

 Adding

 Listeners at componens

 Components in panels

 Panels in frames

JPanel

Listener

JFrame

JLabel JButton

HOW TO CREATE AN

APPLICATION

public class GUIExample extends JFrame {

 public GUIExample(String title) {

 super(title);

 //add components

 setVisible(true);

 pack();

 }

 public static void main (String args[]) {

 SwingUtilities.invokeLater(new Runnable(){

 public void run() {

 new GUIExample(“Ex titlu”);

 }

 });

 }

}

INTERMEDIATE

CONTAINERS

 Intermediate containers

 JPane

 JScrollPane

 JSplitPane

 JTabbedPane

 Used for components grouping

 Default layout Flowyout

JPANE

 JPane

 Base intermediary container for any graphical interface

 Most used to organize group of components

 Methods

 add layout manager

 components management (add/remove)

 adding border

JSCROLLPANE

 JScrollPane

 Allows other components to scroll inside a fix dimension area

 Example

JTextArea textArea = new JTextArea(5, 5);

JScrollPane scrollableTextArea = new JScrollPane(textArea);

scrollableTextArea.setHorizontalScrollBarPolicy(

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

scrollableTextArea.setVerticalScrollBarPolicy(

 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

add(scrollableTextArea);

JSPLITPANE

 JSplitPane

 Contains to side by side panels separated by a divider, that
allows simulating visualization of to components near each other

 Methods for adding components

 setTopComponent()

 setLeftComponent()

 setBottomComponent()

 setRightComponent()

 Example

Panel panel1 = new JPanel();

JPanel panel2 = new JPanel();

JSplitPane splitPane = new
JSplitPane(JSplitPane.HORIZONTAL_SPLIT, panel1, panel2);

splitPane.setDividerLocation(0.25);

JTABEDPANE

 JTabedPane

 A stack of components layered on many over layered
layers

 Methods

 addTab()

 removeTabAt()

 setSelectedIndex()

 Not present in AWT

JTABEDPANE

 Example

JTabbedPane tabbedPane = new JTabbedPane();

ImageIcon icon = createImageIcon("images/middle.gif");

JComponent panel1 = makeTextPanel("Panel #1");

tabbedPane.addTab("Tab 1", icon, panel1,"Does nothing");

tabbedPane.setMnemonicAt(0, KeyEvent.VK_1);

JComponent panel2 = makeTextPanel("Panel #2");

tabbedPane.addTab("Tab 2", icon, panel2, "Does twice as much
nothing");

tabbedPane.setMnemonicAt(1, KeyEvent.VK_2);

 tabbedPane.setSelectedIndex(2);

 add(tabbedPane);

SIMPLE COMPONENTS

 Labels

 Buttons

 Borders

 Lists

 Drop down lists

 Spinner

LABELS

 JLabel

 can render HTML code

 Useful to display

 text

 images

 Example

label1 = new JLabel("Image and Text", icon, JLabel.CENTER);

label1.setVerticalTextPosition(JLabel.BOTTOM);

label1.setHorizontalTextPosition(JLabel.CENTER);

label2 = new JLabel("Text-Only Label");

label3 = new JLabel(icon);

JLabel l = new JLabel("<html><center>Label
<font
color=#ff00ff>HTML Format</html>");

BUTTONS

 JButton

 JCheckbox

 JRadioButton

 JMenuItem

 JCheckBoxMenuItem

 JRadioButtonMenuItem

 JToggleButton

BUTTONS

 Can realize actions

 Can be grouped

 ButtonGroup

 Can contain

 Images

 HTML text

 Mnemonics

BUTTONS STATES

 Selected

 Pressed

 Rollover

 Armed

 Enabled

EXAMPLES

 Simple buttons

 new JButton(“Simple button”)

 Buttons with images

 btnCuPoza = new JButton("Button cu Poza");

 btnCuPoza.setIcon(new ImageIcon(getImage(getCodeBase(),
"../img/butoane/icon1.JPG")));

 btnCuPoza.setHorizontalTextPosition(SwingConstants.LEFT);

 btnCuPoza.setMnemonic(KeyEvent.VK_P);

 Buttons using HTML

 new JButton("<html><u>T</u>wo
lines</html>"));

 Adding listeners (behavior)

 btnCuPoza.addActionListener(this);

EXAMPLES

 Buttons rendered in different way from default behavior

btn = new FancyButton(new ImageIcon(getImage(getCodeBase(), "../img/butoane/icon1.JPG")),

 new ImageIcon(getImage(getCodeBase(), "../img/icon2.JPG")),

 new ImageIcon(getImage(getCodeBase(), "../img/butoane/icon3.JPG")));

btn.setText("FancyButton");

btn.setIcon(new ImageIcon(getImage(getCodeBase(), "../img/butoane/icon1.JPG")));

public class FancyButton extends JButton {

 public FancyButton(Icon icon, Icon pressed, Icon rollover) {

 super(icon);

 setFocusPainted(false);,

 setRolloverEnabled(true);

 setRolloverIcon(rollover);

 setPressedIcon(pressed);

 setBorderPainted(false);

 setContentAreaFille(false);

 }

EXAMPLES

 Radio/CheckboxButtons

r1 = new JRadioButton("Icoana vizibila cand butonului nu este afisat");

r1.setActionCommand("1");

r1.setSelected(true);

panelButone.add(r1);

r2 = new JRadioButton("Icoana vizibila la trecerea peste buton");

r2.setActionCommand("2");

panelButone.add(r2);

r3 = new JRadioButton("Icoana vizibila la apasarea butonuluit");

panelButone.add(r3);

ButtonGroup group = new ButtonGroup();

group.add(r1); group.add(r2); group.add(r3);

JCheckBox cb1 = new JCheckBox("Rosu");

EXAMPLES

 ToolgeButton

 JToggleButton redButton = new JToggleButton("red");

BORDERS

 Borders

 Components derived from JComponent

 cannot have listeners

 Borders Types

 CompoundBorder

 EmptyBorder

 EtchedBorder

 LineBorder

 MatteBorder

 SoftBevelBorder

 TitledBorder

 Border Factory

 setBorder()

BORDERS

BORDERS

 Example

Border outline = BorderFactory.createLineBorder(Color.black);

JLabel northLabel = new JLabel("NORTH");

northLabel.setHorizontalAlignment(SwingConstants.CENTER);

northLabel.setBorder(outline);

JLIST

 Allows selection one or more elements from a list

 SINGLE_SELECTION

 SINGLE_INTERVAL_SELECTION

 MULTIPLE_INTERVAL_SELECTION

 Objects are displayed by calling toString() method

 exception: Icon class

 Model

 DefaultListModel

 AbstractListModel

 Events

 ListSelectionListener

JCOMBOBOX

 JComboBox

 Combines a button with a list (internal popup)

 Data Models

 DefaultComboBoxModel

 MutableComboBoxModel
 allows operation of add/remove/update

 Events

 ChangeListener

 Types

 Combobox

 Editable Combobox

EXAMPLE

final JComboBox<Culoare> cb = new JComboBox<Culoare>();

cb.addItem(new Culoare ("Rosu", Color.red));

cb.addItem(new Culoare ("Gri",Color.gray));

cb.addItem(new Culoare ("Verde",Color.green));

cb.addItem(new Culoare ("Albastru",Color.blue));

cb.addItemListener(new ItemListener() {

 @Override

 public void itemStateChanged(ItemEvent ie) {

 Culoare color = (Culoare) cb.getSelectedItem();

 lText.setBackground(color.color);

 lText.updateUI();

 }

});

JSPINNER

 JSpinner

 Is a text line that allows selecting a value from a sequence of
values

 Selection

 Using arrows

 Adding directly a value

 Models

 SpinnerListModel

 AbstractSpinnerModel

 SpinnerDateModel

 SpinnerModel

 SpinnerNumberModel

COMPLEX

COMPONENTS

 Text comonents

 Tables

 Trees

TEXT COMPONENTS

 Display and allow text editing

TEXT COMPONENTS

 The content is managed by an instance of Document

interface

 PlainDocument

 StyledDocument

 Copy/paste system is already implemented in superclass

JTextComponent

 copy()

 cut()

 select(int pozInt, int pozFin)

 selectAll()

TABLES

 JTable

 Allows displaying data in a tabular format

 Properties

 The user can
 select table lines, columns, table header

 reorder the columns by table headers movement

 column resize

 edit cell values

 sort columns based on content

 filter columns based on content

 The program can
 modify cell values

 add/delete/move columns

 customize rendering mode of the table

 customize edit mode of the table

TABLES. RELATED

CLASSES

TABLES

 JTable has many properties that can be customized, like cell
rendering and editing, but also contains default values for them

 A JTable component is formed from

 Data lines

 Data columns

 Columns header

 An editor if the cells will be editable

 A TableModel, that is a subclass of AbstractTableModel, that will
contain the data

 A TableColumnModel, usually DefaultTableColumnModel, which
controls the behavior of table columns and gives access to them

 A ListSelectionModel, usually DefltListSelectionModel, that
contains information about the lines selected into the table

 A TableCellRenderer, usually DefaultTableCellRender, that gives
information about how the cells are rendered

 A MultipleTableColumns, that contains information about each
column

 A JTableHeader that display the header

TABLEMODEL

 TableModel

 Manages the dates displayed in the table

 Methods

 Class getColumnClass(int columnIndex)

 Used by renderer and editor

 boolean isCellEditable(int rowIndex, int columnIndex)

 Object getValueAt(int rowIndex, int columnIndex)

 void setValueAt(Object aValue, int rowIndex, int columnIndex)

 caled by JTable at editing time

 void addTableModelListener (TableModelListener l)

 notifiations for table data and structure

TABLEMODEL

 AbstractTableModel

 defaults

 Object class reported is Object

 The columns have a default name if none is specified

 The cells are not editable

 the folowing metods have to be overwritten

 int getRowCount();

 int getColumnCount();

 Object getValueAt(int rowIndex, int columnIndex)

TABLEMODEL

 DefaultTableModel

 Stores the data in vectors

 each column has its own vector

 defaults

 Object class reported is Object

 The columns have a default name if none is specified

 The cells are not editable

COLUNMODEL

 Contains information about

 Headers values

 Dimensions

 Rendering mode

 Editing mode

 Allows columns resize

JTREE

 JTree

 Allows the visualization of tree structures

 Has only one root node

 Selection mechanism similar with JList selection

mechanism

DEFAULT DIALOGUES

 JOption Pane

 JFileChooser

 JColorChooser

JOPTIONPANE

 JOptionPane

 Easy way to create simple dialogs

 display a message

 Ask a question

 Input a value

 Modal windows

 blocks application until a answer is given

JOPTIONPANE

 Types

 Message

 showConfirmDialog()

 Comfirm

 showInputDialog()

 Input

 showMessageDialog()

 Option

 showOptionDialog()

JFILECHOOSER

 JFileChooser

 Component that allows navigation through file system

 Can open files

 Can save files

 Example

JFileChooser files = new JFileChooser(DEFAULT_DIRECTORY);

int result = files.showSaveDialog(frame);

File f = files.getSelectedFile();

JFILECHOOSER

 Files filters

 FileNameExtensionFilter

 Create your own filter by extending the class FileFlter

 Example

FileFilter filter = new FileNameExtensionFilter (“Text files (*.txt)”, ” txt”);

files.addChoosableFileFilter(filter);

JCOLORCHOOSER

 JColorChooser

 Allows color choosing

 Available modes

 Swatches

 HSV —Hue-Saturation-Value

 RGB —Red-Green-Blue

 HSL —Hue-Saturation-Lightness

 CMYK – Crayn-Magenda-Yellow-Black

COMPONENTS FOR

PROGRESS AND SCROLL

 JSlider

 JScrollBar

 JProgressBar

 JToolTip

SLIDER

 JSlider

 Used when we have to chose values into a known numerical
interval

 Properties

 orientation

 intent

 the number of missing values by using page up, page down
keys

 minorTickSpacing

 majorTickSpacing

 paintTicks

 paintLabels

 inverted

PROGRESSBAR

 JProgressBar

 Used to display the progress of a time consuming

operation

 The activity monitorisation is done by the method

setValue()

JSCROLLBAR

 JScrollBar

 Added to the components in order to scroll in a more facil

way the content

 Properties

 Orientation

 The place where the indicator is initially displayed

 the size of the indicator

TOOL TIP

 JToolTip

 Windows that allows association of contextual information
to application components

 Visible when the mouse is over the component

 void setToolTipText(String text)

 They become active when the mouse remain 750 ms over
the component

 It remains active 4000ms

 If we enter, and get out from the component it activates in
500 ms

 The time periods can be modified through class
TollTipManager

 setInitialDelay(), setDismissDelay(), setReshowDelay()

MENUS

 Swing allows creation of

 Menu bars

 JMenuBar

 Menus

 JMenu, JMenuItem, JSeparator, JCheckBoxMenuItem,

JRadioButtonMenuItem

 Popup menus

 JPopupMenu

 Toolbars

 JToolBar

MENUS

MENUS. CLASS

HIERACHY

MENUS

 Events

 Mouse

 Keyboard

 Key combinations (mnemonics0

 usualy firt letter from submeny

 Accelerators

 Allows direct access of a submenu

BUILDING A MENU

 Buiding menu bar

 MenuBar bara = new MenuBar();

 Building the menu

 Menu meniu = new Menu(“Exemplu”);

 Buiding menu items

 meniu.add(new MenuItem(“intrare 1”));

 meniu.addSeparator();

 meniu.add(new MenuItem(“intrare 2”));

 Adding the menu to menubar

 bara.add(meniu);

 Adding the menubar to frame

 Frame frame = new Frame(“Titlu”);

 frame.setMenuBar(bara);

MORE LAYOUTS

 BoxLayout

 The componets are displayed like a stack and can be paced on
vertical or horizontal

 SpringLayout

 Defines directed relations (constraints) between conponents eges

 GroupLayout

 Hierahical groups components in order placethem into container

 horizontal layout = sequential group { c1, c2, parallel group
(LEFT) { c3, c4 } }

 vertical layout = sequential group { parallel group (BASELINE) {
c1, c2, c3 }, c4 }

LOOK & FEEL

 Swing allows the modification of the way components look

 Look - the way in which the components look

 Fell - the way in which the components behaves

 Types

 CrossPlatformLookAndFeel

 Java L&F - Metal

 SystemLookAndFeel

 L&F native for the operation system on which the application runs

 Synth

 Create your own L&F using XML files

 Multiplexing

 Using multiple L&Fs same time

LOOK & FEEL

 Example of usage

 Java L&F

 UIManager.setLookAndFeel(

UIManager.getCrossPlatformLookAndFeelClassName());

 Platform L&F

 UIManager.setLookAndFeel(

UIManager.getSystemLookAndFeelClassName());

 Specifing on command line of the L&F

 java -

Dswing.defaultlaf=com.sun.java.swing.plaf.windows.Window

sLookAndFeel MyAp

OTHER FACILITIES

 Focus Manager

 Dialogs

 Printing

 Splash Screens

DIALOGS

 Dialog Box

 Is a top level window that has a title, margins and colects

information from users

 Modal or modelees

 Modal

 blocks the input at applications windows until it is closen

 Modeless

 allows to work with other application's windows while it

is opened

DIALOGS TYPES

 Modeless

 A modeless dialog box does not block any other window while it is visible

 Document-modal

 A document-modal dialog box blocks all windows from the same document, except

windows from its child hierarchy. In this context, a document is a hierarchy of

windows that share a common ancestor, called the document root, which is the

closest ancestor window without an owner

 Application-modal

 An application-modal dialog box blocks all windows from the same application,

except windows from its child hierarchy. If several applets are launched in a browser

environment, the browser is allowed to treat them either as separate applications or

as a single application. This behavior is implementation-dependent.

 Toolkit-modal

 A toolkit-modal dialog box blocks all windows that run in the same toolkit, except

windows from its child hierarchy. If several applets are launched, all of them run with

the same toolkit. Hence, a toolkit-modal dialog box shown from an applet may affect

other applets and all windows of the browser instance that embeds the Java runtime

environment for this toolkit.

 Exclusion mode

 Any top-level window can be marked not to be blocked by modal dialogs.

CONCLUSIONS

 Advantages

 Portability
 contains few elements platform specific

 Behavior
 allows a more flexible behavior to the components because they are not

so peered with operating system

 Properties
 Supports more properties like icons, tooltips ...

 Look and Feel
 allows application to look similar on all platforms

 Disadvantages

 Applets portability
 Most of the browsers does not include Swing classes so it have to install

a Java plug-in

 Performance
 Swing components are slower that AWT components

 Look & Feel
 in case the components use the L&F of the operating system the

components could look different

BIBLIOGRAPHY

 https://docs.oracle.com/javase/tutorial/uiswing/TOC.html

