
Programming I
Course 9
Introduction to
programming

What we talked about?

• Modules

• List Comprehension

• Generators

• Recursive Functions

• Files

What we talk today?

• Object Oriented Programming

• Classes

• Objects

Object Oriented Programming

• Python is an object oriented programming language

• Way?
• Fits a object oriented programming language definition

• A language or a technique is object oriented if and only if it directly
supports [Stroustrup, 1995]

• Abstractization – providing some form of classes and objects
• Inheritance - providing the ability to build new abstractions out of existing ones
• Runtime polymorphism – provide some form of runtime binding

Object Oriented Programming

• Terminology
• Abstractization

• Possibility to add user defined data types (new abstractizations)
• Inheritance

• providing the ability to build new abstractions out of existing ones
• Polymorphism

• Process objects differently based on their data type
• Classes

• Describe one or more objects
• A template for creating, or instantiating, specific objects within a program.

• Objects
• A realization of the class

Objects

• Example on python objects
• "Hello" <- object of type a string
• [1, 2, 3, 4] <- object of type list
• {"Programming", "Course" } <- object of type set

• Each object is characterized by
• A unique identifier
• A type
• A internal representation
• A set of operations that allows interaction with the information stored in the

object

What can you do with objects?

• Create new objects

• Manipulate objects

• Destroy objects
• explicitly using del or just “forget” about them
• python system will reclaim destroyed or inaccessible objects – called “garbage

collection”

What are objects?

• A realization of an abstract concept that incorporates
• An internal representation

• Through data attributes values

• An interface for interacting with objects
• Through methods (aka functions or procedures)
• Define behavior but hides implementation details

• How can be an object?
• UVT University
• The bank transaction that deposed 100 RON from mother account to child

account

Example

• Python lists
• How they are internally represented?

• Dynamic array => object attributes

• How you can manipulate them?
• Object methods
• L[i], L[i:j], +
• len(), min(), max(), del(L[i]),
• L.append(),L.extend(),L.count(),L.index(),L.insert(),L.pop()
,L.remove(),L.reverse(), L.sort()

Example

• Humans heads

• How many objects we have?

• Could we provide a description that
fits all heads?

• There is a type in python that proper
describe this type of objects?

• Image generated with
http://www.picassohead.com/create.html

Classes – Own Types

• Describe similar objects

• Define classes that involves
• Defining class name
• Defining class members

• Attributes
• Methods

• Use classes that involves
• Creating new instances (objects)
• Applying operations on objects

Make a distinction between
creating a class and using an

instance of the class

Define Your Own Type

• Use the class keyword to define a new type

class Coordinate (object):
#define class members here

• Similar to def, indent code to indicate which statements are part of the class definition

• The word object means that Coordinate is a Python object and inherits all its
attributes (inheritance next lecture)
• Coordinate is a subclass of object
• object is a superclass of Coordinate

Class definition

Class name

New data type name

Parent class name

Can be omitted and is considered by default object

What are class members?

• Data and methods that "belong" to the class

• Data members (aka class fields, class attributes)
• Data (variables) that describe the class
• In case of Coordinate could be the latitude and longitude of a point on the globe

• Methods (aka member functions)
• Allow to manipulate the data stored in the class
• Allow interaction with other objects
• Example

• Display the coordinate like a real value or in degree, minutes and seconds
• Calculate the distance between two coordinates

Defining How to Create an Instance of the
Class
• Before using the new class we have to define how to create an

instance of the object
• Use a special method called __init__ to initialize class fields
• In python __init__ is not a constructor

class Coordinate():
def __init__(self, x, y):

self.latitude = x
self.longitude = yA special method use to

initialize an instance

It is prefixed and suffixed

with double underscore

character.

The data used to initialize the

Coord
inate

instance

The fields (attributes) of

Coord
inates

data type

A parameter that refers to an

instance of a class, refers to

the object itself,

like this in Java or C++.

Define a Method for the Coordinate Class

class Coordinate():
def __init__(self, x, y):

self.latitude = x
self.longitude = y

def distance(self, other):
x_diff = self.latitude – other.latitude
y_diff = self.longitude – other.longitude
return (x_diff**2+y_diff**2)**0.5

Used to refer to any instance

Another method parameter

Dot notation to access data

How to Use the Method

Conventional Way (used by most OO
languages)
c = Coordinate(45, 45)
zero = Coordinate(0, 0)
print(c.distance(zero))

Equivalent to
c= Coordinate(45, 45)
zero = Coordinate(0, 0)
print(
Coordinate.distance(c, zero))

Object used to call the method

Coordinate class method

Parameter not including self

(self is implied to be c)

Class name

Coordinate class method

Parameters, including an object

to call the method on,

representing self

Printing Objects

>>> c = Coordinate(3,4)
>>> print(c)
<__main__.Coordinate object at 0x7fa918510488>

• Uninformative print representation by default
• Define a __str__ method for a class
• Python calls the __str__ method when used with print on your class

object
• Describe the way in which you want to see the details about an object

>>> print(c)
<3,4>

Printing Objects

class Coordinate():
def __init__(self, x, y):

self.latitude = x
self.longitude = y

def distance(self, other):
x_diff = self.latitude – other.latitude
y_diff = self.longitude – other.longitude
return (x_diff**2+y_diff**2)**0.5

def __str__(self):
return "<"+self.latitude+","+self.longitude+">"Special

method name

Printing Objects

>>> c1 = Coordinate(3,4)
>>> c2 = Coordinate(3,4)
>>> l = [c1, c2]
>>> print(l)
[<__main__.Coordinate object at 0x10ebb1fd0>,
<__main__.Coordinate object at 0x10ebbc0f0>]

• object.__repr__(self): called by the repr() built-in function and
by string conversions (reverse quotes) to compute the "official" string
representation of an object.
• object.__str__(self): called by the str() build-in function and

by the print statement to compute the "informal" string representation of
an object.

Class user use str to convert an object to
string

Developers implement repr in order to
offer a string representation for class
objects

Finding Information About Class Objects

• Can ask for the type of an object instance
>>> c = Coordinate(3,4)
>>> print(c)
<3, 4>
>>> print(type(c))
<class __main__.Coordinate>

• This makes sense since
>>> print(Coordinate)
<class __main__.Coordinate>
>>> print(type(Coordinate))
<type 'type'>

• Use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))
True

A Coordinate class is a type of object
A Coordinate is a class

The type of object c is a class Coordinate

Result of __s
tr__

 method call

Special Operators

• +, -, ==, <, >, len(), print, and many others
https://docs.python.org/3/reference/datamodel.html#basic-customization

• Like print, can override these to work with your class
• Define them with double underscores before/after

• __add__(self, other)
• __sub__(self, other)
• __eq__(self, other)
• __lt__(self, other)
• __len__(self)
• __str__(self)

• ... and others

Special Operators

• Operator overloading
• Allow classes to define their own behavior with respect to language operators

• Python approach to operator overloading
• Implement certain operations that are invoked by special syntax (such as

arithmetic operations or subscripting and slicing) by defining methods with
special names.

Special Operators - Example

• Create a new type to represent a number as a fraction
• Internal representation is two integers
• Numerator
• Denominator

• Interface a.k.a. methods a.k.a how to interact with Fraction
objects
• add, subtract
• print representation
• convert to a float

Public and Private Data

• All attributes of Coordinate class are public so it it possible to set them with
undesirable values
>>> c = Coordinate(3,4)
>>> c.latitude = "a string"
>>> print(c)
<'a string', 4>

• We therefore need to protect the c.latitude and provide accessors to
this data
• Encapsulation or Data Hiding
• Accessors are "gettors" and "settors"

• Encapsulation is particularly important when other people use your class

Break dista
nce function

Public and Private Data

• In Python anything with two leading underscores is "private"
• __a, __my_variable
• Still can be access by a Python trik

• Coordinate

• Anything with one leading underscore is semi-private, and you should feel
guilty accessing this data directly.
• _b
• Sometimes useful as an intermediate step to making data private

=>

INFORMATION HIDING – making class attributes not accessible directly by user in
order to not set them with undesirable values

GET/SET Methods

• Get "type" methods return the value of class attribute
• Set "type" methods put value in a class attribute
class Coordinate():

def __init__(self, x, y):
self.set_latitude(x)
self.__longitude = y

def get_latitude(self):
return self.__latitude

def set_latitude(self, x):
if x<-90 or x>90:

raise ValueError "Latitude values not valid"
self.__latitude = x

User can obtain latitu
de value

Assure that only approved values can be

set to latitu
de

User can set latitu
de value

Private attribute

GET/SET Methods

• Get "type" methods return the value of class attribute
• Set "type" methods put value in a class attribute
class Coordinate():

def __init__(self, x, y):
self.set_latitude(x)
self.__longitude = y

def get_latitude(self):
return self.__latitude

def set_latitude(self, x):
if x<-90 or x>90:

raise ValueError "Latitude values not valid"
self.__latitude = x

latitudine = property(get_latitudine, set_latitudine)
c = Coordonate(3, 4)
c.latitudine

Python feature that will redirect all

variable modifications action trough

set/get methods

Encapsulation

• One of the big benefits of classes is that they hide implementation details
from the user => encapsulation.

• A well designed class has methods that allow the user to get out all the
information they need out of it.
• This allows a user to concentrate on their code rather than on your code.

• This also frees you to change the internal implementation of the class
• Write to the Interface, not the the Implementation
• Makes code more modular, since you can change large parts of your classes without

affecting other parts of the program, so long as they only use your public function

Encapsulation

• To encode related data, routines and definitions in a class capsule

• The interface is the visible surface of the capsule
• The interface describes the essential characteristics of objects of the class

which are visible to the exterior world

• The implementation is hidden in the capsule
• The implementation hiding means that data can only be manipulated, that is

updated, within the class, but it does not mean hiding interface data

Class Conventions

• Class names start with upper case letters.
• In most cases are nouns at singular number

• Class methods and instances start with lower case letters.

• Method definitions should have docstrings just like function
definitions.

• Classes should have docstrings just like modules have docstrings that
describe what the class does.

Advantages of OOP

• Bundle data into packages together with procedures that work on them
through well-defined interfaces

• Divide-and-conquer development
• implement and test behavior of each class separately
• increased modularity reduces complexity

• Classes make it easy to reuse code
• many Python modules define new classes
• each class has a separate environment (no collision on function names)
• inheritance allows subclasses to redefine or extend a selected subset of a superclass’

behavior

Bibliography

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-programming-
in-python-fall-2016/lecture-slides-code/

• http://www.cs.toronto.edu/~quellan/courses/summer11/csc108/lect
ures.shtml

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/
http://www.cs.toronto.edu/~quellan/courses/summer11/csc108/lectures.shtml

