
Programming I
Course 7
Introduction to
programming

What we talked about?

• Testing
• User perspective
• Programmer perspective

• Simplest way – use assert

• Debugging
• Simplest way – use print

What we talk today?

• Modules

• List Comprehension

• Generators

• Recursive Functions

• Files

Modules

• Functions
• Use for …

• Modules
• User for …

• Group data & functions
• Group into a file

• Types
• Standard
• Custom modules (your own)

Modules. Import

• Default way
• import myModule
• To call a function use dot(.) to prefix function with module name

• var = myModule.foo()

• from <module> import <function>
• Not prefix each time the function with module name
• from myModule import foo
var = foo()
• from myModule import *
var = foo()

Import ONLY foo() function

from myModule

Import ALL functions from

myModule

Modules. Import

• Default way

• from <module> import <function>

• import <module> as <name>
• If a module has a long name can be replaced with a shortest name
• import myModule as mm
var = mm.foo()

Module Identification

• Where does Python looks for modules?
• Standard path

• A list of paths where all standards modules are placed
• PYTHONPATH
• sys.path

• Working directory
• The project root directory
• Our case

• The directory where the norebook is placed

Modules. Packages

• A way of structuring Python’s module namespace by using “dotted
module names”

Usage example

import pkg.mod1
import pkg.mod2

Find Information about Modules

• What functions does it offer?
• dir() – function

• Example
• import math
dir(math)

=>
['__doc__', '__name__', 'acos', 'asin', 'atan', 'atan2', 'ceil',
'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod',
'frexp', 'hypot', 'ldexp', 'log', 'log10', 'modf', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']

• print (math.__doc__)
print(math.sin.__doc__) Specific details about module/functions

__doc__ atribute: gives the documentation string or comment that

the programmer put (as you should put) at the head of his module

Modules – pyc Files

• Python compile module in order to speed up execution
• Result a pyc file
• "compile" - conversion to ‘byte code’.
• If the source code of the module is changed Python notice and will recompile

next time when the module is used

• The point is that the byte code in the .pyc module will run much
faster than if the module is interpreted every time.

• You don’t have to worry about any of this. Just ignore the .pyc files. If
you delete them, Python will re-create them when it needs to

What we talk today?

• Modules

• List Comprehension

• Generators

• Recursive Functions

• Files

List Comprehension

• How we create a matrix with n lines and n columns filled with 0?

• Solution 1
mat =[]
for i in range(n):

line = []
for j in range(n):

line.append(0)
mat.append(line)

• Solution 2
mat = [[0]**n for i in range(n)]

List comprehension

List Comprehension

• Allow you to create lists with a for loop with less code

• Part of functional programming in Python

• Examples
• comp_list = [x ** 2 for x in range(7) if x % 2 == 0] -> [4, 16, 36]

• nums = [1, 2, 3, 4, 5]
letters = ['A', 'B', 'C']
nums_letters = [[n, l] for n in nums for l in letters]

-> [[1, 'A'], [1, 'B'], [1, 'C'], [2, 'A'], [2, 'B'], [2, 'C'], [3, 'A'], [3, 'B'], [3, 'C'], [4, 'A'], [4, 'B'],
[4, 'C'], [5, 'A'], [5, 'B'], [5, 'C']]

List Comprehension

• Works with other data structures

• dict_comp = {x:chr(65+x) for x in range(1, 11)} -> {1:
'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', 9: 'J', 10: 'K'}

• set_comp = {x**3 for x in range(10) if x%2 == 0} ->
{0, 8, 64, 512, 216}

What we talk today?

• Modules

• List Comprehension

• Generators

• Recursive Functions

• Files

Generators

• Lets consider the following problem with the following
implementation
• Define a function that calculates the sum of first n numbers where n is a very

large number

def func(n):
S = 0
for i in range(n):

S += i
return S

• What does range function?

Generates a list of n numbers in memory

n a large number

=>
A LARGE PART OF MEMORY IS OCUPATED

Generators

• Usually when a function is called the program control is passed to the
function until the function terminates (it reaches the final statement, it
encounters return instruction or an exception is generated)

• Generators
• Allows creation of a function that behaves like an iterator on a sequence (list, set,

map, tuple)

• Iterator is a way to walk through a sequence using next() function in order
to obtain the next element from the sequence
• It is the way that is used by for loop in order to obtain the elements of a sequence

Generators

• Are functions that use yield keyword instead of return

• Yield allows the preservation of function variables state until a next
call on it is done
• If return instruction is used the values of the variables are destroyed and at

the next call are initialized again

• Syntax
yield <variable>

If <variable> is missing it the returned value is None

Generators

Initial function
def func(n):

S = 0
for i in range(n):

S += i
return S

Using generators
def generator(n):

i=0
while i <= n:

yield i
i += 1

def func(n):
S = 0
for i in generator(n):

S += i
return S

Constructs the hole list of

elements in memory

Obtain a new value each

time it is needed

Generators - Internals

def myGenerator(l):
total = 0
for n in l:

yield total
total += n

newGenerator = myGenerator([10,20,30])

print(next(newGenerator))
print(next(newGenerator))
print(next(newGenerator))

result

0
10
30

Generators - expressions

Using function
def generator():

for item in collection:
yield expression

Using expressions
genexpr = (expression for item in
collection)

even_squares = (x * x for x
in range(10) if x % 2 == 0)

Generators

• Generators are used to generate a series of values

• yield is like the return of generator functions

• The only other thing yield does is save the "state" of a generator function

• A generator is just a special type of iterator

• Like iterators, we can get the next value from a generator using next()
• for gets values by calling next() implicitly

Generators

• Less memory consumption
• Generators help to minimize memory consumption, especially when dealing

with large data sets, because a generator will only return one item at a time.

• Better performance and optimisation
• Generators are lazy in nature

• Only generate values when required to do so; unlike a normal iterator, where all values
are generated regardless of whether they will be used or not, generators only generate
the values needed.

• Program performing faster

What we talk today?

• Modules

• List Comprehension

• Generators

• Recursive Functions

• Files

Recursive Functions

• What is recursion?
• Process of repeating items in a self-similar way.

• Algorithmically: a way to design solutions to problems by divide-and-
conquer or decrease-and-conquer
• reduce a problem to simpler versions of the same problem

• Semantically: a programming technique where a function calls itself
• in programming, goal is to NOT have infinite recursion
• must have 1 or more base cases that are easy to solve
• must solve the same problem on some other input with the goal of simplifying the

larger problem input

Recursion

• Consider the following problem
• Calculate factorial for a number n

• How we can write n!

• n! = 1*2*…*n

• n! = n * (n-1)!

Recursion

ITERARIVE SOLUTION
def fact1(n):

f = 1
i = 1
while i <= n:

f = f * i
i = i + 1

return f

RECURSIVE SOLUTION
def fact2(n):

if n == 1:
return 1

else:
return n* fact2(n-1)

Using loops:

for or while

Base case

Recursive call

Recursion – What happens for n=5?

ITERARIVE SOLUTION
def fact1(n):

f = 1
i = 1
while i <= n:

f = f * i
i = i + 1

return f

RECURSIVE SOLUTION
def fact2(n):

if n == 1:
return 1

else:
return n* fact2(n-1)

f 1 2 6 24 120 fact2(5) fact2(4) fact2(3) fact2(2) fact2(1)
CallCallCall Call

return 1return 2return 6return 18return 120

Recursivon – What happens for n=5?

ITERARIVE SOLUTION
• More efficient from

computer POV

RECURSIVE SOLUTION
• Easiest to implement for programmers
• Not efficient
• Because – function call stack

f 1 2 6 24 120 fact2(5) fact2(4) fact2(3) fact2(2) fact2(1)
CallCallCall Call

return 1return 2return 6return 18return 120

↑ Function local variables

↑ Function parameters

↑Function call

Function call stack

• each recursive call to a function creates its own scope/environment

• bindings of variables in a scope are not changed by recursive call

• flow of control passes back to previous scope once function call
returns value

Story … Fibonaccy numbers

• Leonardo of Pisa (aka Fibonacci) modeled the following challenge
• Newborn pair of rabbits (one female, one male) are put in a pen

• Rabbits mate at age of one month

• Rabbits have a one month gestaSon period

• Assume rabbits never die, that female always produces one new pair (one
male, one female) every month from its second month on.

• How many female rabbits are there at the end of one year?

Recursion – Recursive Solution

• Recursive step
• think how to reduce problem to a

simpler/ smaller version of same
problem

• Base case
• keep reducing problem until reach

a simple case that can be solved
directly

• Fibonaccy numbers
1 1 2 3 5 8 13 …

• Recursive step
• Fn = Fn-1 + Fn-2

• Base case
• F1 = 1
• F2 = 1

What we talk today?

• Modules

• List Comprehension

• Generators

• Recursive Functions

• Files

Files

• A file is a sequence of data stored in secondary memory (usually on a
physical environment: magnetic disk, SSD, etc)

• Can contain any data type
• Easy to read: text
• Hard to read: binary (e.g. open an image file into a text editor)

• Files assures persistence (as long the physical support allows this)

• Files allows the possibility to work with big data
• Not dependent of principal memory dimmension

What is a file system?

• A hierarchical structure that organize and allows the file access (a

logical data grouping)

• Managed by operating system

• Physical support, offers through operating system an linear

abstraction of it, in shape of blocks

• Blocks – a sequence of octets without any other "exposed" organization form

• The operating system through file system offers a view of the octets

sequence

1 2 3 … n

What is a file system?

• A hierarchical structure that organize and allows the file access (a
logical data grouping)
• Manage the data distribution on physical device (the data are not

necessary sequential but the file system offers a "sequential view" of
them

Directory: /

Directory: P1Directory: Personal

File: Avengers.mpg File: buget.xls Directory: Presentations File: laboratory1.py

What is a file system?

• This structure is exposed to the applications by operating system
through VFS(Virtual File System)
• Hides the implementation details and allows to concentrate on the

file content

Directory: /

Directory: P1Directory: Personal

File: Avengers.mpg File: buget.xls Directory: Presentations File: laboratory1.py

More details at Operating
Sytems course

What is a file system?

• Base elements
• Files – usually an atomically unit (does not have divisions from operating

system POV)
• Directories – a collection of files and directories

• Offers operation for files and directory (paths) management
Directory: /

Directory: P1Directory: Personal

File: Avengers.mpg File: buget.xls Directory: Presentations File: laboratory1.py

Operations Offered by File System

• File system (files & directories) management

• Creation: create (create file), mkdir (create directory)

• Removal: remove/unlink (delete object)

• Rename/move: rename (object rename)

• Objects are identified by a

• Name

• Path inside the file system

• Example

• `/Users/fmicota/Documents/note-p1.csv`

• The character '/' is used to separate the path.

• Windows uses '\' but also accept '/'

Path Name

File operations

• Create
• The operation of file creation, allocates necessary resources in file system

• Open
• The operation of file opening and associate a logic identifier to the file ("file handler")

• Read
• The operation of transfer of the data from the file (storage device) in principal memory of

processing unit
• Write

• The operation of transfer of data from principal memory to the file (storage device)
• Seek

• Positioning the file pointer to the place where data are read/write
• Close

• The synchronization of all data in file and resource release

File Operations in Python - open

• Creation and opening a file
• fisier = open("/tmp/file.txt", "r")

• Syntax
• Open (path, open_type)

The path were the

file is located
The type of operations

(read/write/append) that can be

done on the file

File Operations in Python

• Syntax
• open (path, open_type)

r Opens a file for read operation.
Does not create the file.
It is the default value.

w Opens a file for write operation.
If the file exist it is truncated (deletes its
content), otherwise it creates a new empty file.

r+ Opens a file for read/write operations.
Does not create the file.
The file curssor is placed at the strat of the file.

w+ Opens a file for read/write operation.
If the file exist it is truncated (deletes its
content), otherwise it creates a new empty file.

a Opens a file for write operation.
It creates the file, if the file does not exist.
The file curssor is placed at the end of the file.

a+ Opens a file for write operation.
If the file does not exist a new empty file is
created.
The file curssor is placed at the end of the file.

File Operations in Python

• What is a file curssor?
• A identifier that tells the position in the file where the operations of

read/write start

A N A H A S R E EPPAD L S .
0 1 2 3 4 5 6 7 8 9 151413121110 16 17 18

Content

Index

Curssor: 3

• In the example the operation starts at index 3.
• The file index starts with 0
• The current value of the curssor can be found with tell() function

File Operations in Python - close

• close() method is used to close a file object obtained by using open()
function

• Example
file = open("example.txt, "w+")
file.close()

• Close operation assures that all data are written on the disk
• Sometimes the written data are stored into a buffer zone that is not flushed until the

file is closed (some modification in file are not visible)

• If the file is closed no operation is possible on it

File Operations in Python - read

• read() method is used to 'read' data from a file object obtained by using
open() function

• Syntax
• read(size=-1)

• read() – reads and returns 'size' characters (if 'size' < file length then it
return as much characters it could read)
• If 'size'==-1 then it reads the hole file
• The function returns the read characters like s string
• The read operation is relative to file cursor

File Operations in Python - read

• Text files

• readline(size=-1)
• Reads a characters until it reaches new line character into a file, the number of

characters read from a line can be limited by the 'size' argument

• readlines(hint=-1)
• Reads multiple lines from a file, the number of lines is limited by 'hint' argument

File Operations in Python – write

• write() method is used to 'write' data to a file object obtained by using
open() function

• Syntax
• write(text)

• The function writes the string 'text' into a file
• It returns the number of written characters in the file
• The write operation overwrites the file content
• If the end of the file is reached the file is resized in order to store all data

File Operations in Python - seek

• seek() method is used to seek data in a file object obtained by using open()
function

• Syntax
• seek(cookie, whence=0)

• The function moves the cursor at the position specified by argument
'cookie' (also known like offset)
• The value of argument 'whence' is

• 0 – start of the file, 'cookie' can have a positive value (move forward)
• 1 – current position of cursor in file, 'cookie' can have a positive value (move

forward) or negative value (move backward)
• 2 – end of the file , 'cookie' can have a negative value (move backward).

File Operations in Python - truncate

• truncate() method is used to 'truncate' the data from a file object
obtained by using open() function

• Syntax
• truncate(pos=None)

• The function truncates the file until 'pos' position in file (remove the
data after 'pos' position)
• The 'pos' argument is relative to file beginning, if it is missing the

current cursor position is used to truncate the file

File Operations in Python - Example

try:
f = open("fisier.txt", "w+")
sir = f.read()
sir = sir.upper()
f.seek()
f.write(sir)

finally:
f.close()

Close the file -> the modifications

are flushed on disk

Opens a file for read/write

operations

Read the data from the disk and

load into the memory

Goes the the beginning of the file

and replace the content of the file

with the uppercase text.

File Operations in Python - with

• 'try:…finally:…' block can be replaced 'with' with instruction, that
assures that the close operation is executed each time

with open("fisier.txt", "w+") as f:
sir = f.read()
sir = sir.upper()
f.seek()
f.write(sir)

Binary Files

• Python offers support for binary files ("non-text file")

• Opening
• Similarly with text files, adding b at "open_type" argument
• open ("a.dat", "rb")

• All operation except readline() and readlines() are available for binary files

• The functions read/write return/receive objects of type 'bytes' not strings

bytes and bytearray Datatype

• bytes datatype is used to represent a immutable sequence of octets
• bytearray is used to represent a mutable sequence of octets

• Conversion from string to byte
• b=bytes("a text", "utf8")

• Conversion from byte to string
• decode(encoding)

Utf8 is a encoding convention for

characters, other conventions are

ASCII, UTF16, ISO-8859-1

'Encoding' is a codification, if the conversion

is not possible a UnicodeD
ecodeErr

or is

raised

Semistructured files

• Again text file ..

• Semitructured fies
• Files that follow a structure

• Example
• Comma Separated Values (CSV)
• JavaScript Object Notation (JSON)
• eXtensible Markup Language (XML)

Name; mark; year

Poescu Ion; 10; 2

Vasilescu Vasile; 9; 1

[{'name':'Popescu Ion','mark':10,'year':2},

{'name':Vasilescu Vasile','mark':9,'year':1}]

<students>

<student name="Popescu Ion"><mark>10</mark><year>2</year></student>

<student name="Vasilescu Vasile"><mark>9</mark><year>1</year></student>

</students>

CSV

• A CSV file (Comma Separated Values file) is a type of plain text file that uses
specific structuring to arrange tabular data.

• Because it’s a plain text file, it can contain only actual text data—in other words,
printable ASCII or Unicode characters.

• Example
Name; mark; year
Poescu Ion; 10; 2
Vasilescu Vasile; 9; 1

• Python supports CSV natively
• import csv

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode

CSV

• Load data from CSV – file

with open('student.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=';')
line_count = 0
for row in csv_reader:

if line_count == 0:
print('Column names are {}'.format(", ".join(row)))
line_count += 1

else:
print('\tStudent {} in year {} has the mark {}.'.format(row[0],row[2],row[1]))
line_count += 1

print(f'Processed {line_count} lines.')

CSV

• Store data from CSV – file

import csv
lst = [['Name', 'Age', "Passion"], \

['Maria', 20, 'drawing'], \
['Jon', 19, 'computers']]

with open('student_out.csv', 'w') as csv_file:
csv_writer = csv.writer(csv_file, delimiter=';')

for row in lst:
csv_writer.writerow(row)

JSON

• Format for
• exchanging information (WEB),
• Information storage (database)

• Readable by anyone
• JSON supports primitive types, like strings and numbers, as well as nested lists and objects.

{ "firstName": "Jane",
"lastName": "Doe",
"hobbies": ["running", "sky diving", "singing"],
"age": 35,
"children": [

{ "firstName": "Alice", "age": 6 },
{ "firstName": "Bob", "age": 8 }]

}

JSON

• Python supports JSON natively
• import json

• json library
• LOAD JSON in a python dictionary

• json_data= '{ "firstName": "Jane", "lastName": "Doe",
"hobbies": ["running", "sky diving", "singing"]}'

• my_dict = json.loads(json_data)

• STORE python dictionary into a JSON format
• json.dumps(my_dictionary)
• json.dumps(my_dictionary, indent=4)
• json.dumps(my_dictionary, indent=4, sort_keys=True)

JSON

• Loading/Storing from/into a file

• Loading
with open("data_file.json", "r") as read_file:

data = json.load(read_file)

• Storing
with open('data_file.json', 'w') as outfile:

json.dump(data, outfile)

Bibligrapy

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-programming-
in-python-fall-2016/lecture-slides-code/

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/

