
PROGRAMMING III

 OOP. JAVA LANGUAGE

COURSE 1

COURSE CONTENT

 OOP Concepts. Java Language

 Classes

 Comparing objects in Java

 Collections. Generics

 Graphical Interfaces. Swing

 Java IO

 JDBC - Java Database Connectivity

 Threads

[possible - IBM - Web Services. Soap. Rest]

ORGANIZE STUFFS

 Course

 Flavia Micota

 cab. 046B

 contact: flavia.micota@e-uvt.ro

 site: web.info.uvt.ro/~zflavia

 Laboratory

 Flavia Micota

 Monica Tirea

 cab. 050B

 contact: monica.tirea@e-uvt.ro

 Attendee

 Course

 random tests from subjects presented in current course

 Laboratory

 minimum 10 presences

ORGANIZE STUFF

 Mark

 Theoretical exam 50%

 Laboratory test after exam 30%

 Homework - 10%

 Attendee - 10%

 5% course tests

 5% laboratory activity

 Homework

 submit: http://elearning.e-uvt.ro/

 cut date: 2 weeks from the moment of announcement

COURSE 1. CONTENT

 Object Oriented Programming

 Java Language History

 Java Program Structure

 Java Language

PROGRAMMING

LANGUAGES

 Imperative (algorithmic) languages

 The program is a sequence of statements

 Uses variables to access emmory

 Types

 Procedural Languages

 Object Orieted languages

 Declarative (non-algorithmic) languages

 The progammer presents the problem, the way to solution it is

included in the language

 Types

 Functional (applicative) languages

 Logic languages

 Other languages

P
R

O
G

R
A

M
M

I
N

G

L
A

N
G

U
A

G
E

S

PROGRAMMING

PARADICSM

 Unstructured programming

 Procedural programming

 Modular programming

 Data abstractization

 Object oriented programming

 Generic programming (templates)

 Aspected oriented programing (AOP)

OBJECT ORIENTED

LANGUAGE

A language or technique is object-oriented if and only if it
directly supports

[Stroustrup, 1995]:

[1] Abstraction – providing some form of classes and objects

[2] Inheritance – providing the ability to build new
abstractions out of existing ones

[3] Runtime polymorphism – providing some form of runtime

binding.

OBJECT ORIENTED

LANGUAGE

 Objects

 Have a state that reflects by current characteristics and conditions
and a behaviour that describe the action that it cat execute

 Classes

 Groups objects with similar characteristics

 Data Encapsulation

 Hidding object data and behaviour

 Data Abstractization

 A simplification or a model of a compex concept, process or real
word object

 Inheritance

 Is a contract between a class and the outside world

 When a class implements an interface, it promises to provide the
behavior published by that interface

 Polymorphism

 The possibility to offer an interface that has different implementations
for different objects

OBJECT ORIENTED

LANGUAGE

 Objects

 Have a state that reflects by current characteristics and conditions
and a behaviour that describe the action that it cat execute

 Classes

 Groups objects with similar characteristics

 Data Encapsulation

 Hidding object data and behaviour

 Data Abstractization

 A simplification or a model of a compex concept, process or real
word object

 Inheritance

 Is a contract between a class and the outside world

 When a class implements an interface, it promises to provide the
behavior published by that interface

 Polymorphism

 The possibility to offer an interface that has different implementations
for different objects

JAVA PLATFORMS

 J2SE (Standard Edition)

 offers support for creating descktop applications and applets

 Contains the standard set of classes offered by Java

 J2ME (Micro Edition)

 offers support for programming on mobile devices

 J2EE (Enterprise edition)

 Offers support for complex aplications on web. It contains
standards for database acessing, servlets, beans, web services,
messages queues ...

 Site

 http://www.oracle.com/technetwork/java/index.html

JAVA LANGUAGE

EVOLUTION

IDE JAVA

 NetBeans

 Eclipse

 https://eclipse.org/

 IntelliJ

 BlueJ

 developed mainly for educational porpuse

JAVA APPLICATIONS

 Stand alone

 Contain main() method

 Compile

 javac fileName.java

 Execution

 java fileName

 Applets

 Inherates Applet or JApplet class

 Compile

 javac fileName.java

 Execution

 create a HTML page that contains
tag APPLET that refers to compiled
class

 appletviewer html.page or open
HTML page into a browser

 Web Start

 Servlets

 Inherates class HttpServlet

 Compile

 javac fileName.java

 Execution

 an WAR archive
deployed on a WEB
Server

 NOT object of this course

JAVA PROGRAM

STRUCTURE

[package identifier;]

[import class(es);]

[access specifiers] class/interface ClassName {

 //member attributes declaration

 // member methods declaration

}
If a class is declared to be public it

must be placed in a file with same

name like the class

All code (functions, variable

decrations) is included inside a java

class. It cann't exist code outside a

class.

FIRST EXAMPLE

File: Example.java

public class Example {

 public satic void main (String args[]) {

 System.out.println (“Hellow World!”);

 }

}

Compile

 javac Example.java => Example.class

Execution

 java Example

Output

 Hello World!

Starting poit of a desktop application

in Java.

The signature of the method cannot

be changed

The method println() that belong to

class out displays a text to standard

output

JAVA CODDING GUIDELINES

 Diffrent standards

 http://www.oracle.com/technetwork/java/codeconventions-

135099.html

 https://google.github.io/styleguide/javaguide.html

 https://www.securecoding.cert.org/confluence/display/java/

Java+Coding+Guidelines

JAVA CODDING GUIDELINES

 Packages

 the prefix of a unique package name is always written in all-
lowercase

 Classes

 should be nouns

 in mixed case with the first letter of each internal word capitalized

 Interfaces

 names should be capitalized like class names

 Methods

 should be verbs

 in mixed case with the first letter lowercase, with the first letter of
each internal word capitalized

 Variables

 should not start with '_'

 the name starts with lower case

 each word starts with upper case

 Constants

 should be uppercase with words seprated by underscores ('_')

JAVA KEYWORDS

Category Keyword Example

Primitive Types boolean boolean isopen = true;

byte byte i1 = -128;

char char c ='A';

short short i =10;

int int i = 10;

long long i = 7l;

long j = 1234567567;

float float i =3.4f;

double double i = 3.4;

JAVA KEYWORDS

Category Keyword Example

Control Flow for for(int i=0; i<10; i++){ ...}

do while do{ ... }while (i<10);

while while (true) { ... }

if if (a<3) { ...

} else if (a>5) { ...

} else { ... }
else

switch swich(i) {

 case “abc”: ...

 breack;

 default:

 ...

}

case

default

JAVA KEYWORDS

Category Keyword Example

Control flow break break label;

continue continue label;

return return i;

try

try{

 ...

 throw new Exception();

 ...

} catch (Exception e) {

 ...

} finally {

 ...

}

throw

catch

finally

throws void fct () throws Exception { ... }

JAVA KEYWORDS

Category Keyword Example

Modifier public public int i;

protected protected int i;

private private int i;

static static int i;

final final int i;

abstract abstract void fct() { ... }

synchronized synchronized int funct() { ... }

synchronized (obj) { .. }

native native int funct() { ... }

tansient transient int i;

volatile volatile int i;

JAVA KEYWORDS

Category Keyword Example

Classes class class A { ... }

interface interface A { ... }

extends class A extends B { ... }

implements class A implements B { ... }

package package ro.uvt.p3;

import import java.awt.*;

OBS: Some of the modifer keywords can be used together with classes

not just with class fields.

JAVA KEYWORDS

Category Keyword Example

Miscellaneous (true) boolean x = true;

(false) boolean x = false;

(null) Object obj = null;

void void fct() { ... }

this this.x = x;

new Object obj = new Object();

super super (“call base classs constructor”)

instanceof if (a instanceof String)

 String s = (String) a;

OPERATORS

Category Operator Description

Simple Assigment = Simple assigment operator

Aritmetic + Additive (also used for String

concatenation)

- Substraction

* Multiplication

/ Sivision

% Remainder

Unary + Indicates positive value

- Negates a value

++ Increment

-- Decrement

! Logical complement

OPERATORS

Category Operator Description

Equality and Relational == Equal to

!= Not equal to

> Greater then

>= Greater then or equal to

< Less then

<= Less then or equal to

Conditional && Conditional AND

|| Conditional OR

?: Ternary (if - then - else)

OPERATORS

Category Operator Description

Type comparation instanceof Simple assigment operator

Bitwise and Bit Shift ~ Unary bitwise complement

<< Signed left shift

>> Signed right shift

>>> Unsigned right shift

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise inclusive OR

COMMENTS

 Line comment

 //

 Block comment

 /* */

 Java Doc

 Generates

 class documentation

 methotds documentation

 Standard way to document java projects

 Java API - https://docs.oracle.com/javase/8/docs/api/

JAVADOC

Class

comments

/**

* <h1>Add Two Numbers!</h1>

* The AddNum program implements an application that

* simply adds two given integer numbers and Prints

* the output on the screen.

* <p>

* Note: Giving proper comments in your program makes it

more

* user friendly and it is assumed as a high quality code.

*

* @author Popescu Ion

* @version 1.0

* @since 2016-08-31

*/

public class AddNum {

...

}

JAVADOC

 Method comments

 Fields comments

 /**

 * This method is used to add two integers. This is

 * a the simplest form of a class method, just to

 * show the usage of various javadoc Tags.

 * @param numA This is the first paramter to addNum method

 * @param numB This is the second parameter to addNum method

 * @return int This returns sum of numA and numB.

 */

 public int addNum(int numA, int numB) { ... }

 /**

 * This is the main method which makes use of addNum method.

 * @param args Unused.

 * @return Nothing.

 * @exception IOException On input error.

 * @see IOException

 */

 public static void main(String args[]) throws IOException { ... }

JAVAD0C. ANNOTATIONS

@author

@deprecated

@exception

@param

@return

@see

@since

@throws

@version

...

JAVADOC

 javadoc

 tool that allows generation of HTML pages based on

javadoc annotations

 Example

 run in commned line: javadoc AddNum.java

 result: a structure similar with official Java API

documentation

JAVA UTIL STUFFS

 String class

 Display information on standard output

 Autoboxing

 Math class

 Random numbers generation

STRING CLASS

 java.lang.String

 stores charctes arrays

 inmutable objects

 the objects of the class cannot be modified

 see:

https://docs.oracle.com/javase/tutorial/essential/concurrency/

imstrat.html

 Exemple

 String s1 = null; //decleare a null string object

 Strig s2 = “Course Java”; //declares and initialize a string

object

IMMUTABLE PATTERN

 Don't provide "setter" methods — methods that modify fields or
objects referred to by fields.

 Make all fields final and private.

 Don't allow subclasses to override methods. The simplest way to do
this is to declare the class as final. A more sophisticated approach is
to make the constructor private and construct instances in factory
methods.

 If the instance fields include references to mutable objects, don't
allow those objects to be changed:

 Don't provide methods that modify the mutable objects.

 Don't share references to the mutable objects. Never store references
to external, mutable objects passed to the constructor; if necessary,
create copies, and store references to the copies. Similarly, create
copies of your internal mutable objects when necessary to avoid
returning the originals in your methods.

STRING CLASS

 Methods

 concatenation: “+”

 String s = “Course” + ' ' + “Java.”

 transformatios: toUpperCase(), toLowerCase()

 s.toLowerCase()

 comparations: compareTo(), equals(), equalsIgnoreCase()

 s.equalsIgnoreCase(“course java.”)

 search a string into a string: contains(), endsWith(),

indexOf(), lastIndexOf()

 operations: split(), replace(), substring()

 size: length()

DISPLAY TO STANDARD

OUTPUT

 non-formated

 System.out.print()
 System.out.print(“without new line at the end”);

 System.out.println()
 System.out.print(“with new line at the end”);

 formated

 System.out.println([format], [value list])
 System.out.printf("Integer : %d\n",15);

 System.out.printf("String: %s, integer: %d, float: %.6f", "Hello
World",89,9.231435);

 System.out.printf("%-12s%-12s%s\n","Column 1","Column
2","Column3");

 OBS: String can be formatted to be used latter
 String s = String.format("%-12.5f%.20f",

12.23429837482,9.10212023134);

AUTOBOXING

 Concept related to generics (templates in C)

 For each basic type there is a corresponding class

Basic Type Corresponding Class

char Characer

int Integer

float Float

double Double

boolean Boolean

byte Byte

long Long

short Short

AUTOBOXING

//before autoboxing

Integer iObject = Integer.valueOf(3);

int iPrimitive = iObject.intValue()

//after java5

Integer iObject = 3; //autobxing - primitive to wrapper

conversion

int iPrimitive = iObject; //unboxing - object to primitive

conversion

Each class that coresponds to a primitive type contains

static methods to transform String objects to primitive

types. ie. int i = Integer.parseInt(“123”);

MATHEMATIC OPERATIONS

 java.util.Math

 Static methods and constants

 Math.sqrt()

 Math.abs()

 Math.cons()

 Math.random()

 generates random numbers in [0,1)

 ...

 Math.PI

 Math.E

RANDOM NUMBERS

GENERATION

 Using Math class

 Math.random()

 generates uniform distributed numbers in [0,1)

 Using Random class

 java.util.Random

 In order to user Random class create an object of type

Random and call methods to generate random numbers

 Random r = new Random();

 Random class methods

 setSeed(long seed);

 nextInt() - [0, +2 147 483 647) (for 32 bytes)

 nextInt(value) - [0, value)

 nextDouble() - numbers in [0,1)

 nextBoolean()

NEXT COURSE

 Classes

 Objects

 Object class

 Acess control specifier

 fields

 methods

 classes

