
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 11

PREVIOUS COURSE

CONTENT

 Input/Output Streams

 Text Files

 Byte Files

 RandomAcessFile

 Exceptions

 Serialization

 NIO

COURSE CONTENT

 Threads

 Threads lifecycle

 Thread class]

 Runnable interface

 Synchronization

MULTITASKING AND

MULTITHREADING

Multitasking refers to a computer's ability to perform

multiple jobs concurrently

more than one program are running concurrently, e.g., UNIX

A thread is a single sequence of execution within a

program

Multithreading refers to multiple threads of control

within a single program

each program can run multiple threads of control within it, e.g.,

Web Browser

MOTIVATION FOR CONCURRENT

PROGRAMMING

 Pros

 Advantages even on single-processor systems

 Efficiency

 Downloading network data files

 Convenience

 A clock icon

 Multi-client applications

 HTTP Server, SMTP Server

 Many computers have multiple processors

 Find out via Runtime.getRuntime().availableProcessors()

 Cons

 Significantly harder to debug and maintain than single-
threaded apps

CONCURRENT VS PARALLEL

PROGRAMMING

Concurrent

Tasks that overlap in time

The system might run them in parallel on multiple processors,

or might switch back and forth among them on the same

processor

Parallel

Tasks that run at the same time on different processors

CONCURRENT VS PARALLEL

PROGRAMMING

CPU CPU1 CPU2

JAVA THREADS (CONCURRENT) VS.

FORK/JOIN FRAMEWORK (PARALLEL)

Using threads

When task is relatively large and self-contained

 Usually when you are waiting for something, so would

benefit even if there is only one processor

Needed even in Java 8 where you have parallel streams

 Using fork/join or parallel streams

 When task starts large but can be broken up repeatedly into

smaller pieces, then combined for final result.

 No benefit if there is only one processor

THREADS AND

PROCESSES

Process 1 Process 3 Process 2 Process 4

main

run

GC

CREATING THREADS

(METHOD 1)

 Extending the Thread class

 must implement the run() method

 thread ends when run() method finishes

 call .start() to get the thread ready to run

CREATING THREADS

EXAMPLE 1

class Output extends Thread {

 private String toSay;

 public Output(String st) {

 toSay = st;

 }

 public void run() {

 try {

 for(;;) {

 System.out.println(toSay);

 sleep(1000);

 }

 } catch(InterruptedException e) {

 System.out.println(e);

 }

 }

}

CREATING THREADS

EXAMPLE 1

class Program {

 public static void main(String [] args) {

 Output thr1 = new Output(“Hello”);

 Output thr2 = new Output(“There”);

 thr1.start();

 thr2.start();

 }

}

 main thread is just another thread (happens to start first)

 main thread can end before the others do

 any thread can spawn more threads

CREATING THREADS

(METHOD 2)

 Implementing Runnable interface

 virtually identical to extending Thread class

 must still define the run()method

 setting up the threads is slightly different

CREATING THREADS

EXAMPLE 2

class Output implements Runnable {

 private String toSay;

 public Output(String st) {

 toSay = st;

 }

 public void run() {

 try {

 for(;;) {

 System.out.println(toSay);

 Thread.sleep(1000);

 }

 } catch(InterruptedException e) {

 System.out.println(e);

 }

 }

}

CREATING THREADS

EXAMPLE 2

class Program {

 public static void main(String [] args) {

 Output out1 = new Output(“Hello”);

 Output out2 = new Output(“There”);

 Thread thr1 = new Thread(out1);

 Thread thr2 = new Thread(out2);

 thr1.start();

 thr2.start();

 }

}

 main is a bit more complex

 everything else identical for the most part

 Advantage of Using Runnable

 implementing runnable allows class to extend something else

CONTROLLING JAVA

THREADS

 start()

 begins a thread running

 wait() and notify()

 for synchronization

 stop()

 kills a specific thread (deprecated)

 suspend() and resume()

 deprecated

 join()

 wait for specific thread to finish

 setPriority()

 0 to 10 (MIN_PRIORITY to MAX_PRIORITY); 5 is default
(NORM_PRIORITY)

CONTROLLING JAVA

THREADS

 yield()

 Causes the currently executing thread object to temporarily

pause and allow other threads to execute

 Allow only threads of the same priority to run

 sleep(int m)/sleep(int m,int n)

 The thread sleeps for m milliseconds, plus n nanoseconds

JAVA THREAD

SCHEDULING

 highest priority thread runs

 if more than one, arbitrary

 yield()

 current thread gives up processor so another of equal

priority can run

 if none of equal priority, it runs again

 sleep(msec)

 stop executing for set time

 lower priority thread can run

STATES OF JAVA

THREADS

 4 separate states

 new

 just created but not started

 runnable

 created, started, and able to run

 blocked

 created and started but unable to run because it is waiting for

some event to occur

 dead

 thread has finished or been stopped

STATES OF JAVA

THREADS

new

runnable

blocked

dead

start()
stop(),

end of run method

wait(),

I/O request,

suspend()

notify(),

I/O completion,

resume()

SYNCHRONIZATION

 Synchronization is prevent data corruption

 Synchronization allows only one thread to perform an

operation on a object at a time.

 If multiple threads require an access to an object,

synchronization helps in maintaining consistency.

SYNCHRONIZATION.

EXAMPLE

public class Counter{

 private int count = 0;

 public int getCount(){

 return count;

 }

 public setCount(int count){

 this.count = count;

 }

}

 In this example, the counter tells how many an access has been made.

 If a thread is accessing setCount and updating count and another thread
is accessing getCount at the same time, there will be inconsistency in the
value of count.

SYNCHRONIZATION.

EXAMPLE. SOLUTION

public class Counter{

 private static int count = 0;

 public synchronized int getCount(){

 return count;

 }

 public synchoronized setCount(int count){

 this.count = count;

 }

}

By adding the synchronized keyword we make sure that when one thread is in the
setCount method the other threads are all in waiting state.

The synchronized keyword places a lock on the object, and hence locks all the other
methods which have the keyword synchronized. The lock does not lock the methods
without the keyword synchronized and hence they are open to access by other
threads.

SYNCHRONIZATION

 Synchronizing a section of code

synchronized(someObject) {

 code

}

 Normal interpretation

 Once a thread enters that section of code, no other thread can
enter until the first thread exits

 Stronger interpretation

 Once a thread enters that section of code, no other thread can
enter any section of code that is synchronized using the same
“lock” object

 If two pieces of code say “synchronized(blah)”, the question is if
the blah’s are the same object instance

SYNCHRONIZATION

Synchronized Method

Pros
Your IDE can indicate the synchronized methods.

The syntax is more compact.

Forces to split the synchronized blocks to separate methods.

Cons
Synchronizes to this and so makes it possible to outsiders to synchronize

to it too.

It is harder to move code outside the synchronized block.

Synchronized block

Synchronized block

Pros
Allows using a private variable for the lock and so forcing the lock to stay

inside the class.

Synchronized blocks can be found by searching references to the variable.

Cons
The syntax is more complicated and so makes the code harder to read.

SYNCHRONIZATION

METHOD

// locks the whole object

...

private synchronized void someInputRelatedWork() {

 ...

}

private synchronized void someOutputRelatedWork()

{

 ...

}

BLOCK

// Using specific locks

Object inputLock = new Object();

Object outputLock = new Object();

private void someInputRelatedWork() {

 synchronize(inputLock) {

 ...

 }

}

private void someOutputRelatedWork() {

 synchronize(outputLock) {

 ...

 }

}

VOLATILE VARIABLES

 If a variable, object, or field is declared as volatile, then

 It can be used for reliable communication between threads.

 Non-volatile variables, objects, and fields have unpredictable
semantics, if they are read & written by more than one thread.

 For example, if Thread1 and Thread2 are both executing the
following:

 int x = 1;

 System.out.println(name + ": " + (x++));

 This is equivalent to executing:

 int x = 1;

 int t = x;

 t = t + 1;

 x = t;

 System.out.println(name + ": " + x);

Thread1: 2

Thread2: 3

Thread2: 2

Thread1: 3

or

Thread2: 2

Thread1: 2

or

Thread1: 2

Thread2: 2

Thread1: 3

Thread2: 2
or Thread2: 3

Thread1: 2
or or

VOLATILE VARIABLES

 If a variable, object, or field is declared as volatile, then

 It can be used for reliable communication between threads.

 Semantics are predictable – if a thread reads the variable then writes it, the
other thread is blocked from reading until the newly-written value is
available.

 Warning: you can cripple a multithreaded program by making all of its
variables volatile.

 The JVM must always read volatiles from memory. Frequently-used
non-volatile values are retained in the CPU register file, which is
much faster than main memory.

 For example, if Thread1 and Thread2 are both executing the following:

 volatile int x = 1;

 System.out.println(name + ": " + (x++));

 Thread1 and Thread2 always get different values!

 Thread1: 3

Thread2: 2

or

Thread1: 2

Thread2: 3

Thread2: 2

Thread1: 3

or

Thread2: 3

Thread1: 2

