
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 2

COURSE CONTENT

Classes

Class modifiers

Fields modifiers

Method modifiers

Objects

Display objects

toString() method

StringBuffer

StringBuilder

CLASSES

 Classes

 Groups objects with similar characteristics

 Syntax

[classModifier] class ClassName [extends BaseClassName]
[implements Interface1 [, Interface2] …[, InterfaceN]]{

 member fields and methods

}

Where

 ClassName
 Variable name that starts with upper case (does not contain

spaces)

 classModifiers
 public, abstract, final

CLASSES

 Classes

 Groups objects with similar characteristics

 Syntax

[classModifier] class ClassName [extends BaseClassName]

[implements Interface1 [, Interface2] …[, InterfaceN]]{

 member fields and methods

}

CLASS MODIFIERS

Can appear only once in class declaration

public modifier

Class is visible in all packages

 the name of the class has to be the same like the name of

the file

abstract modifier

used for classes that contain abstract methods

Used for classes that inherits abstract methods from a base

class

If the class does not implement all the methods exposed by

an interface

What is a

package?

What is an abstract

method?

CLASS MODIFIERS

final modifier

The class definition is complete

The class cannot base class for other classes

A class cannot be in the same time final and abstract

OBJECT CLASS

All Java classes are inherited from Object class

Some of most common used Object class methods

protect void equals(Object obj)

Tests if the current object is equal with the one passed like
parameter

protected void finalize()

Method called by garbage collection when the is no reference to
the current object

public class getClass()

Method that returns the current class of the object

public int hashCode()

Homework: which is the role of hashCodeMethod()

public String toString()

Returns the string representation of the object

CLASSES

 Classes

 Groups objects with similar characteristics

 Syntax

[classModifier] class ClassName [extends BaseClassName]

[implements Interface1 [, Interface2] …[, InterfaceN]]{

 member fields and methods

}

CLASS MEMBER

FIELDS

Class member fields/variables

Describe the properties of a class

Syntax

[fieldsModifier] variableType variableName [, variableName1 …[,
variableNameN]];

[fieldsModifier] variableType variableName [=variable
initialization]

[fieldsModifier] variableType variableName[] [=variable
initialization]

Fields modifiers

Access modifiers
public, protected, implicit/default, private

Others
 final, static, transient, volatile

MEMBER FIELDS

MODIFIERS

Access modifiers

 public

Visible all classes and packages

 protected

Visible in derived classes

 implicit/default

Visible in all classes in same package

 private

Visible in current class

MEMBER FIELDS

MODIFIERS

Others

 final
 Constants

 The value of the attribute is the same during the hole program execution

 In many cases is used with static modifier

 Constants in Java are written with upper cases

 Must be initialized when they are declared

 static
 Allocates a single memory location that is shared by all class objects

 Accessible by class name

 transient
 Variables that does not persist (are not serializable)

 volatile
 The value of this variable will never be cached thread-locally: all reads and

writes will go straight to "main memory";

 Access to the variable acts as though it is enclosed in a synchronized
block, synchronized on itself.

CLASS MEMBER

FIELDS

Example

public class ExVariables {

 public static final int MAXIMUM_CAPACITY = 100;

 int age;

 private String name;

 transient double mean;

 protected double marks[];

 private int I, j, k=9;

 private double b[] = new double [10];

}

CLASS MEMBERS

this keyword

A reference to the current object

super keyword

A reference to base class

CLASS MEMBERS TYPES

Local variables

Variables defined inside methods, constructors or blocks are called local
variables.

The variable will be declared and initialized within the method and the
variable will be destroyed when the method has completed.

Instance variables

Instance variables are variables within a class but outside any method.

These variables are initialized when the class is instantiated.

Instance variables can be accessed from inside any method, constructor
or blocks of that particular class.

Class variables

 Class variables are variables declared within a class, outside any
method, with the static keyword.

CLASSES

 Classes

 Groups objects with similar characteristics

 Syntax

[classModifier] class ClassName [extends BaseClassName]

[implements Interface1 [, Interface2] …[, InterfaceN]]{

 member fields and methods

}

CLASS METHODS

Class member methods/function

Describe the behavior of a object of the class

Syntax

[methodModifiers] returnType methosName ([parameter list])

[throws Exception1[, …, ExceptionN]] { …}

Where

methodModifier: public, protected, private, default, abstract,

final, static, synchronized, native

returnType: void, primitive or reference type

parameterList: formal parameters list

CLASS METHODS

MODIFIERS

Access modifiers

 public

Visible all classes and packages

 protected

Visible in derived classes

 implicit/default

Visible in all classes in same package

 private

Visible in current class

CLASS METHODS

MODIFIERS

Others

 abstract

Offers only the signature of the method

The method does not provide an implementation

Cannot be: private, static, final, native or synchronized

 static

Class method

Does not have access to this referese

 final

Cannot be overwritten

 synchronized

Only one thread can access the method when is executed

 native

A native method in other programming language (like C, C++)

JAVA METHODS WITH

VARIABLE ARGUMENTS

LENGTH

Example

class X {

 void method1 (int a, String … words) {

 for (String s: words) {

 System.out.println(“argument: “ + s);

 }

 }

 void method2 (double … numbers) { }

}

Properties

It must be the last argument of the
method

The argument is an array of objects of the
type of the argument

Call

method1(10)

method1(10,
“s1”,”s2”)

method1(10, “s1”,
“s2”,”s3”)

…

method2()

method2(4.5)

method2(5.7, 7.8)

…

CONSTRUCTORS

Properties

Function that an object calls when an object is instantiated

Has the same name like the class

It does not have a return value

If no constructor is defined a default constructor is provided by the
compiler

Example

public class X {

 int y;

//default constructor

 public X() { }

 public X(int v) {

 this.v = x;

 }

}

Constructor call:

X obj1 = new X();

X obj2 = new X(3);

CLONABLE AND COPY

CONSTRUCTOR

Copy Constructor

X(X obj)

Clonable interface

clone(Object x)

TRANSFORMING

OBJECTS TO STRING

Implemenatation of toString() methods

Variants

String class

StringBuilder

StringBuffer

OBJECTS

Objects have states and behaviors

Objects creation steps

Declaration

A variable declaration with a variable name with an object

type.

Instantiation

 The 'new' keyword is used to create the object.

Initialization

 The 'new' keyword is followed by a call to a constructor.

 This call initializes the new object.

