
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 5

PREVIOUS COURSE

CONTENT

 Generics

 Defining a generic

 Run-time behavior

 Collections

 List

 Set

Map

COUSE CONTENT

Collections

 Utilities classes

 Aggregate Operations

 Generics

Wild Cards

 Restrictions

 Comparing objects

GENERICS

 Introducesd in Java 1.5

 Allows class and methods definitions with parameters for

types

 Classes or methods that have type parameters are called

parameterized class or generic definitions, or, simply,

generics

 Can be

 defined by Java libraries

 user defined

COLLECTIONS

 What is a collection in Java?

 are containers of Objects which by polymorphism can hold

any class that derives from Object

 GENERICS make containers aware of the type of objects

they store

 from Java 1.5

COLLECTIONS

COUSE CONTENT

Collections

 Utilities classes

 Aggregate Operations

 Generics

Wild Cards

 Restrictions

 Comparing objects

COLLECTIONS

COLLECTION.

UTILITIES CLASS

 Algorithms

 These are the methods that perform useful computations, such
as searching and sorting, on objects that implement collection
interfaces.

 The algorithms are said to be polymorphic: that is, the same
method can be used on many different implementations of the
appropriate collection interface.

 The Collections class provides a number of static methods for
fundamental algorithms

 Most operate on Lists, some on all Collections

 sort, search, shuffle

 reverse, fill, copy

 min, max

COLLECTIONS. OTHER

CLASSES

 Still available

 Don’t use for new development

 Hashtable

 use HashMap

 Enumeration

 use Collections and Iterators

 Vector

• use ArrayList

 Stack

• use LinkedList

 BitSet

• use ArrayList of boolean, unless you can’t stand the thought of the
wasted space

 Properties

PROPERTIES CLASS

 Located in java.util package

 Special case of Hashtable

 Keys and values are Strings

 Tables can be saved to/loaded from file

 Java VM maintains set of properties that define system
environment

 Set when VM is initialized

 Includes information about current user, VM version, Java
environment, and OS configuration

 Example:

Properties prop = System.getProperties();

Enumeration e = prop.propertyNames();

while (e.hasMoreElements()) {

 String key = (String) e.nextElement();

 System.out.println(key + " value is " + prop.getProperty(key));

}

COUSE CONTENT

Collections

 Utilities classes

 Aggregate Operations

 Generics

Wild Cards

 Restrictions

 Comparing objects

COMPARABLE AND

COMPARATORS

 Some classes provide the ability to sort elements.

 How is this possible when the collection is supposed to be

de-coupled from the data?

COMPARABLE AND

COMPARATORS

 Some classes provide the ability to sort elements.

 How is this possible when the collection is supposed to be de-
coupled from the data?

 Java defines two ways of comparing objects

 The objects implement the Comparable interface

 A Comparator object is used to compare the two objects

 If the objects in question are Comparable, they are said to be
sorted by their "natural" order.

 Comparable object can only offer one form of sorting. To
provide multiple forms of sorting, Comparators must be used.

COMPARABLE

INTERFACE

 The Comparable interface contains the compareTo() method.

 int compareTo(T obj)

 This method returns

 0 if the objects are equal

 <0 if this object is less than the specified object

 >0 if this object is greater than the specified object.

 In order to provide a natural ordering for objects, you must implement
the Comparable Interface

 Any object which is "Comparable" can be compared to another object
of the same type.

 There is only one method defined within this interface.

 Therefore, there is only one natural ordering of objects of a given
type/class.

COMPARATOR

INTERFACE

 The Comparator interface defines two methods:

 int compare(T obj1, T obj2)

 0 if the Objects are equal

 <0 if the first object is less than the second object

 >0 if the first object is greater than the second object.

 boolean equals(T obj)

 returns true if the specified object is equal to this comparator.
ie. the specified object provides the same type of comparison
that this object does.

COMPARABLE AND

COMPARATORS

 Comparators are useful when objects must be sorted in
different ways.

 For example

 Employees need to be sorted by first name, last name, start
date, termination date and salary.

 A Comparator could be provided for each case

 The comparator interrogates the objects for the required
values and returns the appropriate integer based on those
values.

 The appropriate Comparator is provided a parameter to the
sorting algorithm.

COUSE CONTENT

Collections

 Utilities classes

 Aggregate Operations

 Generics

Wild Cards

 Comparing objects

GENERICS.

WILDCARDS

 Bounded Type Parameters

 restrict the types that can be used as type arguments in a

parameterized type

 <T extends B1 [& B2 [& B3 …]]>

 Wildcards

 Wildcard - ?

 Represents an unknown type

 Can be used as the type of a

 Parameter

 Field

 Local variable

 Sometimes as a return type

GENERICS.

WILDCARDS

Upper Bounded Wildcards

public static void process(List<? extends Foo> list)

Unbounded Wildcards

public static void printList(List<?> list)

Lower Bounded Wildcards

public static void addNumbers(List<? super Integer> list)

GENERICS. WILDCARDS.

UPPER BOUNDED

Upper Bounded

defines a type that is bounded by the superclass

Example

Create a class box that can contain only objects that are

subtypes of class number

Box<? extends Number> box = new Box<Integer>()

Box<? extends Number>

Box<Number> Box<Integer> Box<Double>

GENERICS. WILDCARDS.

UPPER BOUNDED

public class Box<E> {

 public void copyFrom(Box<E> b) {

 this.data = b.getData();

 }

}

Box<Integer> intBox = new Box<>();

Box<Number> numBox = new Box<Number>();

numBox.copyFrom(intBox);

Does the code execute?

GENERICS. WILDCARDS.

UPPER BOUNDED

public class Box<E> {

 public void copyFrom(Box<E> b) {

 this.data = b.getData();

 }

}

public class Box<E> {

 public void copyFrom(Box<E extends Number> b) {

 this.data = b.getData();

 }

}

Box<Integer> intBox = new Box<>();

Box<Number> numBox = new Box<Number>();

numBox.copyFrom(intBox);

GENERICS. WILDCARDS.

UNBOUNDED

Unbounded Wildcards

Print any list of objects

public static void printList(List<Object> list)

{

 for (Object obj: list)

 System.out.println(obj);

}

Call:

List<Object> listObject = new ArrayList<>();

printList(listObject);

List<String> listString = new ArrayList<>();

printList(listString); = > compilation error

How to resolve?

GENERICS. WILDCARDS.

UNBOUNDED

Unbounded Wildcards

Print any list of objects

public static void printList(List<?> list)

{

 for (Object obj: list)

 System.out.println(obj);

}

Call:

List<Object> listObject = new ArrayList<>();

printList(listObject);

List<String> listString = new ArrayList<>();

printList(listString);

GENERICS. WILDCARDS.

LOWER BOUNDED

Lower Bounded

defines a type that is bounded by the subclass

Example

Create a class box that can contain only objects that are

subtypes of class number

Box<? super Integer> box = new Box<Number>()

Box<? super Integer>

Box<Number> Box<Integer> Box<Object>

GENERICS. WILDCARDS.

LOWER BOUNDED

Suppose we want to write copyTo() that copies data in the opposite
direction of copyFrom().

copyTo() copies data from the host object to the given object.

public void copyTo(Box <E>b) {

 b.data = this.getData();

}

 Above code is fine as long as b and the host are boxes of exactly
same type. But b could be a box of an object that is a superclass of E.

public void copyTo(Box<? Super E> b) {

 b.data = this.getData

}

 Box <Integer> intBox = new Box<>();

Box <Number> numBox = new Box<>();

 intBox.copyTo(numBox);

COUSE CONTENT

Collections

 Utilities classes

 Aggregate Operations

 Generics

Wild Cads

 Restrictions

 Comparing objects

GENERICS.

RESTRICTIONS

Java, generic types are compile-time entities

C++, instantiations of a class template are compiled separately
as source code, and tailored code is produced for each one

Primitive type parameters (List<int>) not allowed

 in C++, both classes and primitive types allowed

 Java – auto boxing

 Objects in JVM have non-generic classes

Pair<String> strPair = new Pair . .;

Pair<Number> numPair = new Pair . .;

b = strPair.getClass () == numPair.getClass ();

assert b == true; // both of the raw class Pair

but byte-code has reflective info about generics

GENERICS.

RESTRICTIONS

Instantiations of generic parameter T are not allowed

new T () // ERROR: whatever T to produce?

new T [10]

Arrays of parameterized types are not allowed

 new Pair<String> [10]; // ERROR

 since type erasure removes type information needed for checks of array
assignments

 Static fields and static methods with type parameters are not allowed

class Singleton {
 private static T singleOne; // ERROR

since after type erasure, one class and one shared static field for all
instantiations and their objects

Cannot Create, Catch, or Throw Objects of Parameterized Types

GENERICS

Why generic programming

supports statically-typed data structures

early detection of type violations

cannot insert a string into ArrayList <Number>

also, hides automatically generated casts

superficially resembles C++ templates

C++ templates are factories for ordinary classes and functions

a new class is always instantiated for given distinct
generic parameters (type or other)

in Java, generic types are factories for compile-time entities
related to types and methods

COUSE CONTENT

Collections

 Utilities classes

 Aggregate Operations

 Generics

Wild Cards

 Comparing objects

LAMBDA

EXPRESSIONS

A Java 8 lambda is basically a method in Java without a declaration
usually written as (parameters) -> { body }.

Examples
 (int x, int y) -> { return x + y; }
 x -> x * x
 () -> x

A lambda can have zero or more parameters separated by commas
and their type can be explicitly declared or inferred from the context.

Parenthesis are not needed around a single parameter.

() is used to denote zero parameters.

The body can contain zero or more statements.

Braces are not needed around a single-statement body.

LAMBDA

EXPRESSIONS

Example of lambda usage for iterating through a list

List<Integer> intSeq = Arrays.asList(1, 2, 3);

intSeq.forEach(z -> System.out.println(z));

x -> System.out.println(x) is a lambda expression that defines
an anonymous function with one parameter named x of type
Integer

How could lambda be used to interate through a map

Map<String, Integer> items = new HashMap<>();

items.put("A", 10);

items.put("B", 20);

LAMBDA

EXPRESSIONS

Example of lambda usage for iterating through a list

List<Integer> intSeq = Arrays.asList(1, 2, 3);

intSeq.forEach(z -> System.out.println(z));

intSeq.forEach(System.out::println);

x -> System.out.println(x) is a lambda expression that defines an anonymous
function with one parameter named x of type Integer

How could lambda be used to interate through a map

Map<String, Integer> items = new HashMap<>();

items.put("A", 10);

items.put("B", 20);

items.forEach((k, v) -> System.out.println("key : " + k + " value : " + v));

FUNCTIONAL

INTERFACES

Interfaces with only one explicit abstract method

AKA SAM interface (Single Abstract Method)

Optionally annotated with @FunctionalInterface

Do it, for the same reason you use @Override

Some Functional Interfaces you know –

java.lang.Runnable

java.util.concurrent.Callable

java.util.Comparator

java.awt.event.ActionListener

Many, many more in package java.util.function

METHOD

REFERENCES

An alternative to lambda

An instance method of a particular object (bound)

objectRef::methodName

 An instance method, whose receiver is unspecified

(unbound)

 ClassName::instanceMethodName – The resulting function

has an extra argument for the receiver

 A static method

 ClassName::staticMethodName

 A constructor

 ClassName::new

JAVA 8 STREAMS

What are streams?

JAVA 8 STREAMS

What are streams?

Streams are not related to InputStreams, OutputStreams, etc.

Streams are NOT data structures but are wrappers around

Collection that carry values from a source through a pipeline

of operations.

Stream represents a sequence of objects from a source,

which supports aggregate operations

JAVA 8 STREAMS

Streams characteristics

Sequence of elements − A stream provides a set of elements of specific type
in a sequential manner. A stream gets/computes elements on demand. It
never stores the elements.

Source − Stream takes Collections, Arrays, or I/O resources as input source.

Aggregate operations − Stream supports aggregate operations like filter,
map, limit, reduce, find, match, and so on.

Pipelining − Most of the stream operations return stream itself so that their
result can be pipelined. These operations are called intermediate operations
and their function is to take input, process them, and return output to the
target. collect() method is a terminal operation which is normally present at
the end of the pipelining operation to mark the end of the stream.

Automatic iterations − Stream operations do the iterations internally over the
source elements provided, in contrast to Collections where explicit iteration is
required.

STREAMS

Stream types

stream() − Returns a sequential stream considering collection as
its source.

parallelStream() − Returns a parallel Stream considering collection
as its source.

Example

List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","",
"jkl");

List<String> filtered = strings.stream().filter(string ->
!string.isEmpty()).collect(Collectors.toList());

CREATING STREAMS

From individual values

 Stream.of(val1, val2, …)

From array

 Stream.of(someArray)

 Arrays.stream(someArray)

From List (and other Collections)

someList.stream()

someOtherCollection.stream()

CREATING STREAMS

Stream.builder()

 Stream<String> streamBuilder
= Stream.<String>builder().add("a").add("b").add("c").build();

 Stream.generate()

 Stream<String> streamGenerated = Stream.generate(() ->
"element").limit(10);

Stream.iterate()

 Stream<Integer> streamIterated = Stream.iterate(40, n -> n +
2).limit(20);

CREATING STREAMS

Stream of Primitives

 IntStream intStream = IntStream.range(1, 3);

 LongStream longStream = LongStream.rangeClosed(1, 3);

 Random random = new Random();

 DoubleStream doubleStream = random.doubles(3);

Stream of String

 IntStream streamOfChars = "abc".chars()

 Stream<String> streamOfString =

 Pattern.compile(", ").splitAsStream("a, b, c");

STREAM PIPELINE

Perform a sequence of operations over the elements of the data

source and aggregate their results

Parts

source,

intermediate operation(s)

 return a new modified stream

 can be chained

terminal operation.

Only one terminal operation can be used per stream.

The result of a interrogation

Example

Predefined operation: count(), max(), min(), sum()

STREAM PIPELINE

List<String>strings = Arrays.asList("abc", "", "bc", "efg",

"abcd","", "jkl");

//get count of empty string

int count = strings.stream()

 .filter(string -> string.isEmpty())

 .count();

ORDER OF THE

OPERATIONS

List<String> list = Arrays.asList("one", "two", "three", "four");

long size = list.stream().map(element -> {

System.out.println("Call map method");

return element.substring(0, 3);

}).skip(2).count();

System.out.println("size" + size);

size = list.stream().skip(2).map(element -> {

System.out.println("Call map method");

return element.substring(0, 3);

}).count();

System.out.println("size" + size);

What is the result

of the following

code?

ADVANCED

OPERATIONS

collect

 transform the

elements of the

stream into a

different kind of

result

reduce.

combines all

elements of the

stream into a

single result

class Person {

 String name;

 int age;

 Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 @Override

 public String toString() {

 return name;

 }

}

List<Person> persons =

 Arrays.asList(new Person("Max", 18),

 new Person("Peter", 23),

 new Person("Pamela", 23),

 new Person("David", 12));

ADVANCED OPERATIONS.

COLLECT

List<Person> filtered = persons .stream()

 .filter(p -> p.name.startsWith("P"))

 .collect(Collectors.toList());

System.out.println(filtered);

Map<Integer, List<Person>> personsByAge = persons .stream()

 .collect(Collectors.groupingBy(p -> p.age));

personsByAge .forEach((age, p) -> System.out.format("age %s: %s\n", age, p));

Double averageAge = persons .stream()

 .collect(Collectors.averagingInt(p -> p.age));

System.out.println(averageAge);

IntSummaryStatistics ageSummary = persons .stream()

 .collect(Collectors.summarizingInt(p -> p.age));

System.out.println(ageSummary);

ADVANCED

OPERATIONS. REDUCE

/find the oldest person

persons

 .stream()

 .reduce((p1, p2) -> p1.age > p2.age ? p1 : p2)

 .ifPresent(System.out::println);

determine the sum of ages from all persons

Integer ageSum = persons

 .stream()

 .reduce(0, (sum, p) -> sum += p.age, (sum1, sum2) -> sum1
+ sum2);

System.out.println(ageSum); // 76

EXAMPLE

Person result = persons.

 .stream()

 .filter(x -> "michael".equals(x.getName()))

 . findAny()

 .orElse(null);

Person result = persons

 .stream()

 .filter(x -> { if("michael".equals(x.getName()) &&
21==x.getAge()){ return true; } return false; })

 .findAny()

 .orElse(null);

