
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 6

PREVIOUS COURSE

CONTENT

 Inheritance

 Abstract classes

 Interfaces

 instanceof operator

 Nested classes

 Enumerations

COUSE CONTENT

 Exceptions

 Database access

ERRORS

 What are errors?

ERRORS

 What are errors?

 The state or condition of being wrong in conduct or

judgement

 A measure of the estimated difference between the

observed or calculated value of a quantity and its true

value

ERRORS

 Errors Types

 Syntax errors

 arise because the rules of the language have not been

followed. They are detected by the compiler.

 Runtime errors

 occur while the program is running if the environment detects

an operation that is impossible to carry out.

 Logic errors

 occur when a program doesn't perform the way it was

intended to.

EXCEPTIONS

 What is an exceprion

 A situation leading to an imposibility of finishing an

operation

 How to handle an exception

 Provide mechanism that allows communication between

the method that is detcting an exceptional condition, while

is performing an operation, and the

fuctions/objects/modules that are clients of that method

and wish to handle dinamicaly the situation

 Exception handeling systems

 allows user to signal exceptions and associate handlers (set

system into a coherent state) to entities

JAVA EXCEPTIONS

 Java exception

 Is an object that describes an error condition occurred in the code

 What happens when a exception occures

 An object representing that exception is created and thrown in

the method that caused the exception.

 That method may choose to handle the exception itself, or pass it

on.

 Exceptions break the normal flow of control. When an exception

occurs, the statement that would normally execute next is not

executed.

 At some point, the exception should be caught and processed.

THROWING

EXCETIONS

 Use the throw statement to throw an exception object

 Example

 public class BankAccount {

 public void withdraw(double amout) {

 if (amount > balance) {

 IllegalArgumentException ex

 = new IllegalArgumentException (

 Amount exceeds balance”);

 throw ex;

 } balance = balance – amount;

 }

 }

THROWING

EXCETIONS

 When an exception is thrown, the current method

terminates immediately.

 Throw exceptions only in exceptional cases.

 Do not abuse of exception throwing

 Use exception just to exit a deeply nested loop or a set of

recursive method calls.

TREATING

EXECEPTIONS

 Every exception should be handled

 If an exception has no handler, an error message is

printed, and the program terminates.

 A method that is ready to handle a particular exception

type, contains the statements that can cause the

exception inside a try block, and the handler inside a

catch clause

TREATING

EXECEPTIONS

 Example

try {

 System.out.println(“What is your name?”);

 String name = console.readLine();

 System.out.println(“Hello. “ + name + “!”);

} catch(IOException ex){

 ex.printStackTrace(); // should handle exception

 System.exit(1);

}

EXCEPTIONS FLOW

 What happens instead depends on:

 whether the exception is caught,

 where it is caught,

 what statements are executed in the ‘catch block’,

 and whether you have a ‘finally block’

EXCEPTIONS

HIERACHY

 Java organizes exceptions in inheritance tree:

 Throwable
 superclass for all exceptions

 Error
 are usually thrown for more serious problems, such as

OutOfMemoryError, that may not be so easy to handle

 Exception
 RuntimeException

 TooManyListenersException

 IOException

 AWTException

 OBS

 The code you write should throw only exceptions, not errors.

 Errors are usually thrown by the methods of the Java API, or by
the Java virtual machine itself.

EXCEPTIONS

HIERACHY

EXCEPTIONS

HIERACHY

 Exceptions Type

 Unchecked exceptions

 Error and RuntimeException

 Are not checked by the compiler, and hence, need not be

caught or declared to be thrown in your program

 Checked exceptions

 They are checked by the compiler and must be caught or

declared to be thrown

CATCHING AN

EXCEPTION

Synatax

try {

 // statement that could throw an exception

} catch (<exception type> e) {

 // statements that handle the exception

} catch (<exception type> e) { //e higher in hierarchy

 // statements that handle the exception

} finally {

 // release resources

}

 At most one catch block executes

 finally block always executes once, whether there’s an error or not

CATCHING AN

EXCEPTION

 When an exception occurs, the nested try/catch
statements are searched for a catch parameter matching
the exception class

 A parameter is said to match the exception if it:

 is the same class as the exception; or

 is a superclass of the exception; or

 if the parameter is an interface, the exception class
implements the interface.

 The first try/catch statement that has a parameter that
matches the exception has its catch statement executed.

 After the catch statement executes, execution resumes
with the finally statement, then the statements after the
try/catch statement.

CATCHING AN

EXCEPTION

 Catching More Than One Type of Exception with One
Exception Handler

 from Java 1.7

 single catch block can handle more than one type of
exception

 separate each exception type with a vertical bar (|)

 Usefull

 same behaviour for multiple catch

 Example

catch (IOException|SQLException ex) {

 logger.log(ex);

 throw ex;

}

THROWING

EXCEPTIONS

 Syntax

 from method body

 throw new Exceprion()

 method prototype

 throws Exception1, Exception2, ..., ExceptionN

 If a method body throws an exception and is not threated in the
body the thrown exception has to be added at method prototype

 Example

public void foo(int i) throws IOException, RuntimeException {

 if (i == 1) throw new IOException();

 if (i == 2) throw new RuntimeException();

 System.out.println(“No exeception is thrown”);

}

TRY-WITH-RESOURCES

STATEMENT

 try statement that declares one or more resources

 A resource is an object that must be closed after the

program is finished with it.

 Any object that implements java.lang.AutoCloseable,

which includes all objects which implement

java.io.Closeable

 Syntax

try (/*Resourse declaration and initialization*/){

 //resource utilization

} catch(Exception e) { .. }

TRY-WITH-RESOURCES

STATEMENT

 Example

 before java 1.7

static String readFirstLineFromFileWithFinallyBlock(String path) throws

IOException {

 BufferedReader br = new BufferedReader(new FileReader(path));

 try {

 return br.readLine();

 } finally {

 if (br != null) br.close();

 }

}

 java 1.7

static String readFirstLineFromFile(String path) throws IOException {

 try (BufferedReader br =

 new BufferedReader(new FileReader(path))) {

 return br.readLine();

 }

}

CUSTOM EXCEPTION

CLASS

 For example if we want to withdraw mony from an accout

 public class BankAccount {

 public void withdraw(double amout) {

 if (amount > balance) {

 IllegalArgumentException ex

 = new IllegalArgumentException (

 Amount exceeds balance”);

 throw ex;

 } balance = balance – amount;

 }

 }

 What if we would like to throw a more speific error for the application?

CUSTOM EXCEPTION

CLASS

 How define a custom exception class

 class that extends Exception

 add constructors

 default

 one parameter: the error message

 two parameteres: the error message, an another Exception

 add other elemts that help to explain better the exeception

 Example

 public class MyException extends Exception{

 public MyException(){super();}

 public MyException(String msg){super(msg);}

 public MyException(String msg, Exception e){super(msg,e);}

 }

CUSTOM EXCEPTION

CLASS

 When to create custom exception classes?

 Use exeption classes offered by API whenever possible

 Write your excepion class if

 You need an exception type that is not represented by those

in Java platform

 It helps users if they could differentiate yourexceptions from

those thrown by classes written by other vendors

 You want to pass more than just a string to the exception

handler

INFORMATION ABOUT

THROWN EXCEPTIONS

 getMessage()

 Returns the detail message string of this throwable.

 printStackTrace()

 Prints this throwable and its backtrace to the standard error
stream.

 printStackTrace(PrintStream s)

 Prints this throwable and its backtrace to the specified print
stream.

 printStackTrace(PrintWriter s)

 Prints this throwable and its backtrace to the specified print writer.

COUSE CONTENT

 Exceptions

 Database access

JDBC

 JDBC - Java Data Base Conectivity

 Standard Java API for database-independent connectivity
between the Java programming language, and a wide
range of relational databases

 java.sql package

 Versions

 from Java 1.1

 Java 1.4 & 1.5 - JDBC 3

 Java 1.6 - JDBC 4

JDBC

Database access
is the same for all
database vendors

 The JVM uses a
JDBC driver to
translate
generalized JDBC
calls into vendor
specific database
calls

JDBC ADVANTAGES

 Simplified

 Easy to install and maintain

 No supplimentary configuration files

 Nonetwork configurations

 No configuration is required

 Requires a suitable driver to connect

 Full access to medatada

 inclyde API to obtain metadata about database and tables

 No installation

DRIVERS EXAMPLES

 Oracle

 oracle.jdbc.driver.OracleDriver

 MySQL

 com.mysql.jdbc.Driver

 Sybase

 com.sybase.jdbc.SybDriver

 SQL Server

 com.microsoft.jdbc.sqlserer.SQLServerDriver

 DB2

 com.ibm.db2.jdbc.net.DB2Driver

BASIC STEPS TO USE

A DATABASE IN JAVA

1.Establish a connection

2.Create JDBC Statements

3.Execute SQL Statements

[4.GET ResultSet]

5.Close connections

ESTABLISH A

CONNECTION

 Driver Manager

 The purpose of the java.sql.DriverManger class in JDBC is

to provide a common access layer on top of different

database drivers used in an application

 DriverManager requires that each driver required by the

application must be registered before use, so that the

DriverManager is aware of it

ESTABLISH A

CONNECTION

 Driver Manager

 Load the database driver using ClassLoader

 Before Java 1.7

 Class.forName (“oracle.jdbc.driver.OracleDriver”);

 From Java 1.7

 Driver is load automaticaly when the jar is add into

classpath

ESTABLISH A

CONNECTION

 Connection creation

 Connection connection = DriverManager.getConnection
(“jdbc:mysql://localhost/databasename”, uid, passwd);

 Every database is identified by a URL

 jdbc:pointbase: //host.domain.com: 9092 /data/file
 DB protocol

 Machine holding the DB

 Database Port

 The path to the database on the machine

 Given a URL, DriverManager looks for the driver that can talk to
the corresponding database

 DriverManager tries all registered drivers, until a suitable one is
found

CREATE JDBC

STATEMENTS

 There are 3 different types of statements that are

supported

 Statement

 A basic SQL statement

 PreparedStatement

 A precompiled SQL statement

 CallableStatement

 Access to stored procedures

 Just like a connection, we should close the statement

when we are done with it

CREATE JDBC

STATEMENTS

 Query operation

 Statement stmt = null;

 String query = " SELECT * FROM CITY WHERE
country='”+country+”'”;

 stmt = connection.createStatement();

 ResultSet rs = stmt.executeQuery(query);

 insert/update/delete/create/alter/drop

 Statement stmt = connection.createStatement();

 String sql = "UPDATE CITY SET population='”+ population
+”' WHERE NAME='”+ cityName +”' AND PROVINCE=‟”+
province +”‟";

 stmt.executeUpdate(sql);

RESULTSET

 ResultSet objects provide access to the tables generated

as results of executing a Statement queries

 Only one ResultSet per Statement can be open at the

same time!

 The table rows are retrieved in sequence

 A ResultSet maintains a cursor pointing to its current row

 The next() method moves the cursor to the next row

RESULTSET METHODS

 boolean next()

 activates the next row

 the first call to next() activates the first row

 returns false if there are no more rows

 void close()

 disposes of the ResultSet

 allows you to re-use the Statement that created it

 automatically called by most Statement methods

RESULTSET METHODS

 Type getType(int columnIndex)

 returns the given field as the given type

 indices start at 1 and not 0!

 Type getType(String columnName)

 same, but uses name of field

 less efficient

 Example:

 getString(columnIndex), getInt(columnName), getTime,

getBoolean, getType,...

 int findColumn(String columnName)

 looks up column index given column name

RESULTSET

 JDBC 2.0 includes scrollable result sets. Additional

methods included are : ‘first’, ‘last’, ‘previous’, and other

methods.

 Example

Statement stmt = con.createStatement();

ResultSet rs = stmt.

executeQuery("select lname,salary from Employees");

// Print the result

while(rs.next()) {

 System.out.print(rs.getString(1) + ":");

 System.out.println(rs.getDouble(“salary"));

}

PREPARED

STATEMENTS

 Prepared Statements are used for queries that are
executed many times

 They are parsed (compiled) by the DBMS only once

 Column values can be set after compilation

 Instead of values, use ‘?’

 Hence, Prepared Statements can be though of as
statements that contain placeholders to be substituted
later with actual values

PREPARED

STATEMENTS

 Example

String queryStr =

 "SELECT * FROM employee " +

 "WHERE mgr= ? and salary > ?";

PreparedStatement pstmt = con.prepareStatement(queryStr);

pstmt.setString(1, "Xescu");

pstmt.setInt(2, 26000);

ResultSet rs = pstmt.executeQuery();

PREPARED

STATEMENTS

 Will this work?

 PreparedStatement pstmt =

 con.prepareStatement("select * from ?");

 pstmt.setString(1, myFavoriteTableString);

 No!!! A ‘?’ can only be used to represent a column value

PREPARED

STATEMENTS

 What is SQL Injection?

 Example

Statement stmt = conn.createStatement("INSERT INTO
students VALUES('" + user + "')");

stmt.execute();

What happens if user variable takes te following
values

 “Xescu”

 “Xescu'); DELETE FROM students;” --

PREPARED

STATEMENTS

 What is SQL Injection?

 SQL injection is a technique where malicious users can
inject SQL commands into an SQL statement, via “page
input”.

 Example

Statement stmt = conn.createStatement("INSERT INTO
students VALUES('" + user + "')");

stmt.execute();

What happens if user variable takes te following
values

 “Xescu”

 “Xescu'); DELETE FROM students;” --

PREPARED

STATEMENTS

 What is SQL Injection?

 SQL injection is a technique where malicious users can

inject SQL commands into an SQL statement, via “page

input”.

 Recomandation

 use prepared statement

 use '?' to add user input into a SQL statement

PREPARED

STATEMENTS

 Timeout

 Use setQueryTimeOut(int seconds) of Statement to set a

timeout for the driver to wait for a statement to be

completed

 If the operation is not completed in the given time, an

SQLException is thrown

PREPARED

STATEMENTS

how to map sql types to java types

SQL type Java Type

CHAR, VARCHAR, LONGVARCHAR String

NUMERIC, DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT, DOUBLE double

BINARY, VARBINARY, LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

NULL VALUES

 In SQL, NULL means the field is empty

 Not the same as 0 or ""

 In JDBC, you must explicitly ask if the last-read field was null

 ResultSet.wasNull(column)

 For example, getInt(column) will return 0 if the value is either 0 or

NULL!

 When inserting null values into placeholders of Prepared

Statements:

 Use the method setNull(index, Types.sqlType) for primitive types

(e.g. INTEGER, REAL);

 You may also use the setType(index, null) for object types (e.g.

STRING, DATE).

RESULTSET META-

DATA

 A ResultSetMetaData is an object that can be used to get

information about the properties of the columns in a

ResultSet object

 Example

 Display the column names of a resultset

ResultSetMetaData rsmd = rs.getMetaData();

int numcols = rsmd.getColumnCount();

for (int i = 1 ; i <= numcols; i++) {

 System.out.print(rsmd.getColumnLabel(i)+" ");

}

SQL EXCEPTIONS

 An SQLException is actually a list of exceptions

 Methods

 A description of the error - SQLException.getMessage

 A SQLState code - SQLException.getSQLState

 These codes and their respective meanings have been standardized by ISO/ANSI and Open Group

(X/Open), although some codes have been reserved for database vendors to define for themselves.

This String object consists of five alphanumeric characters. Retrieve this code by calling the method

SQLException.getSQLState.

 An error code - SQLException.getErrorCode.

 This is an integer value identifying the error that caused the SQLException instance to be thrown. Its

value and meaning are implementation-specific and might be the actual error code returned by the

underlying data source.

 A cause.

 A SQLException instance might have a causal relationship, which consists of one or more

Throwable objects that caused the SQLException instance to be thrown.

 To navigate this chain of causes, recursively call the method SQLException.getCause until a null

value is returned.

 A reference to any chained exceptions.

 If more than one error occurs, the exceptions are referenced through this chain. Retrieve these

exceptions by calling the method SQLException.getNextException on the exception that was

thrown.

SQL EXCEPTIONS

 Display all information stored into SQL exception

public static void dispaySQLExceptions(SQLException ex) {

 while (ex != null) {

 System.out.println("SQL State:" + ex.getSQLState());

 System.out.println("Error Code:" + ex.getErrorCode());

 System.out.println("Message:" + ex.getMessage());

 Throwable t = ex.getCause();

 while (t != null) {

 System.out.println("Cause:" + t);

 t = t.getCause();

 }

 ex = ex.getNextException();

 }

 }

TRANSACTIONS AND

JDBC

 Transaction: more than one statement that must all
succeed (or all fail) together

 e.g., updating several tables due to customer purchase

 If one fails, the system must reverse all previous actions

 Also can’t leave DB in inconsistent state halfway through
a transaction

 COMMIT = complete transaction

 ROLLBACK = cancel all actions

TRANSACTIONS AND

JDBC

 Transactions are not explicitly opened and closed

 The connection has a state called AutoCommit mode

 if AutoCommit is true, then every statement is automatically committed

 if AutoCommit is false, then every statement is added to an ongoing

transaction

 Default: true

 If you set AutoCommit to false, you must explicitly commit or rollback

the transaction using Connection.commit() and Connection.rollback()

TRANSACTIONS AND

JDBC
 Example for maaging manaly transactions

 PreparedStatement updateSales = null, updateTotal = null;

 String updateString = "update " + dbName + ".COFFEES " + "set SALES = ? where COF_NAME = ?";

 String updateStatement = "update " + dbName + ".COFFEES " + "set TOTAL = TOTAL + ? " + "where COF_NAME = ?";

 try {

 con.setAutoCommit(false);

 updateSales = con.prepareStatement(updateString);

 updateTotal = con.prepareStatement(updateStatement);

 updateSales.setInt(1, 2); updateSales.setString(2, “DECAF”); updateSales.executeUpdate();

 updateTotal.setInt(1, 100); updateTotal.setString(2, “DECAF”); updateTotal.executeUpdate();

 con.commit();

 } catch (SQLException e) { //print exception

 if (con != null) {

 try {

 System.err.print("Transaction is being rolled back");

 con.rollback();

 } catch(SQLException excep) { // print exceptiom }

 }} finally {

 if (updateSales != null) { updateSales.close(); }

 if (updateTotal != null) { updateTotal.close(); }

 con.setAutoCommit(true);

 }

CLEANING UP AFTER

YOURSELF

 Remember to close the Connections, Statements,

Prepared Statements and Result Sets

 con.close();

 stmt.close();

 pstmt.close();

 rs.close()

