PROGRANMMING Il
OOP. JAVA LANGUAGE

COURSE 3
= Java

PREVIOUS COURSE
CONTENT

O Classes
O Objects
O Object class

O Acess control specifier

] fields
J methods
] classes

COUSE CONTENT

O Inheritance

] Abstract classes
[Interfaces

[instanceof operator

(] Nested classes

U Enumerations

RELATION BETWEEN
CLASSES

1 What relation between classes exists?

RELATION BETWEEN
CLASSES

1 What relations between classes exists?

J Associations
 Dependence
 Association
J Agregation
 Composition

J Inheritance

INHERITANCE

O Inheritance is a mechanism which allows a class A to inherit members
(data and functions) of a class B. We say “A inherits from B”. Objects of
class A thus have access to members of class B without the need to
redefine them.

0 Terminology

 Base class
U The class that is inherited
Derived class
L A specialization of base class
Kind-of relation
U Class level (Circle is a kind-of Shape)
|s-a relation
L Object level (The object circle1 is-a shape.)
Types of inheritance
0 Simple
L One base class
O Multiple - NOT SUPPORTED IN JAVA
U Multiple base classes

o O 0O O

SIMPLE INHERITANCE

0 Syntax

[[ClassSpecifier] class ClassName extends BaseClass { ... }

O Example

public class Figure {
Color color;
public Figure() {
this.color = Color.RED;

}

}

public class Circle extends Figure {
int radius;
int centerX, centerY;

}

O A class inherits a single base class

SIMPLE INHERITANCE.
CONSTRUCTORS

0 super keyword public class Circle extends Figure {
O Example int radius;

_ _ int centerX, centerY;

public class Figure {
Col lor; . .
olor coror public Circle(){
public Figure() { super();
this.color = Color.RED; }
}

public Circle (intr, int x, inty, Color c) {
super(c);
this. radius =r;

public Figure (Color c) {
this.color = ¢

} this.centerX = x;
public String toString(){ this.centerY =y;
return “color: ” + this.color, }
}
} public String toString() {

return “[“+ this.radius + “,(“ +
this.centerX + “” + this.centerY + %), 7 +
super.toString() + “1";

}
}

ABSTRACT CLASSES

(J Abstract classes is a class declared abstrat
It may or not include abstract methods

J Abstract method

J Method that is only declared without an implementation
1 Example: public static void fooMethod(int par1);

O Properties

J Abstract classes cannot be instantiated
(J Can contain abstract and non abstract methods
] Can contain fields that are not static or final

- All interface methods are by default public so they do not
need to be declared public

INTERFACES

O Interfaces

] simlar to class

APl - Application Programming Interfaces
 a"contract" that spells out software interactions

 Can contain only
J constants
method signature
1 default methods
] static methods
O nested types

 Syntax

[interfaceModiefier] interface InterfaceName [implements Inteface
[, ..InterfaceN]|{ ... }

 where
O interfaceModiefier: package, public

INTEFACES

O Inheritance

 a class can inherit multiple interfaces

 An instance method in a subclass with the same signature
(name, plus the number and the type of its parameters) and
return type as an instance method in the superclass overrides
the superclass's method

 An overriding method can also return a subtype of the type
returned by the overridden method. This subtype is called a

O Multiple inheritance

d Multiple inheritance is the ability to inherit method definitions
from multiple base (super) classes

 Java supports , Which is the ability
of a class to implement more than one interface

INTERFACES CAN BE
EXTENDED

O Creation (definition) of interfaces can be done using
inheritance

] one interface can extend another.

0 Sometimes interfaces are used just as labeling
mechanisms

 Look in the Java API documentation for interfaces like
Cloneable or Serializable.
[Optional
] reade about Marker design pattern and annotations

INTERFACES

O default methods

U from java 8

L enable the add of new functionalities to interfaces without breaking the classes that
implements that interface

U Example

interface InterfaceA {
public void saySomething();

fault public void sayHi -
default public void sayHi() { public class MyClass
System.out.printin("Hi");

} implements InterfaceA {

@Override

public void saySomething() {
System.out.printin("Hello World");

}

INTERFACES

1 default methods

 Conflicts with multiple interface
 problem

d or more interfaces has a default method with the same
signature

] solution
d provide implementation for the method in derived class
J new implementation
[call one of the intefaces implementation

1 static methods

O from java 8

 similar to default method except that can’t be override in
subclasses implementation

CASTING OBJECTS

O A object of a derived class can be cast as an object of the
base class

1 When a method is called, the selection of which version of
method is run is totally dynamic

] overridden methods are dynamic

POLYMORPHISM

O A reference can be polymorphic, which can be defined as "having many
forms"

obj.dolt();

O This line of code might execute different methods at different times if the
object that obj points to changes

O Polymorphic references are resolved at run time; this is called dynamic
binding

O Careful use of polymorphic references can lead to elegant, robust
software designs

0 Polymorphism can be accomplished using inheritance or using
interfaces

INSTANCEOF

0 Knowing the type of an object during run time

O Usage
1 object instanceof type

O It can be very useful when writing generalized routines that
operate on objects of a complex class hierarchy

O It will cause a compiler error if the comparison is done with
objects which are not in the same class hierarchy.

U Returns true if the type could be cast to the reference type
without causing a ClassCastException, otherwise it is false.

NESTED CLASSES

O Define a class within another class.
O Why Use Nested Classes?
O Itis a way of logically grouping classes that are only used
in one place
- It increases encapsulation

1 It can lead to more readable and maintainable code
O Types

J Static member classes
J Member classes

J Local classes

J Anonymous classes

NESTED CLASSES

O Types

] Static member classes
] is a static member of a class

] a static member class has access to all static methods of the
parent, or top-level, class.

J Member classes

] is also defined as a member of a class

[is instance specific and has access to any and all methods
and members, even the parent's this reference

(] Local classes

(] are declared within a block of code and are visible only
within that block

J Anonymous classes
J is a local class that has no name

NESTED CLASSES

0 example

public class Outer

{

private class Inner

{

/Il inner class instance variables
// inner class methods

} I/ end of inner class definition

// outer class instance variables
/] outer class methods

PUBLIC INNER
CLASSES

d

If an inner class is marked public, then it can be used
outside of the outer class

In the case of a nonstatic inner class, it must be created
using an object of the outer class

BankAccount account = new BankAccount();
BankAccount.Money amount =
account.new Money("41.99");

Note that the prefix account. must come before new

The new object amount can now invoke methods from the
inner class, but only from the inner class

PUBLIC INNER
CLASSES

O In the case of a static inner class, the procedure is similar
to, but simpler than, that for nonstatic inner classes

OuterClass.InnerClass innerObiject =
new QOuterClass.InnerClass();

O Note that all of the following are acceptable

innerObject.nonstaticMethod();
innerObject.staticMethod();
OuterClass.InnerClass.staticMethod();

INNER CLASS AND
INHERITANCE

d Given an OuterClass that has an InnerClass

[Any DerivedClass of OuterClass will automatically have
InnerClass as an inner class

1 In this case, the DerivedClass cannot override the
InnerClass

(J An outer class can be a derived class

(J An inner class can be a derived class also

ANONYMOUS
CLASSES

O If an object is to be created, but there is no need to name the

object's class, then an anonymous class definition can be
used

 The class definition is embedded inside the expression with
the new operator

' An anonymous class is an abbreviated notation for creating a
simple local object "in-line" within any expression, simply by
wrapping the desired code in a "new" expression.

d Anonymous classes are sometimes used when they are to be
assigned to a variable of another type

 The other type must be such that an object of the anonymous
class is also an object of the other type

 The other type is usually a Java interface

ANONYMOUS
CLASSES

O Example

interface Foo {

void doSomething();
}
public class Test {

public static void main (String args|]) {

Foo obj = new Foo(){
void doSomething(){
System.out.printin(“test”);

}
5
obj.doSomething();

ENUMERATIONS

0 Enumerated values are used to represent a set of named
values.

J These were often stored as constants.

O For example

public static final int SUIT_CLUBS = 0;
public static final int SUIT_DIAMONDS = 1;
public static final int SUIT_HEARTS = 2;
public static final int SUIT _SPADES = 3;

ENUMERATIONS

O number of issues with previous approach

J Acceptable values are not obvious

 Since the values are just integers, it's hard at a glance to tell what
the possible values are.

d No type safety

 Since the values are just integers, the compiler will let you substitute
any valid integer

(d No name-spacing

O With our card example, we prefixed each of the suits with “SUIT_” .

d We chose to prefix all of those constants with this prefix to
potentially disambiguate from other numerated values of the same
class.

J Not printable

d Since they are just integers, if we were to print out the values, they’d
simply display their numerical value.

ENUMERATIONS

4 Java 5 added an enum type to the language
O Declared using the enum keyword instead of class

O In its simplest form, it contains a commaseparatedl ist of
names representing each of the possible options.

public enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }

ENUMERATIONS

O Acceptable values are now obvious — must choose one of
the Suit enumerated values...

drawSuitOnCard(Suit.))
o° CLUBS : Test.Suit - Test.Suit W
o° DIAMONDS : Test.Suit - Test.Suit
o® HEARTS : Test.Sult - Test Su
o SPADES : Test.Suit - Test.Suit
& valueOf(String arg0) : Suit - Suit
i Press '~Space’ to show Template Propos

Type safety — possible values are enforced by the compiler

i The method drawSuitOnCard(Test.Suit) in the type Test is not applicable for the arguments (int)
2 quick fixes available

@ Change mg;hgg ‘dr g,ﬂ}g Q Car -;l_ts_g_u o ‘drawSuitOnCard(int
ate met!

ENUMERATIONS

O Every value is name-spaced off of the enum type itself.

drawSuitOnCard(Suit,);
©~ CLUBS : Test.Suit - Test.Suit "
©° DIAMONDS : Test.Suit - Test.5uit]
©° HEARTS : Test.Suit - Test.Suit
o° SPADES : Test.Suit - Test.5uit
& valueQf(String arg0) : Suit - Suit
) Press "~ Space’ 1o show Ternplate Propos

O Printing the enum value is actually readable.

System.out.print("Card is a Queen of " + Suit. HEARTS);

ENUMERATIONS

1 Additional Benefits

O Storage of additional information
[Retrieval of all enumerated values of a type

 Comparison of enumerated values

ENUMERATIONS.
ADDITIONAL BENEFITS

O Enums are objects public enum Suit {

L .
O So they can have... CLUBS(Color.BLACK),

O Member variables DIAMONDS(Color.RED),
0 Methods HEARTS(Color.RED),
SPADES(Color.BLACK);
O For example... private Color color;
J We could embed the color of the
suit within the Suit. Suit(Color c) {
We can then read the value this.color = c;
using a getter, etc. }

public Color getColor() {
return this.color;

ENUMERATIONS.
ADDITIONAL BENEFITS

RETRIEVAL OF ALL COMPARISON OF
ENUMERATED VALUES ENUMERATED VALUES
O All enum types will O Itis possible to compare enums using the ==
automatically have a values() operator.
method that returns an array if(suit == Suit.CLUBS) {
of all enumerated values for // do something
that type. }
O can also be used with the switch control
structure
Suit[] suits = Suit.values(); Suit suit = /* .. */-
for(Suit s : suits) { : P
System.out.printin(s); switch (ScL:JeI]ts)e{ CLUBS:
} case SPADES:
/I do something
break;

case HEARTS:

case DIAMONDS:
// do something else
break;

default:
/Il yet another thing
break;

COURSE TEST

d True or False

1. Java allows multiple inheritance

Abstract classes can be instantieted

It is imposible to declare a class inside other class
Inheritance is a type of polymorfis

From java 8 interfaces ca contain metods that are
implemented in an inteface

a s~ b

O What is the usage of equals() and hashCode() methods? In
which situation you need to provide a custom behaviour?
(homework from previous course)

