
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 1

COURSE CONTENT

 OOP Concepts. Java Language

 Classes

 Comparing objects in Java

 Collections. Generics

 Graphical Interfaces. Swing

 Java IO

 JDBC - Java Database Connectivity

 Threads

[possible - IBM - Web Services. Soap. Rest]

ORGANIZE STUFFS

 Course

 Flavia Micota

 cab. 046B

 contact: flavia.micota@e-uvt.ro

 site: web.info.uvt.ro/~zflavia

 Laboratory

 Flavia Micota

 Monica Tirea

 cab. 050B

 contact: monica.tirea@e-uvt.ro

 Attendee

 Course

 random tests from subjects presented in current course

 Laboratory

 minimum 10 presences

ORGANIZE STUFF

 Mark

 Theoretical exam 50%

 Laboratory test after exam 30%

 Homework - 10%

 Attendee - 10%

 5% course tests

 5% laboratory activity

 Homework

 submit: http://elearning.e-uvt.ro/

 cut date: 2 weeks from the moment of announcement

COURSE 1. CONTENT

 Object Oriented Programming

 Java Language History

 Java Program Structure

 Java Language

PROGRAMMING

LANGUAGES

 Imperative (algorithmic) languages

 The program is a sequence of statements

 Uses variables to access emmory

 Types

 Procedural Languages

 Object Orieted languages

 Declarative (non-algorithmic) languages

 The progammer presents the problem, the way to solution it is

included in the language

 Types

 Functional (applicative) languages

 Logic languages

 Other languages

P
R

O
G

R
A

M
M

I
N

G

L
A

N
G

U
A

G
E

S

PROGRAMMING

PARADICSM

 Unstructured programming

 Procedural programming

 Modular programming

 Data abstractization

 Object oriented programming

 Generic programming (templates)

 Aspected oriented programing (AOP)

OBJECT ORIENTED

LANGUAGE

A language or technique is object-oriented if and only if it
directly supports

[Stroustrup, 1995]:

[1] Abstraction – providing some form of classes and objects

[2] Inheritance – providing the ability to build new
abstractions out of existing ones

[3] Runtime polymorphism – providing some form of runtime

binding.

OBJECT ORIENTED

LANGUAGE

 Objects

 Have a state that reflects by current characteristics and conditions
and a behaviour that describe the action that it cat execute

 Classes

 Groups objects with similar characteristics

 Data Encapsulation

 Hidding object data and behaviour

 Data Abstractization

 A simplification or a model of a compex concept, process or real
word object

 Inheritance

 Is a contract between a class and the outside world

 When a class implements an interface, it promises to provide the
behavior published by that interface

 Polymorphism

 The possibility to offer an interface that has different implementations
for different objects

OBJECT ORIENTED

LANGUAGE

 Objects

 Have a state that reflects by current characteristics and conditions
and a behaviour that describe the action that it cat execute

 Classes

 Groups objects with similar characteristics

 Data Encapsulation

 Hidding object data and behaviour

 Data Abstractization

 A simplification or a model of a compex concept, process or real
word object

 Inheritance

 Is a contract between a class and the outside world

 When a class implements an interface, it promises to provide the
behavior published by that interface

 Polymorphism

 The possibility to offer an interface that has different implementations
for different objects

JAVA PLATFORMS

 J2SE (Standard Edition)

 offers support for creating descktop applications and applets

 Contains the standard set of classes offered by Java

 J2ME (Micro Edition)

 offers support for programming on mobile devices

 J2EE (Enterprise edition)

 Offers support for complex aplications on web. It contains
standards for database acessing, servlets, beans, web services,
messages queues ...

 Site

 http://www.oracle.com/technetwork/java/index.html

JAVA LANGUAGE

EVOLUTION

IDE JAVA

 NetBeans

 Eclipse

 https://eclipse.org/

 IntelliJ

 BlueJ

 developed mainly for educational porpuse

JAVA APPLICATIONS

 Stand alone

 Contain main() method

 Compile

 javac fileName.java

 Execution

 java fileName

 Applets

 Inherates Applet or JApplet class

 Compile

 javac fileName.java

 Execution

 create a HTML page that contains
tag APPLET that refers to compiled
class

 appletviewer html.page or open
HTML page into a browser

 Web Start

 Servlets

 Inherates class HttpServlet

 Compile

 javac fileName.java

 Execution

 an WAR archive
deployed on a WEB
Server

 NOT object of this course

JAVA PROGRAM

STRUCTURE

[package identifier;]

[import class(es);]

[access specifiers] class/interface ClassName {

 //member attributes declaration

 // member methods declaration

}
If a class is declared to be public it

must be placed in a file with same

name like the class

All code (functions, variable

decrations) is included inside a java

class. It cann't exist code outside a

class.

FIRST EXAMPLE

File: Example.java

public class Example {

 public satic void main (String args[]) {

 System.out.println (“Hellow World!”);

 }

}

Compile

 javac Example.java => Example.class

Execution

 java Example

Output

 Hello World!

Starting poit of a desktop application

in Java.

The signature of the method cannot

be changed

The method println() that belong to

class out displays a text to standard

output

JAVA CODDING GUIDELINES

 Diffrent standards

 http://www.oracle.com/technetwork/java/codeconventions-

135099.html

 https://google.github.io/styleguide/javaguide.html

 https://www.securecoding.cert.org/confluence/display/java/

Java+Coding+Guidelines

JAVA CODDING GUIDELINES

 Packages

 the prefix of a unique package name is always written in all-
lowercase

 Classes

 should be nouns

 in mixed case with the first letter of each internal word capitalized

 Interfaces

 names should be capitalized like class names

 Methods

 should be verbs

 in mixed case with the first letter lowercase, with the first letter of
each internal word capitalized

 Variables

 should not start with '_'

 the name starts with lower case

 each word starts with upper case

 Constants

 should be uppercase with words seprated by underscores ('_')

JAVA KEYWORDS

Category Keyword Example

Primitive Types boolean boolean isopen = true;

byte byte i1 = -128;

char char c ='A';

short short i =10;

int int i = 10;

long long i = 7l;

long j = 1234567567;

float float i =3.4f;

double double i = 3.4;

JAVA KEYWORDS

Category Keyword Example

Control Flow for for(int i=0; i<10; i++){ ...}

do while do{ ... }while (i<10);

while while (true) { ... }

if if (a<3) { ...

} else if (a>5) { ...

} else { ... }
else

switch swich(i) {

 case “abc”: ...

 breack;

 default:

 ...

}

case

default

JAVA KEYWORDS

Category Keyword Example

Control flow break break label;

continue continue label;

return return i;

try

try{

 ...

 throw new Exception();

 ...

} catch (Exception e) {

 ...

} finally {

 ...

}

throw

catch

finally

throws void fct () throws Exception { ... }

JAVA KEYWORDS

Category Keyword Example

Modifier public public int i;

protected protected int i;

private private int i;

static static int i;

final final int i;

abstract abstract void fct() { ... }

synchronized synchronized int funct() { ... }

synchronized (obj) { .. }

native native int funct() { ... }

tansient transient int i;

volatile volatile int i;

JAVA KEYWORDS

Category Keyword Example

Classes class class A { ... }

interface interface A { ... }

extends class A extends B { ... }

implements class A implements B { ... }

package package ro.uvt.p3;

import import java.awt.*;

OBS: Some of the modifer keywords can be used together with classes

not just with class fields.

JAVA KEYWORDS

Category Keyword Example

Miscellaneous (true) boolean x = true;

(false) boolean x = false;

(null) Object obj = null;

void void fct() { ... }

this this.x = x;

new Object obj = new Object();

super super (“call base classs constructor”)

instanceof if (a instanceof String)

 String s = (String) a;

OPERATORS

Category Operator Description

Simple Assigment = Simple assigment operator

Aritmetic + Additive (also used for String

concatenation)

- Substraction

* Multiplication

/ Sivision

% Remainder

Unary + Indicates positive value

- Negates a value

++ Increment

-- Decrement

! Logical complement

OPERATORS

Category Operator Description

Equality and Relational == Equal to

!= Not equal to

> Greater then

>= Greater then or equal to

< Less then

<= Less then or equal to

Conditional && Conditional AND

|| Conditional OR

?: Ternary (if - then - else)

OPERATORS

Category Operator Description

Type comparation instanceof Simple assigment operator

Bitwise and Bit Shift ~ Unary bitwise complement

<< Signed left shift

>> Signed right shift

>>> Unsigned right shift

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise inclusive OR

COMMENTS

 Line comment

 //

 Block comment

 /* */

 Java Doc

 Generates

 class documentation

 methotds documentation

 Standard way to document java projects

 Java API - https://docs.oracle.com/javase/8/docs/api/

JAVADOC

Class

comments

/**

* <h1>Add Two Numbers!</h1>

* The AddNum program implements an application that

* simply adds two given integer numbers and Prints

* the output on the screen.

* <p>

* Note: Giving proper comments in your program makes it

more

* user friendly and it is assumed as a high quality code.

*

* @author Popescu Ion

* @version 1.0

* @since 2016-08-31

*/

public class AddNum {

...

}

JAVADOC

 Method comments

 Fields comments

 /**

 * This method is used to add two integers. This is

 * a the simplest form of a class method, just to

 * show the usage of various javadoc Tags.

 * @param numA This is the first paramter to addNum method

 * @param numB This is the second parameter to addNum method

 * @return int This returns sum of numA and numB.

 */

 public int addNum(int numA, int numB) { ... }

 /**

 * This is the main method which makes use of addNum method.

 * @param args Unused.

 * @return Nothing.

 * @exception IOException On input error.

 * @see IOException

 */

 public static void main(String args[]) throws IOException { ... }

JAVAD0C. ANNOTATIONS

@author

@deprecated

@exception

@param

@return

@see

@since

@throws

@version

...

JAVADOC

 javadoc

 tool that allows generation of HTML pages based on

javadoc annotations

 Example

 run in commned line: javadoc AddNum.java

 result: a structure similar with official Java API

documentation

JAVA UTIL STUFFS

 String class

 Display information on standard output

 Autoboxing

 Math class

 Random numbers generation

STRING CLASS

 java.lang.String

 stores charctes arrays

 inmutable objects

 the objects of the class cannot be modified

 see:

https://docs.oracle.com/javase/tutorial/essential/concurrency/

imstrat.html

 Exemple

 String s1 = null; //decleare a null string object

 Strig s2 = “Course Java”; //declares and initialize a string

object

IMMUTABLE PATTERN

 Don't provide "setter" methods — methods that modify fields or
objects referred to by fields.

 Make all fields final and private.

 Don't allow subclasses to override methods. The simplest way to do
this is to declare the class as final. A more sophisticated approach is
to make the constructor private and construct instances in factory
methods.

 If the instance fields include references to mutable objects, don't
allow those objects to be changed:

 Don't provide methods that modify the mutable objects.

 Don't share references to the mutable objects. Never store references
to external, mutable objects passed to the constructor; if necessary,
create copies, and store references to the copies. Similarly, create
copies of your internal mutable objects when necessary to avoid
returning the originals in your methods.

STRING CLASS

 Methods

 concatenation: “+”

 String s = “Course” + ' ' + “Java.”

 transformatios: toUpperCase(), toLowerCase()

 s.toLowerCase()

 comparations: compareTo(), equals(), equalsIgnoreCase()

 s.equalsIgnoreCase(“course java.”)

 search a string into a string: contains(), endsWith(),

indexOf(), lastIndexOf()

 operations: split(), replace(), substring()

 size: length()

DISPLAY TO STANDARD

OUTPUT

 non-formated

 System.out.print()
 System.out.print(“without new line at the end”);

 System.out.println()
 System.out.print(“with new line at the end”);

 formated

 System.out.println([format], [value list])
 System.out.printf("Integer : %d\n",15);

 System.out.printf("String: %s, integer: %d, float: %.6f", "Hello
World",89,9.231435);

 System.out.printf("%-12s%-12s%s\n","Column 1","Column
2","Column3");

 OBS: String can be formatted to be used latter
 String s = String.format("%-12.5f%.20f",

12.23429837482,9.10212023134);

AUTOBOXING

 Concept related to generics (templates in C)

 For each basic type there is a corresponding class

Basic Type Corresponding Class

char Characer

int Integer

float Float

double Double

boolean Boolean

byte Byte

long Long

short Short

AUTOBOXING

//before autoboxing

Integer iObject = Integer.valueOf(3);

int iPrimitive = iObject.intValue()

//after java5

Integer iObject = 3; //autobxing - primitive to wrapper

conversion

int iPrimitive = iObject; //unboxing - object to primitive

conversion

Each class that coresponds to a primitive type contains

static methods to transform String objects to primitive

types. ie. int i = Integer.parseInt(“123”);

MATHEMATIC OPERATIONS

 java.util.Math

 Static methods and constants

 Math.sqrt()

 Math.abs()

 Math.cons()

 Math.random()

 generates random numbers in [0,1)

 ...

 Math.PI

 Math.E

RANDOM NUMBERS

GENERATION

 Using Math class

 Math.random()

 generates uniform distributed numbers in [0,1)

 Using Random class

 java.util.Random

 In order to user Random class create an object of type

Random and call methods to generate random numbers

 Random r = new Random();

 Random class methods

 setSeed(long seed);

 nextInt() - [0, +2 147 483 647) (for 32 bytes)

 nextInt(value) - [0, value)

 nextDouble() - numbers in [0,1)

 nextBoolean()

NEXT COURSE

 Classes

 Objects

 Object class

 Acess control specifier

 fields

 methods

 classes

