Course 9

P rOg ra m m | n g | Introduction to

programming

What we talked about?

* Modules

* List Comprehension
* Generators

* Recursive Functions

* Files

What we talk today?

* Object Oriented Programming
* Classes

* Objects

Object Oriented Programming

* Python is an object oriented programming language

* Way?

* Fits a object oriented programming language definition

* Alanguage or a technique is object oriented if and only if it directly
supports [Stroustrup, 1995]

* Abstractization — providing some form of classes and objects
* Inheritance - providing the ability to build new abstractions out of existing ones
* Runtime polymorphism — provide some form of runtime binding

Object Oriented Programming

* Terminology
e Abstractization

* Possibility to add user defined data types (new abstractizations)
Inheritance

* providing the ability to build new abstractions out of existing ones
Polymorphism

* Process objects differently based on their data type
Classes

* Describe one or more objects
* A template for creating, or instantiating, specific objects within a program.

Objects

* A realization of the class

Objects

* Example on python objects
* "Hello" <- object of type a string
* [1, 2, 3, 4] <- object of type list
e {"Programming", "Course" } <- object of type set

* Each object is characterized by
* A unique identifier
* Atype
* Ainternal representation

* A set of operations that allows interaction with the information stored in the
object

What can you do with objects?

* Create new objects
* Manipulate objects

* Destroy objects
» explicitly using del or just “forget” about them

* python system will reclaim destroyed or inaccessible objects — called “garbage
collection”

What are objects?

* A realization of an abstract concept that incorporates

* An internal representation
* Through data attributes values

* An interface for interacting with objects
* Through methods (aka functions or procedures)
* Define behavior but hides implementation details

* How can be an object?
* UVT University

* The bank transaction that deposed 100 RON from mother account to child
account

Example

* Python lists

* How they are internally represented?
* Dynamic array => object attributes

* How you can manipulate them?
e Object methods
e L[i], L[i:j], +
 len(), min(), max(), del(L[i]),

* L.append(),L.extend(),L.count(),L.index(),L.insert (), L.pop ()
,L.remove(),L.reverse (), L.sort ()

Example

e Humans heads

* How many objects we have?

* Could we provide a description that
fits all heads?

* There is a type in python that proper
describe this type of objects?

* Image generated with
http://www.picassohead.com/create.html

Classes — Own Types

e Describe similar objects

* Define classes that involves
* Defining class name

* Defining class members
e Attributes
* Methods

e Use classes that involves
* Creating new instances (objects)
* Applying operations on objects

Make a distinction between

creating a class and using an
instance of the class

Define Your Own Type

cock
_ o0ie”
* Use the class keyword to define a new type AoV deﬁ’c‘““
.Ae(€
! = (\ame \aS° ﬂame d\S coﬂs‘de
e
€52 dave WP parel Com\t’ted ot

class Coordinate (object):

Jefinition #define class members here
C\ass

e Similar to def, indent code to indicate which statements are part of the class definition

* The word object means that Coordinate is a Python object and inherits all its
attributes (inheritance next lecture)

* Coordinate is a subclass of object
* object is asuperclass of Coordinate

What are class members?

e Data and methods that "belong" to the class

* Data members (aka class fields, class attributes)
* Data (variables) that describe the class
* In case of Coordinate could be the latitude and longitude of a point on the globe

* Methods (aka member functions)
e Allow to manipulate the data stored in the class
* Allow interaction with other objects

 Example
* Display the coordinate like a real value or in degree, minutes and seconds
* Calculate the distance between two coordinates

Defining How to Create an Instance of the
Class

* Before using the new class we have to define how to create an
instance of the object
* Use a special method called init to initialize class fields

e Inpython init is not a constructor ,\{\a\-ﬂet\‘
— —)
sed 0 an
ne 03 ue “\S‘aﬂc@ (efe o 0
' 1 d'md t\\a’t £ (S,Q
class Coordinate() : Ccyf a(ame’ﬁeY s
o AP eof? <
def init (self, X,/ V) : \“S‘aob\ec‘ \xse\a»o (O
XO . ne AT Sa\l . _)’(.es\
memod \)S: / self.latitude = X \W\we o ﬁ-\e\ds \a“(;\'c)ta yoe
o\ Y xanC TT——— 1xe S
NP e an g suft self.longitude = vy coord”

Define a Method for the Coordinate Class

class Coordinate () :
def 1nit (self, x, y):

self.latitude = x o1&k’

self.longitude = O
/ v
def distance(self, other): ////
x diff = self.latitude - otherilatitude
y diff = self.longitude - other.longiltude
return (x diff**2+4y diff**2)**0.5

How to Use the Method

Conventional Way (used by most OO

languages) Equivalent to

c = Coordinate (45, 45) c= Coordinate (45, 45)
zero = Coordinate (0, 0) zero = Coordinate (0, 0)
print (c.distance (zero)) print(

Coordinate.distance(c, zero))

A
O, @ /. ”; %, N
7y oy, e/, ey o
¢ Z I . ‘S A s Gy, 0
Se ¢ N S, ¢ Q. T x, O
%% @% 070//@ %) 78 Oo,b,, 'Or@& %e 24,
7,
%y s M e 7oz s, Moy
& Q é //7 e) 6 //)
) % c/. & (o) o
Q %, o Q c € SR Sq (04 o A
Oo’ 5 @C‘[

Printing Objects

>>> ¢ = Coordinate(3,4)
>>> print (c)
< main .Coordinate object at 0x7fa918510488>

* Uninformative print representation by default
* Definea str method for a class

* Python callsthe str method when used with print on your class
object o o
* Describe the way in which you want to see the details about an object

>>> print (c)
<3,4>

Printing Objects

class Coordinate() :
def 1nit (self, x, y):
self.latitude = x
self.longiltude = vy
def distance(self, other):
x diff = self.latitude - other.latitude
y diff = self.longitude - other.longitude
return (x diff**2+y diff**2)**0.5
def str (self):
////’return "<"+self.latitude+","+self.longitude+">"

Class user use str to convert an object to

Printing Objects string

. Developers implement repr in order to
>>> cl = Coordinate (3,4) offer a string representation for class

>>> c2 = Coordinate(3,4) objects

>>> 1 = [cl, c2]
>>> print (1)

[< mailin .Coordinate object at 0x10ebblfd0>,
< main .Coordinate object at 0x10ebbc0f0>]

* object. repr (self):calledbythe repr () built-in function and
by string conversions (reverse quotes) to compute the "official" string
representation of an object.

* object. str (self):calledbythe str () build-infunction and
by thbe print statement to compute the "informal" string representation of
an object.

Finding Information About Class Objects

. . «@d . qteé

e Can ask for the type of an object instance ; e Coordma

>>> ¢ = Coordinate(3,4) 0‘/?t //6 L

>>> print (c) pes of o‘o'\ec’,‘C

<3, 4> P

’ 1he

>>> print (type (c)) /

<class main .Coordinate RP

: — - 12
* This makes sense since Ord'\ﬂote *° ,‘0\0‘\60‘

>>> print (Coordinate) co Sawpeo

<class main .Coordinate> _ﬂedﬁﬁ

>>> print (type (Coordinate)) Acmﬂmﬂ

<type 'type'>

* Use isinstance() to check if an object is a Coordinate
>>> print (isinstance (c, Coordinate))
True

Special Operators

e +, -, ==, <, >, len(), print, and many others
https://docs.python.org/3/reference/datamodel.html#tbasic-customization

* Like print, can override these to work with your class

* Define them with double underscores before/after
* add (self, other)
__sub (self, other)
eq (self, other)
1t (self, other)
len (self)
__str (self)

e ... and others

Special Operators

* Operator overloading
* Allow classes to define their own behavior with respect to language operators

* Python approach to operator overloading

* Implement certain operations that are invoked by special syntax (such as
arithmetic operations or subscripting and slicing) by defining methods with
special names.

Special Operators - Example

* Create a new type to represent a number as a fraction

* Internal representation is two integers
* Numerator
* Denominator

* Interface a.k.a. methods a.k.a how to interact with Fraction

objects
e add, subtract
* print representation
e convert to a float

Public and Private Data

 All attributes of Coordinate class are public so it it possible to set them with
undesirable values
>>> ¢ = Coordinate(3,4)
>>> c.latitude = "a string"
>>> print (c) \ dist ‘

<'a string', 4> _ —

* We therefore need to protect the c.latitude and provide accessors to
this data

* Encapsulation or Data Hiding
e Accessors are "gettors" and "settors"

* Encapsulation is particularly important when other people use your class

Public and Private Data

* In Python anything with two leading underscores is "private"

* a, _my variable
* Still can be access by a Python trik
* Coordinate

. An\{thmg with one leading underscore is semi-private, and you should feel
gw ty accessing this data directly.

. Sometimes useful as an intermediate step to making data private
=>

INFORMATION HIDING — making class attributes not accessible directly by user in
order to not set them with undesirable values

GET/SET Methods

* Get "type" methods return the value of class attribute
* Set "type" methods put value in a class attribute

class Coordinate () :

def 1nit (self, x, y): t'\tude\'a\ue
self.set latitude (x) I i 1@
self. 1longitude =y vse NQCﬂbe
def get_latitude(self): o0
return self. latitude ‘htdm .
- - pesU® - rude de N
def set latitude(self, x): @“pmﬂgﬁmﬁu
0

1f x<-90 or x>90: / ysel @

raise ValueError "Latitude wvalues not wvalid"

efi//////”self.__latitude = X

GET/SET Methods

* Get "type" methods return the value of class attribute
* Set "type" methods put value in a class attribute
class Coordinate () :

def 1nit (self, x, y):

self.set latitude (x) A
self. longitude =y \N'\\\(ed“ef:o\)%h
def get latitude (self): (e Y02° ¢ aeio”
return self. latitude ‘Nﬁw““ﬁoﬁﬁdwo
el a('\’d\"\e et‘(\OdS

def set latitude(self, x):
1if x<-90 or x>90:
raise ValueError "Latitfude values not wvalid"

self. latitude = x

latitudine = property(get latitudine, set latitudine)

c = Coordonate (3, 4)
c.latitudine

Encapsulation

* One of the big benefits of classes is that they hide implementation details
from the user => encapsulation.

* A well designed class has methods that allow the user to get out all the
information they need out of it.

* This allows a user to concentrate on their code rather than on your code.

* This also frees you to change the internal implementation of the class
* Write to the Interface, not the the Implementation

* Makes code more modular, since you can change large parts of your classes without
affecting other parts of the program, so long as they only use your public function

Encapsulation

* To encode related data, routines and definitions in a class capsule

* The interface is the visible surface of the capsule

* The interface describes the essential characteristics of objects of the class
which are visible to the exterior world

* The implementation is hidden in the capsule

* The implementation hiding means that data can only be manipulated, that is
updated, within the class, but it does not mean hiding interface data

Class Conventions

* Class names start with upper case letters.
* |n most cases are nouns at singular number

e Class methods and instances start with lower case letters.

* Method definitions should have docstrings just like function
definitions.

* Classes should have docstrings just like modules have docstrings that
describe what the class does.

Advantages of OOP

* Bundle data into packages together with procedures that work on them
through well-defined interfaces

* Divide-and-conquer development
* implement and test behavior of each class separately
* increased modularity reduces complexity

* Classes make it easy to reuse code
* many Python modules define new classes
* each class has a separate environment (no collision on function names)

 inheritance allows subclasses to redefine or extend a selected subset of a superclass’
behavior

Bibliography

* https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-programming-
in-python-fall-2016/lecture-slides-code/

* http://www.cs.toronto.edu/~quellan/courses/summer11/csc108/lect
ures.shtml

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/
http://www.cs.toronto.edu/~quellan/courses/summer11/csc108/lectures.shtml

