
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 7

PREVIOUS COURSE

CONTENT

 Exceptions

 Database access

COURSE CONTENT

 Graphical User Interfaces

 Abstract Windows Toolkit

 Components

 Containers

 Layout Managers

 Action Management

 Drawing Components

GRAFICAL USER

INTERFACE

 What are Grafical User Interfaces (GUI)?

GRAFICAL USER

INTERFACE

 What are Grafical User Interfaces (GUI)?

 Is a type of user interface that allows users to interact with

electronic devices through graphical icons and visual

indicators such as secondary notation, instead of text-

based user interfaces, typed command labels or text

navigation

JAVA GUI

IMPLEMETATIONS

 Grafical User Interfaces

 Abstract Windows Toolkit (AWT)

 Swing

 Java FX

IMPLEMENTING GUI

IN JAVA

 The Java Foundation Classes (JFC) are a set of packages
encompassing the following APIs

 Abstract Window Toolkit (AWT)
 Native GUI components

 Swing
 Lightweight GUI components

 2D
 Rendering two-dimensional shapes, text, and images

 Accessibility
 Allowing compatibility with, for example, screen readers and screen

magnifiers

AWT

 First Java API used for GUI applicaions buildig

 Provides basic UI components

 Buttons, lists, menus, textfields, etc

 Event handling mechanism

 Clipboard and data transfer

 Image manipulation

 Font manipulation

 Graphics

 Platform independence is achieved through peers, or

native GUI components

AWT

 Creation of a graphical application inculdes

 Design definition

 Creation of a displaying surface (eg. window) on wich the the
components (buttons, text fields/area, lists, ..) used for
communication with user will lay

 Creation and positioning the grafical components on the
created surface

 Adding functionality

 Defing of some actions that have to be executed when the
user intercats with application graphical components

 Adding listeners to components in order to link the user
actions with the desired behavior for that components

COURSE CONTENT

 Graphical User Interfaces

 Abstract Windows Toolkit

 Components

 Containers

 Layout Managers

 Action Management

 Drawing Components

AWT. COMPONENTS

 Components

 Graphical elements that allow the user to interact with the

program and provide the user with visual feedback about

the state of the program

 Examples: buttons, scrollbars, text fields, ...

 Component class - superclas of all components

 Componets are gruped into containers

 Containers

 Contain and control the layout of components

 Are components, and can thus be placed inside other

containers

AWT. COMPONENTS

AWT. CONTAINERS

TYPE

 Window

 A top-level display surface (a window).

 An instance of the Window class is not attached to nor embedded
within another container.

 An instance of the Window class has no border and no title.

 Frame

 A top-level display surface (a window) with a border and title.

 An instance of the Frame class may have a menu bar. It is otherwise
very much like an instance of the Window class.

 Dialog

 A top-level display surface (a window) with a border and title.

 An instance of the Dialog class cannot exist without an associated
instance of the Frame class.

 Panel

 A generic container for holding components.

 An instance of the Panel class provides a container to which to add
components.

AWT. CONTAINER

CREATION
 BULDING APPLICATION

 first create an instance of class Window or class Frame

 APPLET

 a frame (the browser window) already exists

public class Example1

{

 public static void main(String []
args)

 {

 Frame f = new Frame("Example
1");

 f.show();

 }

public class Example1a extends Panel

{

 public static void main(String [] args)

 {

 Frame f = new Frame("Example 1a");

 Example1a ex = new Example1a();

 f.add("Center", ex);

 f.pack();

 f.show();

 }

}

AWT. ADDING

COMPONENTS

 a user interface must consist of more than just a container

 Components are added to containers via a container's

add() method

 There are three basic forms of the add() method.

 The method to use depends on the container's layout

manager
public class Example3 extends
java.applet.Applet {

 public void init() {

 add(new Button("One"));

 add(new Button("Two"));

 }

 public Dimension preferredSize()

 {

 return new Dimension(200, 100);

 }

 public static void main(String [] args)

 {

 Frame f = new Frame("Example 3");

 Example3 ex = new Example3();

 ex.init();

 f.add("Center", ex);

 f.pack();

 f.show();

 }

}

COURSE CONTENT

 Garaphical User Interfaces

 Abstract Windows Toolkit

 Components

 Containers

 Layout Managers

 Action Managment

 Drawing Components

AWT. COMPONENT

LAYOUT

 Layout manager

 Makes all of the component placement decisions

 Layout manager classes implement the LayoutManager

interface

 Types of managers

 FlowLayout

 BorderLayout

 CardLayout

 GridLayout

 GridBagLayout

AWT. COMPONENT

LAYOUT

 Every container has a default layout manager, but we can
explicitly set the layout manager as well

 JPanel default = FlowLayout

 JFrame default = BorderLayout

 Each layout manager has its own particular rules
governing how the components will be arranged

 Some layout managers pay attention to a component's
preferred size or alignment, while others do not

 A layout manager attempts to adjust the layout as
components are added and as containers are resized

AWT. COMPONENT

LAYOUT

 We can use the setLayout method of a container to

change its layout manager

 General syntax

 container.setLayout(new LayoutMan());

 Examples:

 Panel p1 = new Panel(new BorderLayout());

 Panel p2 = new Panel();

 p2.setLayout(new BorderLayout());

AWT. COMPONENT

LAYOUT

 Flow Layout

 Puts as many components as possible on a row, then moves
to the next row

 Rows are created as needed to accommodate all of the
components

 Components are displayed in the order they are added to the
container

 Each row of components is centered horizontally in the
window by default, but could also be aligned left or right

 Also, the horizontal and vertical gaps between the
components can be explicitly set

AWT. COMPONENT

LAYOUT

 Flow Layout - example

import java.awt.*;
import javax.swing.*;

public class Statics1 {
 public static void main(String[] args) {
 new S1GUI();
 }
}

class S1GUI {
 private JFrame f;

 public S1GUI() {
 f = new JFrame("Statics1");
 f.setSize(500, 200);
 f.setLayout(new FlowLayout(FlowLayout.LEFT));
 for (int b = 1; b < 9; b++)
 f.add(new JButton("Button " + b));
 f.setVisible(true);
 }
}

AWT. COMPONENT

LAYOUT

 Border layout

 A border layout defines five areas into which components

can be added

 Each area displays one component (which could be a
container such as a JPanel)

 Each of the four outer areas enlarges as needed to
accommodate the component added to it

 If nothing is added to the outer areas, they take up no
space and other areas expand to fill the void

 The center area expands to fill space as needed

North

South

Center East West

AWT. COMPONENT

LAYOUT

 Border layout - example

import javax.swing.*;
import java.awt.*;

public class Statics2 {
 public static void main(String[] args) { new S2GUI(); }
}

class ColoredJPanel extends Panel {
 Color color;
 ColoredJPanel(Color color) {
 this.color = color;
 }
 public void paint(Graphics g) {
 g.setColor(color);
 g.fillRect(0, 0, 400, 400);
 }
}

class S2GUI extends Frame {
 public S2GUI() {
 setTitle("Statics2");
 addWindowListener(new WindowAdapter() {
 @Override
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
 });
 setSize(400, 400);
 add(new ColoredJPanel(Color.RED), BorderLayout.NORTH);
 add(new ColoredJPanel(Color.GREEN), BorderLayout.SOUTH);
 add(new ColoredJPanel(Color.BLUE), BorderLayout.WEST);
 add(new ColoredJPanel(Color.YELLOW), BorderLayout.EAST);
 add(new ColoredJPanel(Color.BLACK), BorderLayout.CENTER);
 setVisible(true);
 }
}

AWT. COMPONENT

LAYOUT

 GridLayout

 A grid layout presents a container’s components in a
rectangular grid of rows and columns

 One component is placed in each cell of the grid, and all
cells have the same size

 As components are added to the container, they fill the grid
from left-to-right and top-to-bottom (by default)

 The size of each cell is determined by the overall size of
the container

AWT. COMPONENT

LAYOUT

 GridLayout - example

import javax.swing.*;
import java.awt.*;

public class Statics3 {
 public static void main(String[] args) { new S3GUI(); }
}

class S3GUI extends Frame {
 static final int DIM = 25;
 static final int SIZE = 12;
 static final int GAP = 1;

 public S3GUI() {
 setTitle("Statics3");
 addWindowListener(new WindowAdapter() {
 @Override
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
 });
 setLayout(new GridLayout(DIM, DIM, GAP, GAP));
 for (int i = 0; i < DIM * DIM; i++) add(new MyPanel());
 pack();
 setVisible(true);
 }

 class MyPanel extends Panel {
 MyPanel() { setPreferredSize(new Dimension(SIZE, SIZE)); }
 public void paint(Graphics g) {
 float gradient =
 1f - ((float)Math.abs(getX() - getY()))/(float)((SIZE + GAP) * DIM);
 g.setColor(new Color(0f, 0f, gradient));
 g.fillRect(0, 0, getWidth(), getHeight());
 }
 }
}

AWT. COMPONENT

LAYOUT

 GridBagLayout

 Divides the window into grids, without requiring the

components to be the same size

More flexible than the other standard layout managers, but

harder to use

 Each component managed by a grid bag layout is

associated with an instance of GridBagConstraints

 The GridBagConstraints specifies:

 How the component is laid out in the display area

 In which cell the component starts and ends

 How the component stretches when extra room is available

 Alignment in cells

AWT. COMPONENT

LAYOUT

 GridBagLayout - steps to use

Set the layout, saving a reference to it

 GridBagLayout layout = new GridBagLayout();

 setLayout(layout);

Allocate a GridBagConstraints object

 GridBagConstraints constraints = new
GridBagConstraints();

Set up the GridBagConstraints for component 1

 constraints.gridx = x1;

 constraints.gridy = y1;

 constraints.gridwidth = width1;

 constraints.gridheight = height1;

Add component 1 to the window, including constraints
 add(component1, constraints);

Repeat the last two steps for each remaining component

AWT. COMPONENT

LAYOUT

 GridBagConstraints - Properties

 gridx, gridy

 Specifies the top-left corner of the component

 Upper left of grid is located at (gridx, gridy)=(0,0)

 Set to GridBagConstraints.RELATIVE to

auto-increment row/column

 GridBagConstraints constraints = new GridBagConstraints();

 constraints.gridx = GridBagConstraints.RELATIVE;

 container.add(new Button("one"), constraints);

 container.add(new Button("two"), constraints);

AWT. COMPONENT

LAYOUT

 GridBagConstraints - Properties

 gridwidth, gridheight

 Specifies the number of columns and rows the Component occupies

 constraints.gridwidth = 3;

 GridBagConstraints.REMAINDER lets the component take up the

remainder of the row/column

 weightx, weighty

 Specifies how much the cell will stretch in the x or y direction if

space is left over

 constraints.weightx = 3.0;

 Constraint affects the cell, not the component (use fill)

 Use a value of 0.0 for no expansion in a direction

 Values are relative, not absolute

AWT. COMPONENT

LAYOUT

 GridBagConstraints - Properties

 fill

 Specifies what to do to an element that is smaller than the cell size

 constraints.fill = GridBagConstraints.VERTICAL;

 The size of row/column is determined by the widest/tallest element

in it

 Can be NONE, HORIZONTAL, VERTICAL, or BOTH

 anchor

 If the fill is set to GridBagConstraints.NONE, then the anchor field

determines where the component is placed

 constraints.anchor =

GridBagConstraints.NORTHEAST;

 Can be NORTH, EAST, SOUTH, WEST, NORTHEAST,

NORTHWEST, SOUTHEAST, or SOUTHWEST

AWT. COMPONENT

LAYOUT

 GridBagLayout - example
public class Statics4 {public static void
main(String[] args) { new S4GUI(); }}

class S4GUI extends JFrame {

 public S4GUI() {

 setTitle("Statics4");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 JButton button;

 Container contentPane = getContentPane();

 GridBagLayout gridbag = new GridBagLayout();

 GridBagConstraints c = new
GridBagConstraints();

 contentPane.setLayout(gridbag);

 c.fill = GridBagConstraints.HORIZONTAL;

 button = new JButton("Button 1");

 c.weightx = 0.5;

 c.gridx = 0;

 c.gridy = 0;

 gridbag.setConstraints(button, c);

 contentPane.add(button);

 button = new JButton("2");

 c.gridx = 1;

 c.gridy = 0;

 gridbag.setConstraints(button, c);

 contentPane.add(button);

 button = new JButton("Button 3");

 c.gridx = 2;

 c.gridy = 0;

 gridbag.setConstraints(button, c);

 contentPane.add(button);

 button = new JButton("Long-Named Button 4");

 c.ipady = 40; //make this component tall

 c.weightx = 0.0;

 c.gridwidth = 3;

 c.gridx = 0;

 c.gridy = 1;

 gridbag.setConstraints(button, c);

 contentPane.add(button);

button = new JButton("Button 5");

 c.ipady = 0; //reset to default

 c.weighty = 1.0;

//request any extra vertical space

 c.anchor = GridBagConstraints.SOUTH;
//bottom of space

 c.insets = new Insets(10,0,0,0);

//top padding

 c.gridx = 1; //aligned with button 2

 c.gridwidth = 2; //2 columns wide

 c.gridy = 2; //third row

 gridbag.setConstraints(button, c);

 contentPane.add(button);

 pack();

 setVisible(true);

 }

}

AWT. COMPONENT

LAYOUT

CARD LAYOUT

 CardLayout

 Stacks components on top of each
other, displaying the top one

 Associates a name with each
component in window

 Panel cardPanel;

 CardLayout layout new
CardLayout();

 Panel.setLayout(layout);

 ...

 cardPanel.add("Card 1",
component1);

 cardPanel.add("Card 2",
component2);
 ...

 layout.show(cardPanel, "Card 1");

 layout.first(cardPanel);

 layout.next(cardPanel);

NULL LAYOUT

 NullLayout

 Manually sets relative position of
the components

 setLayout(null);

 Button b1 = new Button("Button

1");

 Button b2 = new Button("Button

2");

 ...

 b1.setBounds(0, 0, 150, 50);

 b2.setBounds(150, 0, 75, 50);

 ...

 add(b1);

 add(b2);

 ...

AWT. COMPONENT

LAYOUT

 Use nested containers

 Rather than struggling to fit your design in a single layout,

try dividing the design into sections

 Let each section be a panel with its own layout manager

 Turn off the layout manager for some containers

 Adjust the empty space around components

 Change the space allocated by the layout manager

 Override insets in the Container

 Use a Canvas or a Box as an invisible spacer

AWT. COMPONENT

LAYOUT
 JPanel subPanel1 = new JPanel();

 JPanel subPanel2 = new JPanel();

 subPanel1.setLayout(new BorderLayout());

 subPanel2.setLayout(new
FlowLayout(FlowLayout.RIGHT,2,2));

 subPanel1.add(bSaveAs,BorderLayout.WEST);

subPanel1.add(fileField,BorderLayout.CENTER);

 subPanel2.add(bOk);

 subPanel2.add(bExit);

 bottomPanel.add(subPanel1);

 bottomPanel.add(subPanel2);

 add(bottomPanel,BorderLayout.SOUTH);

COURSE CONTENT

 Graphical User Interfaces

 Abstract Windows Toolkit

 Components

 Containers

 Layout Managers

 Action Management

 Drawing Components

INTERACTIVE

PROGRAMS

 “Classic” view of computer

programs: Transform inputs

to outputs, stop

 Event-driven programs:

interactive, long-running

 Servers interact with clients

 Applications interact with

user(s)

user

program

output

events

input

output

user

EVENT-DRIVEN

PROGRAMMING

 Reactive

 Program’s execution is indeterminate

 On-screen components cause events to occur when they are
clicked / interacted with

 Events can be handled, causing the program to respond,
driving the execution thru events (an "event-driven"
program)

 Typically uses a GUI (Graphical User Interface)

JAVA EVENT

HIERARCHY

java.lang.Object

 +--java.util.EventObject

 +--java.awt.AWTEvent

 +--java.awt.event.ActionEvent

 +--java.awt.event.TextEvent

 +--java.awt.event.ComponentEvent

 +--java.awt.event.FocusEvent

 +--java.awt.event.WindowEvent

 +--java.awt.event.InputEvent

 +--java.awt.event.KeyEvent

 +--java.awt.event.MouseEvent

import java.awt.event.*;

EVENT HANDELING

STRATEGY

 Determine what type of listener is of interest

 11 standard AWT listener types.
 ActionListener, AdjustmentListener, ComponentListener,

ContainerListener, FocusListener, ItemListener, KeyListener,
MouseListener, MouseMotionListener, TextListener,
WindowListener

 Define a class of that type

 Implement interface (KeyListener, MouseListener, etc.)

 Extend class (KeyAdapter, MouseAdapter, etc.)

 Register an object of your listener class with the window

 w.addXxxListener(new MyListenerClass());

 E.g., addKeyListener, addMouseListener

EVENT HANDELING

STRATEGY

 Example

 Adding actions to a button

 Create an action listener
public class MyActionListener

 implements ActionListener {

 public void actionPerformed(ActionEvent event){

 System.out.println("Event occurred!");

 }

}

 Add action lister to the button
Button button = new JButton("button 1");

ActionListener listener = new MyActionListener();

button.addActionListener(listener);

ACTION LISTERNERS

 ActionEvent class

 public Object getSource()

Returns object that caused this event to occur.

 public String getActionCommand()

Returns a string that represents this event.

(for example, text on button that was clicked)

 How to implemet action listeners?

ACTION LISTERNERS

 How to implemet action listeners?

 Handling events with separate listeners

 Handling events by main class

 Handling events with named inner classes

 Handling events with anonymous inner classes

ACTION LISTERNERS

 How to implemet action listeners?

 Handling events with separate listeners

 Create a separate class to handele the event

public class MyActionListener

 implements ActionListener {

 public void actionPerformed(ActionEvent event){

 System.out.println("Event occurred!");

 }

}

 Add action lister to the button

Button button = new Button("button 1");

ActionListener listener = new MyActionListener();

button.addActionListener(listener);

 Handling events by main class

 Handling events with named inner classes

 Handling events with anonymous inner classes

ACTION LISTERNERS

 How to implemet action listeners?

 Handling events with separate listeners

 Handling events by main class
public class MyApplication extends Frame implements

ActionListener {

 void initComonents(){

 Button button = new Button("button 1");

 button.addActionListener(this);

 ...

 }

 ...

 public void actionPerformed(ActionEvent event){

 System.out.println("Event occurred!");

 }

}

 Handling events with named inner classes

 Handling events with anonymous inner classes

ACTION LISTERNERS

 How to implemet action listeners?

 Handling events with separate listeners

 Handling events by main class

 Handling events with named inner classes
public class MyApplication extends Frame {

 void initComonents(){

 Button button = new Button("button 1");

 MyAction action = new MyAction ()

 button.addActionListener(action);

 ...

 }

 ...

 public class MyAction implements ActionListener
{

 public void actionPerformed(ActionEvent
event){

 System.out.println("Event occurred!");

 }

 }

}

 Handling events with anonymous inner classes

ACTION LISTERNERS

 How to implemet action listeners?

 Handling events with separate listeners

 Handling events by main class

 Handling events with named inner classes

 Handling events with anonymous inner classes

public class MyApplication extends Frame {

 void initComonents(){

 Button button = new Button("button 1");

 MyAction action = new MyAction ()

 button.addActionListener(new ActionListner(){

 public void actionPerformed(ActionEvent event){

 System.out.println("Event occurred!");

 }

 });

 ...

 }

 }

EVENT HANDLING STRATEGIES:

PROS AND CONS

 Separate Listener

 Advantages

 Can extend adapter and thus ignore unused methods

 Separate class easier to manage

 Disadvantage

 Need extra step to call methods in main window

 Main window that implements interface

 Advantage

 No extra steps needed to call methods in main window

 Disadvantage

 Must implement methods you might not care about

EVENT HANDLING STRATEGIES:

PROS AND CONS

 Named inner class

 Advantages

 Can extend adapter and thus ignore unused methods

 No extra steps needed to call methods in main window

 Disadvantage

 A bit harder to understand

 Anonymous inner class

 Advantages

 Same as named inner classes

 Even shorter

 Disadvantage

 Much harder to understand

STANDARD AWT

EVENT LISTENERS

Adapter Class

Listener (If Any) Registration Method

 ActionListener addActionListener

 AdjustmentListener addAdjustmentListener

 ComponentListener ComponentAdapter addComponentListener

 ContainerListener ContainerAdapter addContainerListener

 FocusListener FocusAdapter addFocusListener

 ItemListener addItemListener

 KeyListener KeyAdapter addKeyListener

 MouseListener MouseAdapter addMouseListener

 MouseMotionListener MouseMotionAdapter addMouseMotionListener

 TextListener addTextListener

 WindowListener WindowAdapter addWindowListener

STANDARD AWT

EVENT LISTENERS

 ActionListener

 Handles buttons and a few other actions

 actionPerformed(ActionEvent event)

 AdjustmentListener

 Applies to scrolling

 adjustmentValueChanged(AdjustmentEvent event)

 ComponentListener

 Handles moving/resizing/hiding GUI objects

 componentResized(ComponentEvent event)

 componentMoved (ComponentEvent event)

 componentShown(ComponentEvent event)

 componentHidden(ComponentEvent event)

STANDARD AWT

EVENT LISTENERS

 ContainerListener

 Triggered when window adds/removes GUI controls

 componentAdded(ContainerEvent event)

 componentRemoved(ContainerEvent event)

 FocusListener

 Detects when controls get/lose keyboard focus

 focusGained(FocusEvent event)

 focusLost(FocusEvent event)

STANDARD AWT

EVENT LISTENERS

 ItemListener

 Handles selections in lists, checkboxes, etc.

 itemStateChanged(ItemEvent event)

 KeyListener

 Detects keyboard events

 keyPressed(KeyEvent event) -- any key pressed down

 keyReleased(KeyEvent event) -- any key released

 keyTyped(KeyEvent event) -- key for printable char

released

STANDARD AWT

EVENT LISTENERS

MouseListener

 Applies to basic mouse events

mouseEntered(MouseEvent event)

mouseExited(MouseEvent event)

mousePressed(MouseEvent event)

mouseReleased(MouseEvent event)

mouseClicked(MouseEvent event) -- Release without drag

 Applies on release if no movement since press

MouseMotionListener

 Handles mouse movement

mouseMoved(MouseEvent event)

mouseDragged(MouseEvent event)

COURSE CONTENT

 Graphical User Interfaces

 Abstract Windows Toolkit

 Components

 Containers

 Layout Managers

 Action Management

 Drawing Components

CANVAS

 Canvas

 Canvas control represents a rectangular area where application
can draw something or can receive inputs created by user.

 AWT

public void paint(Graphics g) {

 ...

}

 no default double buffering

 Swing

public void paintComponent(Graphics g) {

 super.paintComponent(g);

 ...

}

 default double buffering

COORDINATE SYSTEM

 Each (x, y) position is a pixel ("picture element").

 (0, 0) is at the window's top-left corner.

 x increases rightward and the y increases downward

DRAWING METHODS

Method name Description

g.drawLine(x1, y1, x2, y2); line between points (x1, y1), (x2, y2)

g.drawOval(x, y, width,

height);

outline largest oval that fits in a box of

size width * height with top-left at (x, y)

g.drawRect(x, y, width,

height);
outline of rectangle of size

width * height with top-left at (x, y)

g.drawString(text, x, y); text with bottom-left at (x, y)

g.fillOval(x, y, width,

height);
fill largest oval that fits in a box of

size width * height with top-left at (x,

y)

g.fillRect(x, y, width,

height);
fill rectangle of size width * height

with top-left at (x, y)

g.setColor(Color); set Graphics to paint any following

shapes in the given color

COLOR

Create one using Red-Green-Blue (RGB) values from 0-255

 Color name = new Color(red, green, blue);

 Example:
 Color brown = new Color(192, 128, 64);

Or use a predefined Color class constant (more common)

 Color.CONSTANT_NAME

 where CONSTANT_NAME is one of:

 BLACK, BLUE, CYAN, DARK_GRAY, GRAY,
GREEN, LIGHT_GRAY, MAGENTA, ORANGE,
PINK, RED, WHITE, or YELLOW

EXAMPLE

public class ExPaint {

 public static void main(String[] args) {

 JFrame f = new JFrame("Swing Paint Demo");

 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 f.add(new MyPanel()); f.pack(); f.setVisible(true);

 }

}

class MyPanel extends JPanel {

 public MyPanel() { setBorder(BorderFactory.createLineBorder(Color.black));}

 public Dimension getPreferredSize() { return new Dimension(250, 200);}

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 g.setColor(Color.red);

 for (int i = 0; i < 6; i++) {

 g.drawRect(11 + 20 * i, 150 - 20 * i, 20, 20);

 }

 }

}

