
Programming I
Course 6
Introduction to
programming

What we talked about?

• Modules

• Strings

• Regulate exceptions

What we will talk about?

• Testing

• Debugging

• Exceptions

• Assertions

QUALITY?

• You are making soup but bugs keep falling in from the ceiling. What
do you do?
• check soup for bugs

• testing
• keep lid closed

• defensive programming
• clean kitchen

• eliminate source of bugs

DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output pairs to

specification
• “It’s not working!”
• “How can I break my

program?”

DEBUGGING
• Study events leading up to an error
• “Why is it not working?”
• “How can I fix my program?”

Prepare Code for Testing and Debugging

• From the start, design code to ease this part

• Break program up into modules that can be tested and debugged
individually

• Document constraints on modules
• What do you expect the input to be?
• What do you expect the output to be?

• Document assumptions behind code design

When are you ready to test? As programmer

• Ensure code runs
• Remove syntax errors
• Remove static semantic errors
• Python interpreter can usually find these for you

• Have a set of expected results
• An input set
• For each input, the expected output

• Think at some situations that could break your code

Let's look at a problem from user point of
view
• Requirments
• Adding two numbers of max two digits

• Expected behaviour
• The program will read the numbers echoing them and will print the sum.
• The user has to press ENTER after each number.

Step1 – Simple test

• Purpose
• familiarizing with the program

• How?
• Check minimal program stability: program often crashes right away
• Do not spend too much time
• Start the program and add 2 with 3

Result of Step 1

• Result
?2
?3
5
? ..

• Problems?
• Nothing shows what program this

is
• No onscreen instructions
• How to stop the program?
• Numbers alignment

• Actions
• Create problem reports
• One problem per report

Report #

• Report type (coding, design,
suggestion, documentation,
hardware, query)

• Severity (fatal/serious/minor)
• Problem summary
• Is reproducible?
• Problem description
• Suggested fix (optional)
• Reported by
• Date

Step 2 – What else need testing?

• Valid inputs using all digits:

• 99+99

• -99+ -99

• 99+-14

• -38+99

• 56+99

• 9+9

• 0+0

• 0+23

• -78+0

• Etc.

Boundary conditions

• Classes of tests:

• if the same result is expected from two tests, test only

one of them

• Tests the variant most likely to fail

• look at the boundaries of a class

• Finding boundary conditions

• no magic way, use experience

• Programming boundaries (from program listing) vs. testing

boundaries (user perspective)

• Test both sides of a boundary

Next Steps
Step 4: Exploring invalid cases

• Switching from formal to informal tests

• The program significantly crashed therefore
switch to informal tests

• Keep testing with invalid cases

• No formality needed as the program may
have to be redesigned

• But always write down the results

Step 5: Summarize the program’s
behavior
• For tester’s use

• Helps thinking about the program in order to
elaborate a testing strategy later

• Identify new things like new boundary conditions

• Ex:
• The communication style of the program is terse
• The program does not deal with negative

numbers
• The program accepts any char as a valid input

until <Enter>
• The program does not check if some number is

entered before <Enter>

Failure causes

• Partial failure is inevitable

• Goal: prevent complete failure

• Structure your code to be reliable and understandable

• Some failure causes

• Misuse of your code

• Precondition violation

• Errors in your code

• Bugs, representation exposure, many more

• Unpredictable external problems

• Out of memory

• Missing file

• Memory corruption

• How would you categorize these?
• Failure of a subcomponent

• No return value (e.g., list element not found, division by zero)

Classes of Tests

• Unit testing
• validate each piece of program
• testing each function separately

• Regression testing
• add test for bugs as you find them
• catch reintroduced errors that were previously fixed

• Integration testing
• does overall program work?
• tend to rush to do this

Testing Approaches

• Intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints
Returns True if y is less than x, else False """
• can you come up with some natural partitions?

• If no natural partitions, might do random testing
• probability that code is correct increases with more tests
• better options below

• Black box testing
• explore paths through specification
• User

• Glass/white box testing
• explore paths through code
• programmer

Black Box Testing

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0
Returns res such that x-eps <= res*res <= x+eps """

• Designed without looking at the code
• can be done by someone other than the implementer to avoid some implementer biases

• Testing can be reused if implementation changes

• Paths through specification
• build test cases in different natural space partitions
• also consider boundary conditions (empty lists, singleton list, large numbers, small numbers)

Black Box Testing

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0
Returns res such that x-eps <= res*res <= x+eps """

CASE x eps
boundary 0 0.0001
perfect square 25 0.0001
less than 1 0.25 0.0001
irratinal sqare root 2 0.0001
extremes 2 1.0/2.0**64.0
extremes 1.0/2.0**64.0 1.0/2.0**64.0
extremes 2.0**64.0 1.0/2.0**64.0
extremes 1.0/2.0**64.0 2.0**64.0
extremes 2.0**64.0 2.0**64.0

White Box Testing

• Use code directly to guide design of test cases

• Called path-complete if every potential path through code is tested at least once

• What are some drawbacks of this type of testing?
• can go through loops arbitrarily many times
• missing paths

• Guidelines
• branches
• for loops
• while loops

Test all branches of a conditional statement

Test:
- Loop body not entered

- Loop body executed once

- Loop body executed multiple times

Glass Box Testing

def abs(x):
""" Assumes x is an int
Returns x if x>=0 and –x otherwise """
if x < -1:

return –x
else:

return x

• a path-complete test suite could miss a bug
• path-complete test suite: 2 and -2
• but abs(-1) incorrectly returns -1
• should still test boundary cases

Debugging

• steep learning curve

• goal is to have a bug-free program

• Tools
• built in to IDLE and Anaconda
• Python Tutor
• print statement (loogers)
• use your brain, be systematic in your hunt

Print Statements

• Good way to test hypothesis

• When to print
• Enter function
• Parameters
• Function results

• Use bisection method
• put print halfway in code
• decide where bug may be depending on values

Debugging Steps

• Study program code
• don’t ask what is wrong
• ask how did I get the unexpected result
• is it part of a family?

• Scientific method
• study available data
• form hypothesis
• repeatable experiments
• pick simplest input to test with

Error Messages - Easy

• Trying to access beyond the limits of a list
test = [1,2,3]
then test[4] à IndexError

• Trying to convert an inappropriate type
int(test) à TypeError

• Referencing a non-existent variable
a à NameError

• Mixing data types without appropriate coercion
'3'/4 à TypeError

• Forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print(a) à SyntaxError

Logic Errors - Hard

• Think before writing new code

• Draw pictures, take a break

• Explain the code to
• someone else
• a rubber ducky

DON'T DO
• Write entire program
• Test entire program
• Debug entire program

• Change code
• Remember where bug was
• Test code
• Forget where bug was or what change

you made
• Panic

• Write a function
• Test the function, debug the function
• Write a function
• Test the function, debug the function
• *** Do integration testing ***

• Backup code
• Change code
• Write down potential bug in a comment
• Test code
• Compare new version with old version

Exceptions and Assersions

• What happens when procedure execution hits an unexpected condition?
• Get an exception... to what was expected

• Trying to access beyond the limits of a list
test = [1,2,3]
then test[4] à IndexError

• Trying to convert an inappropriate type
int(test) à TypeError

• Referencing a non-existent variable
a à NameError

• Mixing data types without appropriate coercion
'3'/4 à TypeError

• Forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print(a) à SyntaxError

Other Types of Errors

• Already seen common error types:
• SyntaxError: Python can’t parse program
• NameError: local or global name not found
• AttributeError: attribute reference fails
• TypeError: operand doesn’t have correct type
• ValueError: operand type okay, but value is illegal
• IOError: IO system reports malfunction (e.g. file not found)

Dealing with Exceptions

• Python code can provide handlers for exceptions
try:

a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

except:
print("Bug in user input.")

• Exceptions raised by any statement in body of try are handled by the
except statement and execution continues with the body of the except
statement

Handling Specific Exceptions

• Have separate except clauses to deal with a particular type of exception
try:

a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))
print("a/b = ", a/b)
print("a+b = ", a+b) except

except ValueError:
print("Could not convert to a number.")

except ZeroDivisionError:
print("Can't divide by zero")

except:
print("Something went very wrong.")

Only execute if this

errors come up

For all others errors

Other try clauses

• else:
• body of this is executed when execution of associated try body completes

with no exceptions

• finally:
• body of this is always executed after try, else and except clauses, even if they

raised another error or executed a break, continue or return
• useful for clean-up code that should be run no matter what else happened

(e.g. close a file)

What to do with exceptions?

• what to do when encounter an error?
• Fail silently
• substitute default values or just continue • bad idea! user gets no warning

• Return an “error” value
• what value to choose?
• complicates code having to check for a special value

• Stop execution, signal error condition
• in Python: raise an exception
raise Exception("descriptive string")

Exceptions as Control Flow

• don’t return special values when an error occurred and then check
whether ‘error value’ was returned
• instead, raise an exception when unable to produce a result consistent with

function’s specification

raise <exceptionName>(<arguments>)

raise ValueError("something is wrong")

Keyword

Name of the error you

want to raise Optional by typically a

string with a message

Example

def get_ratios(L1, L2):
""" Assumes: L1 and L2 are lists of equal length of numbers
Returns: a list containing L1[i]/L2[i] """
ratios = []
for index in range(len(L1)):

try:
ratios.append(L1[index]/L2[index])

except ZeroDivisionError:
ratios.append(float('nan')) #nan = not a number

except:
raise ValueError('get_rations called with bad arg')

return ratios

Manage flow of

program by raising own

error

Example of exceptions

• assume we are given a class list for a subject: each entry is a list of two
parts
• a list of first and last name for a student
• a list of grades on assignments

test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

• create a new class list, with name, grades, and an average

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],
[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

Example

def get_stats(class_list):
new_stats = []

for elt in class_list:
new_stats.append([elt[0], elt[1], avg(elt[1])])

return new_stats

def avg(grades):

return sum(grades)/len(grades)

[[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

Error if no Grade for a Student

• if one or more students don’t have any grades, get an error

test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]],
[['bruce', 'wayne'], [10.0, 8.0, 74.0]],
[['captain', 'america'], [8.0,10.0,96.0]],
[['deadpool'], []]]

• get ZeroDivisionError: float division by zero because try to
return sum(grades)/len(grades)

Length is 0

Solution: Flag the Error by Printing a message

• decide to notify that something went wrong with a msg
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')

• running on some test data gives
worning: no gardes data
[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666],
[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334],
[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],
[['deadpool'], [], None]]

Flagged the error

Because avg did not

return anything in the

except

Solution: Change the Policy
• decide to notify that something went wrong with a msg
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')
return 0.0

• running on some test data gives
worning: no gardes data
[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666],
[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334],
[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],
[['deadpool'], [], 0.0]]

Still flag the error

Now avg returns 0

Assertions

• Want to be sure that assumptions on state of computation are as
expected

• Use an assert statement to raise an AssertionError exception if
assumptions not met

• An example of good defensive programming

Example

def avg(grades):
assert len(grades) != 0, 'no grades data'
return sum(grades)/len(grades)

• raises an AssertionError if it is given an empty list for grades

• otherwise runs ok

Function ends

immediately if assertion

not met

Assertions as Defensive Programming

• assertions don’t allow a programmer to control response to
unexpected conditions
• ensure that execution halts whenever an expected condition is not

met
• typically used to check inputs to functions, but can be used anywhere
• can be used to check outputs of a function to avoid propagating bad

values
• can make it easier to locate a source of a bug

Assertions as Defensive Programming

• Check
• Precondition
• Postcondition
• representation invariant
• other properties that you know to be true

• Check statically via reasoning (& tools)
• Check dynamically at run time via assertions
assert index >= 0;
assert size % 2 == 0, “Bad size for list”
• Write the assertions as you write the code

Where to Use Assertions?

• Goal is to spot bugs as soon as introduced and make clear where they
happened
• Use as a supplement to testing
• Raise exceptions if users supplies bad data input
• Use assertions to
• check types of arguments or values
• check that invariants on data structures are met
• check constraints on return values
• check for violations of constraints on procedure (e.g. no duplicates in a list)

Exceptions in Review

• Use an exception when
• Used in a broad or unpredictable context
• Checking the condition is feasible

• Use a precondition when
• Checking would be prohibitive

• E.g., requiring that a list be sorted
• Used in a narrow context in which calls can be checked

• Avoid preconditions because
• Caller may violate precondition
• Program can fail in an uninformative or dangerous way
• Want program to fail as early as possible

• How do preconditions and exceptions differ, for the client?

Exceptions in Review

• Handle exceptions sooner rather than later

• Not all exceptions are errors
• A program structuring mechanism with non-local jumps [bad practice]
• Used for exceptional (unpredictable) circumstances

Python Debugger - pdb

• import pdb; pdb.set_trace()

• Commands
• s(tep)Execute the current line, stop at the first possible occasion (either in a function

that is called or on the next line in the current function).

• n(ext)Continue execution until the next line in the current function is reached or it
returns.

• r(eturn)Continue execution until the current function returns.

• c(ont(inue))Continue execution, only stop when a breakpoint is encountered.

Bibliography

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-programming-
in-python-fall-2016/lecture-slides-code/

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/

