
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 10

PREVIOUS COURSE

CONTENT

 Graphical User Interfaces

 Abstract Window Toolkit

 Swing

COUSE CONTENT

 Input/Output Sreams

 Text Files

 Byte Files

 RandomAcessFile

 Exceptions

 Serialization

 NIO

WHAT IS A FILE?

WHAT IS A FILE?

 A file is a collection of data in mass storage.

 The same file can be read or modified by different programs.

 The program must be aware of the format of the data in the file.

 The files are maintained by the operating system.

 The system provides commands and/or GUI utilities for viewing
file directories and for copying, moving, renaming, and deleting
files.

 The operating system also provides basic functions, callable
from programs, for reading and writing directories and files.

FILE TYPES

 Text files

 A computer user distinguishes text (“ASCII”) files and “binary” files.

This distinction is based on how you treat the file.

 A text file is assumed to contain lines of text (for example, in ASCII

code).

 Each line terminates with a newline character (or a combination,

carriage return plus line feed).

 Examples:

 Any plain-text file, typically named something.txt

 Source code of programs in any language (for example, Something.java)

 HTML documents

FILE TYPES

Binary Files

 A “binary” file can contain any information, any combination of bytes.

 Only a programmer / designer knows how to interpret it.

 Different programs may interpret the same file differently (for example,
one program displays an image, another extracts an encrypted
message).

 Examples:

 Compiled programs (for example, Something.class)

 Image files (for example, something.gif)

 Music files (for example, something.mp3)

 Any file can be treated as a binary file (even a text file, if we forget
about the special meaning of CR-LF).

STREAM

 Stream

 A stream is a connection to a source of data or to a

destination for data (sometimes both)

 An input stream may be associated with the keyboard

 An input stream or an output stream may be associated

with a file

 Different streams have different characteristics:

 A file has a definite length, and therefore an end

 Keyboard input has no specific end

STREAM

 A stream is an abstraction derived from sequential input
or output devices.

 An input stream produces a stream of characters; an
output stream receives a stream of characters, “one at a
time.”

 Streams apply not just to files, but also to IO devices,
Internet streams, and so on.

 A file can be treated as an input or output stream.

 In reality file streams are buffered for efficiency: it is not
practical to read or write one character at a time from or to
mass storage.

 It is common to treat text files as streams.

FILES AND STREAMS

 Java views each files as a sequential stream of bytes

 Operating system provides mechanism to determine end

of file

 End-of-file marker

 Count of total bytes in file

 Java program processing a stream of bytes receives an

indication from the operating system when program reaches

end of stream

FILES AND STREAMS

 File streams

 Byte-based streams – stores data in binary format
 Binary files – created from byte-based streams, read by a

program that converts data to human-readable format
 Character-based streams – stores data as a sequence of

characters
 Text files – created from character-based streams, can be

read by text editors

 Java opens file by creating an object and associating a stream
with it

 Standard streams – each stream can be redirected

 System.in – standard input stream object, can be redirected with
method setIn

 System.out – standard output stream object, can be redirected
with method setOut

 System.err – standard error stream object, can be redirected with
method setErr

I/0 API

 I/O (input/outpu)

 refers to the interface between a computer and the rest of
the world

 between a single program and the rest of the computer

 java.io.*

 Stream oriented

 Blocking IO

 java.nio.* (java version ≥ 1.7)

 Buffer oriented

 Non blocking IO

 Selectors

IO API

BufferedInputStream

BufferedOutputStream

BufferedReader

BufferedWriter

ByteArrayInputStream

ByteArrayOutputStream

CharArrayReader

CharArrayWriter

DataInputStream

DataOutputStream

File

FileDescriptor

FileInputStream

FileOutputStream

FilePermission

FileReader

FileWriter

FilterInputStream

FilterOutputStream

FilterReader

FilterWriter

InputStream

InputStreamReader

LineNumberInputStream

LineNumberReader

ObjectInputStream

ObjectInputStream.GetField

ObjectOutputStream

ObjectOutputStream.PutField

ObjectStreamClass

ObjectStreamField

OutputStream

OutputStreamWriter

PipedInputStream

PipedOutputStream

PipedReader

PipedWriter

PrintStream

PrintWriter

PushbackInputStream

PushbackReader

RandomAccessFile

Reader

SequenceInputStream

SerializablePermission

StreamTokenizer

StringBufferInputStream

StringReader

StringWriter

Writer

IO API

 Uses four hierarchies of classes

 Reader

 Writer

 InputStream

 OutputStream.

 InputStream/OutputStream hierarchies deal with bytes.
Reader/Writer hierarchies deal with chars.

 Has a special stand-alone class RandomAccessFile.

 The Scanner class has been added to java.util in Java 5 to
facilitate reading numbers and words.

IO. USAGE

 IO flow

 import java.io.*;

 Open the stream
 There is data external to your program that you want to get, or you

want to put data somewhere outside your program

 When you open a stream, you are making a connection to that
external place

 Once the connection is made, you forget about the external place
and just use the stream

 Use the stream (read, write, or both)
 Using a stream means doing input from it or output to it

 But it’s not usually that simple--you need to manipulate the data in some way
as it comes in or goes out

 Close the stream
 A stream is an expensive resource

 There is a limit on the number of streams that you can have open at
one time

 You should not have more than one stream open on the same file

 You must close a stream before you can open it again

 Always close your streams

JAVA.IO.FILE

 The File class represents a file (or folder) in the file directory
system.

 Class File useful for retrieving information about files and
directories from disk

 Objects of class File do not open files or provide any file-
processing capabilities

 Methods:

 String getName() - returns file name

 boolean exists() - returns true if the file exists

 String getAbsolutePath() - return the absolute file path

 long length() - return the size of file

 boolean isDirectory() - return true if the file is a directory

 File[] list() - returns the list of the directory

String pathname = "../Data/words.txt“;

File file = new File(pathname);

JAVA.IO.FILE

 Class File provides four constructors:

 Takes String specifying name and path (location of file on disk)

 Takes two Strings, first specifying path and second specifying name
of file

 Takes File object specifying path and String specifying name of file

 Takes URI object specifying name and location of file

 Different kinds of paths

 Absolute path

 contains all directories, starting with the root directory, that lead to a specific
file or directory

 Relative path

 normally starts from the directory in which the application began executing

JAVA.IO.FILE

 Separator character – used to separate directories and
files in a path

 Windows uses \

 UNIX uses /

 Java process both characters, File.pathSeparator can
be used to obtain the local computer’s proper separator
character

 Common Programming Error

 Using \ as a directory separator rather than \\ in a string
literal is a logic error. A single \ indicates that the \ followed
by the next character represents an escape sequence. Use
\\ to insert a \ in a string literal.

IO. READING FROM

STANDARD INPUT

 Can use

 BufferedReader
 BufferedReader stdin = new BufferedReader(new

InputStreamReader(System.in))

 How to read?

 int read()

 returns character code, reads one charcter

 String readLine()

 returns a line of text

 ...

 Scanner
 Scanner stdin = new Scanner(System.in)

 How to read?

 int nextInt()

 double nextDouble()

 String nextLine()

 ...

IO. READING FROM

TEXT FILES

 Can use

 BufferedReader

 Scanner

 LineNumberReader

 String readLine()

 reads a line from a file

 int getLineNumber()

 returns the number of lines read from the file so far

IO. READING FROM

TEXT FILES

public class ReadingFromFile {

 public static void main(String[] args) throws IOException {

 // opening the file for reading

 FileReader f = new FileReader("test.txt");

 // creation of the object for reading

 BufferedReader in = new BufferedReader(f);

 // reading a line of text from the file

 String line = in.readLine();

 System.out.println(line);

 // closing the file

 f.close();

 }

}

IO

STREAMTOKENIZER
 Parses inputStreams into "tokens", allowing the tokens to be read one at a time

 Can recognize identifiers, numbers, quoted strings, and various comment styles.

 Example

public class StreamTokenizerDemo {

 public static void main(String[] args) {

 try {

 // create an ObjectInputStream for the file we created before

 ObjectInputStream ois = new ObjectInputStream(new FileInputStream("test.txt"));

 // create a new tokenizer

 Reader r = new BufferedReader(new InputStreamReader(ois)); StreamTokenizer st = new StreamTokenizer(r);

 // print the stream tokens

 boolean eof = false;

 do {

 int token = st.nextToken();

 switch (token) {

 case StreamTokenizer.TT_EOF: System.out.println("End of File encountered."); eof = true; break;

 case StreamTokenizer.TT_EOL: System.out.println("End of Line encountered."); break;

 case StreamTokenizer.TT_WORD: System.out.println("Word: " + st.sval); break;

 case StreamTokenizer.TT_NUMBER: System.out.println("Number: " + st.nval); break;

 default: System.out.println((char) token + " encountered."); if (token == '!') { eof = true; }

 }

 } while (!eof);

 } catch (Exception ex) { ex.printStackTrace(); } } }

IO. WRITING TO TEXT

FILES

 Can Use

 PrintWriter

 void print()

 PrintWriter printf()

 void println()

 Example

public static void main(String[] args) throws IOException {

…

PrintWriter outFile = new PrintWriter(“results.txt”);

outFile.println(“ANALYSIS for “ + infileName);

outFile.print(“Number of samples”);

…

outFile.close();

IO READING/WRITING

BYTES

 To read and write 8-bit bytes, programs should use the byte streams, descendants of
InputStream and OutputStream .

 InputStream and OutputStream provide the API and partial implementation for input
streams (streams that read 8-bit bytes) and output streams (streams that write 8-bit bytes).

 These streams are typically used to read and write binary data such as images and sounds.

 Example

private static void copyFileUsingFileStreams(File source, File dest) throws IOException {

 InputStream input = null;

 OutputStream output = null;

 try {

 input = new FileInputStream(source);

 output = new FileOutputStream(dest);

 byte[] buf = new byte[1024];

 int bytesRead;

 while ((bytesRead = input.read(buf)) > 0) output.write(buf, 0, bytesRead);

 } finally {

 input.close();

 output.close();

 }

}

IO RANDOM ACESS

FILES

 Random access files are files in which records can be

accessed in any order

 Also called direct access files

 More efficient than sequential access files

IO RANDOM ACESS

FILES

 NOT compatible with the stream/reader/writer models

 With a random-access file, you can seek to the desired
position and then read and write an amount of bytes

 Only support seeking relative to the beginning of the file

 Not relative to current position of file pointer

 However there are methods that report the current position

IO RANDOM ACESS

FILES

 Methods

 long getFilePointer()
 Returns the current offset in this file.

 long length()
 Returns the length of this file.

 void seek(long pos)
 Sets the file-pointer offset, measured from the
beginning of this file, at which the next read or write
occurs.

C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html
C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html
C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html

IO RANDOM ACESS

FILES

 RandomAccessFile(File file, String mode)

 Creates a random access file stream to read from, and optionally
to write to, the file specified by the File argument.

 RandomAccessFile(String name, String mode)

 Creates a random access file stream to read from, and optionally
to write to, a file with the specified name.

 The mode should be either “r” , “rw”, “rws” or “rwd”

 rws
 flushes the contents of the file and the modification date of the file.

 rwd

 flushs the contents of the file, but the modification date might not
change until the file is closed.

 rw

 only flushes when you tell it to and doesn't change the modifcation
date until you close the file.

C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html
C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/File.html
C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/lang/String.html
C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html
C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/lang/String.html
C:/Documents and Settings/Object Oriented Prof/Local Settings/Temporary Internet Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/FileReader.html

IO RANDOM ACESS

FILES

 Constructors

 When a RandomAccessFile is created in read-only mode a

FileNotFoundException is generated

 When a RandomAccessFile is created in read-write a zero

length file will be created

IO RANDOM ACESS

FILES

 File pointers

 RandomAccessFile supports file pointer which indicates

the current location in the file.

 When the file is first created, the file pointer is set to 0,

indicating the beginning of the file.

 Calls to the read and write methods adjust the file pointer

by the number of bytes read or written.

IO RANDOM ACESS

FILES

 Manipulate file pointers

 RandomAccessFile contains three methods for explicitly
manipulating the file pointer.
 int skipBytes(int) — Moves the file pointer forward the specified

number of bytes

 void seek(long) — Positions the file pointer just before the specified
byte

 long getFilePointer() — Returns the current byte location of the file
pointer

 Usage
 To move the file pointer to a specific byte

 f.seek(n);

 To get current position of the file pointer.

 long n = f.getFilePointer();
 To find the number of bytes in a file

 long filelength = f.length();

IO RANDOM ACESS

FILES. EXAMPLE

public class RandomAccess {

 public static void main(String args[]) throws IOException {

 RandomAccessFile myfile = new RandomAccessFile("rand.dat",
"rw");

 myfile.writeInt(120);

 myfile.writeDouble(375.50);

 myfile.writeInt('A'+1);

 myfile.writeBoolean(true);

 myfile.writeChar('X');

 // set pointer to the beginning of file and read next two
items

 myfile.seek(0);

 System.out.println(myfile.readInt());

 System.out.println (myfile.readDouble());

 //set pointer to the 4th item and read it

 myfile.seek(16);

 System.out.println(myfile.readBoolean());

IO RANDOM ACESS

FILES. EXAMPLE

 // Go to the end and “append” an integer 2003

 myfile.seek(myfile.length());

 myfile.writeInt(2003);

 // read 5th and 6th items

 myfile.seek(17);

 System.out.printl(myfile.readChar());

 System.out.println(myfile.readInt());

 System.out.println("File length: "+myfile.length());

 myfile.close();

 }

}

IO EXCEPTIONS

 FileNotFoundException

 IOException

SERIALIZATION

 Persistence

 Saving information about an object to recreate at different

time, or place or both.

 Object serialization

 implementing persistence: convert object’s state into byte

stream to be used later to reconstruct (build-deserialized) a

virtually identical copy of original object.

 Default serialization for an object writes

 the class of the object,

 the class signature,

 values of all non-transient and non-static fields.

SERALIAZTION

 Classes for serialization

 For serialization:

 java.io.ObjectOutputStream via writeObject which calls

on defaultWriteObject,

 For deserialization:

 java.io.ObjectInputStream via readObject which calls on

defaultReadObject.

 Any object instance that belongs to the graph of the object

being serialized must be serializable as well.

 Superclass must be Serializable.

 This interface is an empty interface and is used to mark the

objects of such class as persistent.

SERIALIZATION

 Serialization

 It writes the values of a class members

 Deserialization

 It reads values written during serialization

 Static fields in the class are left untouched.

 If class needs to be loaded, then normal initialization of the

class takes place, giving static fields its initial values.

 Transient fields will be initialized to default values

 Recreation of the object graph will occur in reverse order

from its serialization.

SERIALIZATION

 Conditions for serializability

 If an object is to be serialized

 The class must be declared as public

 The class must implement Serializable

 The class must have a no-argument constructor

 All fields of the class must be serializable: either primitive

types or serializable objects

SERIALIZATION

 To Write into an ObjectOutputStream

 FileOutputStream out = new FileOutputStream(“afile”) ;
ObjectOutputStream oos = new ObjectOutputStream(out) ;
oos.writeObject(“Today”) ;
oos.writeObject(new Date()) ;
oos.flush() ;

 To Read from an ObjectInputStream

 FileInputStream in = new FileInputStream(“afile”) ;
ObjectInputStream ois = new ObjectInputStream(in) ;
String today = (String) ois.readObject() ;
Date date = (Date) ois.readObject() ;

SERIALIZATION

 Custom Serialization

 Create own complete serialization by implementing the interface

Externalizable
interface Externalizable{

public void writeExternal(ObjectOutput out)

throws IOException;

public void readExternal(ObjectInput in)

throws IOException;

}

 writeExternal and readExternal must save/load the state of the

object. They must explicitly coordinate with its supertype to save

its state.

SERIALIZABLE VS. NON-

SERIALIZABLE OBJECTS

 Java.lang.Object does not implement serializable, so you
must decide which of your classes need to implement it.

 AWT, Swing components, strings, arrays are defined
serializable.

 Certain classes and subclasses are not serializable:
Thread, OutputStream, Socket

 When a serializable class contains instance variables
which are not or should not be serializable they should be
marked as that with the keyword transient.

SERIALIZATION.

TRANSIENT FIELDS

 These fields will not be serialized.

 When deserialized, these fields will be initialized to
default values

 Null for object references

 Zero for numeric primitives

 False for boolean fields

 If these values are unacceptable

 Provide a readObject() that invokes defaultReadObject() and
then restores transient fields to their acceptable values.

 Or, the fields can be initialized when used for the first time.
(Lazy initialization.)

SERIALIZATION.

SERIAL VERSION UID

 You should explicitly declare a serial version UID in every
serializable class.

 Eliminates serial version UID as a potential source of
incompatibility.

 Small performance benefit, as Java does not have to come
up with this unique number.

 private static final long serialVersionUID =rlv;
 rlv can be any number out thin air, but must be unique for each

serializable class in your development.

 If you want to make a new version of the class incompatible
with existing version, choose a different UID. Deserialization
of previous version will fail with InvalidClassException.

SERIALZATION.

PERFORMANCE

 Serialization is a very expensive process.

 You must clearly have reasons to serialize instead of you

directly writing what you need to save about the state of an

object.

SERIALZATION

 Default or Customized serialization?

 Allowing a class’s instances to be serializable can be as
simple as adding the words “implements Serializable” to
the class specification.

 This is a common misconception, the truth is far more
complex.

 While efficiency it is one cost associated with it, there are
other long-term costs that are much more substantial.

 Using default serialization is very easy but this a very
specious

SERIALIZATION

 Costs

 A major cost is that it decreases flexibility to change a
class’s implementation once the class has been release

 Increases the likelihood of bugs and security holes.

 Increases the testing associated with releasing a new
version of the class.

 Classes design for inheritance should rarely implement
serializable and interfaces should rarely extend it.

 You should provide parameterless constructor on non-
serializable classes designed for inheritance, in case it is
subclassed and the subclass wants to provide serialization.

 Inner classes should rarely if ever, implement Serializable.

 A static member class can be serializable.

NIO

 Four key new helper Types new in Java 7

 Class java.nio.file.Paths

 Exclusively static methods to return a Path by converting a
string or Uniform Resource Identifier (URI)

 Interface java.nio.file.Path

 Used for objects that represent the location of a file in a file
system, typically system dependent

 Class java.nio.file.Files

 Exclusively static methods to operate on files, directories and
other types of files

 Class java.nio.file.FileSystem

 Typical use case:

• Use Paths to get a Path. Use Files to do stuff.

NIO

 Way NIO?

 Methods didn’t throw exceptions when failing

 Rename worked inconsistently

 No symbolic link support

 Additional support for meta data

 Inefficient file meta data access

 File methods didn’t scale

 Walking a tree with symbolic links not possible

NIO

 File copy is really easy

 With fine grain control

 File move is supported

 Optional atomic move supported

Path src = Paths.get(“/home/fred/readme.txt”);

Path dst = Paths.get(“/home/fred/copy_readme.txt”);

Files.copy(src, dst,

 StandardCopyOption.COPY_ATTRIBUTES,

 StandardCopyOption.REPLACE_EXISTING);

Path src = Paths.get(“/home/fred/readme.txt”);

Path dst = Paths.get(“/home/fred/copy_readme.txt”);

Files.copy(src, dst,

 StandardCopyOption.COPY_ATTRIBUTES,

 StandardCopyOption.REPLACE_EXISTING);

NIO

 Files helper class is feature rich:

 Copy

 Create Directories

 Create Files

 Create Links

 Use of system “temp” directory

 Delete

 Attributes – Modified/Owner/Permissions/Size, etc.

 Read/Write

NIO

• DirectoryStream iterate over entries

– Scales to large directories

– Uses less resources

– Smooth out response time for remote file systems

– Implements Iterable and Closeable for productivity

• Filtering support

– Build-in support for glob, regex and custom f

Path srcPath = Paths.get(“/home/fred/src”);

try (DirectoryStream<Path> dir =

 srcPath.newDirectoryStream(“*.java”)) {

for (Path file : dir)

 System.out.println(file.getName());

}

NIO

 Path and Files are “link aware”

 createSymbolicLink(Path, Path, FileAttribute<?>)

 Path newLink = Paths.get(. . .);
Path existingFile = Paths.get(. . .);

try {

 Files.createSymbolicLink(newLink, existingFile);

} catch (IOException x) {

 System.err.println(x);

} catch (UnsupportedOperationException x) {

 //Some file systems or some configurations

 //may not support links

 System.err.println(x);

}

NIO

 A FileVisitor interface makes walking a file tree for search,

or performing actions, trivial.

 SimpleFileVisitor implements

preVisitDirectory(T dir, BasicFileAttributes attrs);

visitFile(T dir, BasicFileAttributes attrs);

visitFileFailed(T dir, IOException exc);

postVisitDirectory(T dir, IOException exc);

SAMPLE:

Path startingDir = ...;

PrintFiles pf = new PrintFiles(); // SimpleFileVisitor sub

 // visitFile(Path p, BasicFileAttributes bfa) {

 // System.out.println(file.getFileName());}

Files.walkFileTree(startingDir, pf);

NIO

 Watching a Directory

 Create a WatchService “watcher” for the filesystem

 Register a directory with the watcher

 “Watcher” can be polled or waited on for events

 Events raised in the form of Keys

 Retrieve the Key from the Watcher

 Key has filename and events within it for create/delete/modify

 Ability to detect event overflows

NIO

 Custom FileSystems

 FileSystems class is factory to great FileSystem (interface)

 Java 7 allows for developing custom FileSystems, for

example:

 Memory based or zip file based systems

 Fault tolerant distributed file systems

 Replacing or supplementing the default file system provider

 Two steps:

 Implement java.nio.file.spi.FileSystemProvider

 URI, Caching, File Handling, etc.

 Implement java.nio.file.FileSystem

 Roots, RW access, file store, etc.

