
PROGRAMMING III
 OOP. JAVA LANGUAGE

COURSE 3

PREVIOUS COURSE
CONTENT
q Classes

q Objects

q Object class

q Acess control specifier
q fields
q methods
q classes

COUSE CONTENT
q Inheritance

q Abstract classes

q Interfaces

q instanceof operator

q Nested classes

q Enumerations

RELATION BETWEEN
CLASSES
q What relation between classes exists?

RELATION BETWEEN
CLASSES
q What relations between classes exists?

q Associations
q Dependence
q Association
q Agregation
q Composition

q Inheritance

INHERITANCE
q Inheritance is a mechanism which allows a class A to inherit members

(data and functions) of a class B. We say “A inherits from B”. Objects of
class A thus have access to members of class B without the need to
redefine them.

q Terminology
q Base class

q The class that is inherited
q Derived class

q A specialization of base class
q Kind-of relation

q Class level (Circle is a kind-of Shape)
q Is-a relation

q Object level (The object circle1 is-a shape.)
q Types of inheritance

q Simple
q One base class

q Multiple - NOT SUPPORTED IN JAVA
q Multiple base classes

SIMPLE INHERITANCE
q Syntax

q [ClassSpecifier] class ClassName extends BaseClass { ... }

q Example
public class Figure {
 Color color;
 public Figure() {
 this.color = Color.RED;
 }
}
public class Circle extends Figure {
 int radius;
 int centerX, centerY;
 ...
}

q A class inherits a single base class

SIMPLE INHERITANCE.
CONSTRUCTORS
q super keyword
q Example

public class Figure {
 Color color;

 public Figure() {
 this.color = Color.RED;
 }

 public Figure (Color c) {
 this.color = c
 }

 public String toString(){
 return “color: ” + this.color;
 }
}

public class Circle extends Figure {
 int radius;
 int centerX, centerY;

 public Circle(){
 super();
 }

 public Circle (int r, int x, int y, Color c) {
 super(c);
 this. radius = r;
 this.centerX = x;
 this.centerY = y;
 }

 public String toString() {
 return “[“+ this.radius + “,(“ +
this.centerX + “,” + this.centerY + “), ” +
super.toString() + “]”;
 }
}

ABSTRACT CLASSES
q Abstract classes is a class declared abstrat

q It may or not include abstract methods

q Abstract method
q Method that is only declared without an implementation
q Example: public static void fooMethod(int par1);

q Properties
q Abstract classes cannot be instantiated
q Can contain abstract and non abstract methods
q Can contain fields that are not static or final
q All interface methods are by default public so they do not

need to be declared public

INTERFACES
q Interfaces

q simlar to class
q API - Application Programming Interfaces

q a "contract" that spells out software interactions
q Can contain only

q constants
q method signature
q default methods
q static methods
q nested types

q Syntax
[interfaceModiefier] interface InterfaceName [implements Inteface1
[, ..InterfaceN]]{ ... }
q where

q interfaceModiefier: package, public

INTEFACES

INTERFACES CAN BE
EXTENDED
q Creation (definition) of interfaces can be done using

inheritance
q one interface can extend another.

q Sometimes interfaces are used just as labeling
mechanisms
q Look in the Java API documentation for interfaces like

Cloneable or Serializable.
q Optional

q reade about Marker design pattern and annotations

INTERFACES
q default methods

q from java 8
q enable the add of new functionalities to interfaces without breaking the classes that

implements that interface
q Example

interface InterfaceA {
 public void saySomething();

 default public void sayHi() {
 System.out.println("Hi");
 }
}

public class MyClass
 implements InterfaceA {

 @Override
 public void saySomething() {
 System.out.println("Hello World");
 }

}

INTERFACES
q default methods

q Conflicts with multiple interface
q problem

q or more interfaces has a default method with the same
signature

q solution
q provide implementation for the method in derived class

q new implementation
q call one of the intefaces implementation

q static methods
q from java 8
q similar to default method except that can’t be override in

subclasses implementation

CASTING OBJECTS
q A object of a derived class can be cast as an object of the

base class

q When a method is called, the selection of which version of
method is run is totally dynamic
q overridden methods are dynamic

POLYMORPHISM
q A reference can be polymorphic, which can be defined as "having many

forms"

q obj.doIt();

q This line of code might execute different methods at different times if the
object that obj points to changes

q Polymorphic references are resolved at run time; this is called dynamic
binding

q Careful use of polymorphic references can lead to elegant, robust
software designs

q Polymorphism can be accomplished using inheritance or using
interfaces

INSTANCEOF
q Knowing the type of an object during run time

q Usage
q object instanceof type

q It can be very useful when writing generalized routines that
operate on objects of a complex class hierarchy

q It will cause a compiler error if the comparison is done with
objects which are not in the same class hierarchy.

q Returns true if the type could be cast to the reference type
without causing a ClassCastException, otherwise it is false.

NESTED CLASSES
q Define a class within another class.
q Why Use Nested Classes?

q It is a way of logically grouping classes that are only used
in one place

q It increases encapsulation
q It can lead to more readable and maintainable code

q Types
q Static member classes
q Member classes
q Local classes
q Anonymous classes

NESTED CLASSES
q Types

q Static member classes
q is a static member of a class
q a static member class has access to all static methods of the

parent, or top-level, class.
q Member classes

q is also defined as a member of a class
q is instance specific and has access to any and all methods

and members, even the parent's this reference
q Local classes

q are declared within a block of code and are visible only
within that block

q Anonymous classes
q is a local class that has no name

NESTED CLASSES
q example

public class Outer
{

private class Inner
{
 // inner class instance variables

// inner class methods

} // end of inner class definition

// outer class instance variables
// outer class methods

}

PUBLIC INNER
CLASSES
q If an inner class is marked public, then it can be used

outside of the outer class

q In the case of a nonstatic inner class, it must be created
using an object of the outer class
BankAccount account = new BankAccount();
BankAccount.Money amount =
 account.new Money("41.99");

q Note that the prefix account. must come before new

q The new object amount can now invoke methods from the
inner class, but only from the inner class

PUBLIC INNER
CLASSES
q In the case of a static inner class, the procedure is similar

to, but simpler than, that for nonstatic inner classes
OuterClass.InnerClass innerObject =
 new OuterClass.InnerClass();

q Note that all of the following are acceptable
innerObject.nonstaticMethod();
innerObject.staticMethod();
OuterClass.InnerClass.staticMethod();

INNER CLASS AND
INHERITANCE
q Given an OuterClass that has an InnerClass

q Any DerivedClass of OuterClass will automatically have
InnerClass as an inner class

q In this case, the DerivedClass cannot override the
InnerClass

q An outer class can be a derived class

q An inner class can be a derived class also

ANONYMOUS
CLASSES
q If an object is to be created, but there is no need to name the

object's class, then an anonymous class definition can be
used
q The class definition is embedded inside the expression with

the new operator
q An anonymous class is an abbreviated notation for creating a

simple local object "in-line" within any expression, simply by
wrapping the desired code in a "new" expression.

q Anonymous classes are sometimes used when they are to be
assigned to a variable of another type
q The other type must be such that an object of the anonymous

class is also an object of the other type
q The other type is usually a Java interface

ANONYMOUS
CLASSES
q Example

interface Foo {
void doSomething();

}
public class Test {

public static void main (String args[]) {
Foo obj = new Foo(){

void doSomething(){
System.out.println(“test”);

}
};
obj.doSomething();

}
}

ENUMERATIONS
q Enumerated values are used to represent a set of named

values.

q These were often stored as constants.

q For example
public static final int SUIT_CLUBS = 0;
public static final int SUIT_DIAMONDS = 1;
public static final int SUIT_HEARTS = 2;
public static final int SUIT_SPADES = 3;

ENUMERATIONS
q number of issues with previous approach

q Acceptable values are not obvious
q Since the values are just integers, it’s hard at a glance to tell what

the possible values are.
q No type safety

q Since the values are just integers, the compiler will let you substitute
any valid integer

q No name-spacing
q With our card example, we prefixed each of the suits with “SUIT_” .
q We chose to prefix all of those constants with this prefix to

potentially disambiguate from other numerated values of the same
class.

q Not printable
q Since they are just integers, if we were to print out the values, they’d

simply display their numerical value.

ENUMERATIONS
q Java 5 added an enum type to the language

q Declared using the enum keyword instead of class

q In its simplest form, it contains a commaseparatedl ist of
names representing each of the possible options.
public enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }

ENUMERATIONS
q Acceptable values are now obvious — must choose one of

the Suit enumerated values…

Type safety — possible values are enforced by the compiler

ENUMERATIONS
q Every value is name-spaced off of the enum type itself.

q Printing the enum value is actually readable.

System.out.print("Card is a Queen of " + Suit.HEARTS);

ENUMERATIONS
q Additional Benefits

q Storage of additional information

q Retrieval of all enumerated values of a type

q Comparison of enumerated values

ENUMERATIONS.
ADDITIONAL BENEFITS
q Enums are objects

q So they can have…
q Member variables
q Methods

q For example…
q We could embed the color of the

suit within the Suit.
q We can then read the value

using a getter, etc.

public enum Suit {
 CLUBS(Color.BLACK),
 DIAMONDS(Color.RED),
 HEARTS(Color.RED),
 SPADES(Color.BLACK);
 private Color color;

 Suit(Color c) {
 this.color = c;
 }
 public Color getColor() {
 return this.color;
 }
}

ENUMERATIONS.
ADDITIONAL BENEFITS
RETRIEVAL OF ALL
ENUMERATED VALUES
q All enum types will

automatically have a values()
method that returns an array
of all enumerated values for
that type.

Suit[] suits = Suit.values();
for(Suit s : suits) {

System.out.println(s);
}

COMPARISON OF
ENUMERATED VALUES
q It is possible to compare enums using the ==

operator.
if(suit == Suit.CLUBS) {
// do something
}

q can also be used with the switch control
structure

Suit suit = /* ... */;
switch (suit) {

case CLUBS:
case SPADES:

// do something
break;

case HEARTS:
case DIAMONDS:

// do something else
break;

default:
// yet another thing
break;

}

COURSE TEST
q True or False

1. Java allows multiple inheritance
2. Abstract classes can be instantieted
3. It is imposible to declare a class inside other class
4. Inheritance is a type of polymorfis
5. From java 8 interfaces ca contain metods that are

implemented in an inteface

q What is the usage of equals() and hashCode() methods? In
which situation you need to provide a custom behaviour?
(homework from previous course)

