
Programming 1
Introduction in 
programming
Course 4



What we talked about?

• Loops
• How to repeate a sequence of code

• Data Structers
• List
• Tuples
• Sets
• Dictionarys



What we will talk about?

• Functions
• Function definition
• Functions call

• Variables
• Local variables
• Global variables



Let us consider the following example

A Flashlight

Two perspectives

• How is functioning?
• What components contains?
• How this components interact?

• How can be used?
• What to know in order to use it?
• How to start/stop?

Decomposition

Abstractisation



Decomposition

• Idea
• Multiple components work together in order to obtain a result (ex. A 

functional flashlight) 

• Between the components exits clear interaction (ex. light is on after 
the switcher close the circuit with the battery)

• This concept is also available when we write



Abstractisation

• Idea
• it is not necessary to know how a flashlight is functioning in order to use it

• A flashlight is a "black box", we do not know how is functioning

• We know the "interface" of the flashlight: how to turn on/off

• How is this "black box" functioning when we push the turn on 
button?



Apply this principles 
when you programming!



Add STRUCTURE Using DECOMPOSITION

• In programming, divide code into modules
• are self-contained
• used to break up code
• intended to be reusable 
• keep code organized 
• keep code coherent 

• This lecture, achieve decomposition with functions 

• Next classes, achieve decomposition with classes , modules in Python 
and packages



Hide DETAILS Using ABSTRACTIZATION

• In case of the flashlight example it is enough to have a minimal user 
manual in order to use, it is not necessary to have the scheme of the 
flashlight

• In programming, think of a piece of code as a black box 
• cannot see details
• do not need to see details
• do not want to see details 
• hide tedious coding details 

• Achieve abstraction with function specifications or docstrings 



Functions

• Rewrite pace of reusable code named functions

• Functions are not executed by a program when they are not called or 
invoked

• A function have the following characteristics
• has a name
• has parameters (0 or more)
• has a docstring (optional but recommended) 
• has a body
• returns something



How to write and call a function?

def is_even (i):
"""
Input: i, a `int` value
Return True if i is even or False if it is odd
""" 
print ("In is_even function")
return i%2 == 0

is_even (3)

Key word

Name Parameters

Or 
Arguments

Docst
rin

g

Functio
n

Body

Later, call the function and 

assign values to arguments



Function Body

def is_even (i):
"""
Input: i, a `int` value
Return True if i is even or False if it is odd
""" 
print (" In is_even function ")
return i%2 == 0

Key word

Statement

Expressio
n that is

 

evaluated

And 

Return type



Specifications/Docstring 

• Are a contract between implementer of the function and user 

• Assumptions
• conditions that must be met by users of function. Typically constraints on parameters, 

such as type, and sometimes acceptable ranges of values 

• Guarantees
• Conditions that must be met by function, provided that it has been called in way that 

satisfies assumptions 



Variable – Visibility domain

def f(x):
x = x + 1
print ("in f(x): x =", x)
return x

x = 3
z = f(x)

• Formal parameter gets bound to the value of actual parameter when 
function is called 
• New scope/frame/environment created when enter a function
• Scope is mapping of names to objects 

Form
al 

Parameter

Actu
al 

Parameter

Function
definition

Main Program: 
• Initialize variable x
• Call function f
• Assign the result returned by the

function to variable z



Memorie

Variable – Visibility Domain

Global Domain
• f 
• x 
• z

def f(x):
x = x + 1
print ("in f(x): x =", x)
return x

x = 3
z = f(x)

Cod

3

f Function Domain
• x 4



What happens if the fuction does not return 
any value?
• Python returns the value None, if no return given 

• Represents the absence of a value 

• None is a special constant in the language 

• None is used like NULL, void, or nil in other languages



Function as Functions Arguments

def a():
print ("In function a")

def b(y):
print ("In function b")
return y

def c():
print ("In function c")
return z()

print (a())
print (5+b(2))
print (c(a))

• Arguments can have any type, including functions



[Optional] Default Values for arguments 

• Remember range() function?

• How can we use it?
• range(10)
• range(1,10)
• range(1, 10, 2)

• How this function is defined?



[Optional] Default Values for arguments 

• Default values for a function’s arguments

• These arguments are optional when the function is called

def my_simple_range(start, stop, step=1):
l=[]
el = start
while el < stop:

l.append(el)
el = el + step

return l

print(my_simple_range(1,10))
print(my_simple_range(1,10,1))



[Optional] Lambda notations 

• Python’s lambda creates anonymous functions

f = lambda z: z * 42

f(7)

g = (lambda x,y: x+y)(2,3)

print(g)

• Only one expression in the lambda body; its value is always returned

• Python supports functional programming idioms: map, filter, closures, 

continuations, etc. 



[Optional] Lambda notation – map, reduce, 
filter
def add1(x): return x+1
def odd(x): return x%2 == 1
def add(x,y): return x + y

print(list(map(add1, [1,2,3,4])))
print(list(map(add,[1,2,3,4],[100,200,300,400])))
print(list(filter(odd, [1,2,3,4])))
import functools
functools.reduce(add, [1,2,3,4])

OUTPUT
[2, 3, 4, 5] 
[101, 202, 303, 404] 
[1, 3] 
10



Visibility domain

• All computer languages have scope rules

• Scope rules specify which variables can be seen

• Python: These rules can be summarized as LEGB: 
1. Local
2. Enclosing
3. Global
4. Built-in 

• The search order matters: first search Lo- cal, then Enclosing, Global, and
Built-in 

TOKE ONLY ABOUT:
• LOCAL 
• GLOBAL



Local Scope

• Always search Local Scope first

• Local Scope refers to names assigned in any way within a function, 
that are not declared as global 



Global Scope

• Global scope is searched after Local[, and Enclosed ]

• Global scope is simplest to understand

• A name declared at Global scope, is not enclosed in a function

x = 100
print(x)



Declaring Variables / Variables Scope

• A variable name must be defined before it is used

print(x)
x = 100

---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-15-5065468fbb19> in <module>() 

----> 1 print(x) 
2 x = 100

NameError: name 'x' is not defined



Local Again

• Local Scope: names assigned in a function
• Local is searched first

x = 99
y = 17
def fun(x):

y=100
print (x, y)

fun(77)
print (x, y)

Result?
77 100
99 17



Local Again

• Local Scope: names assigned in a function
• Local is searched first

x = 99
y = 17
def fun(x):

y=100
print (x, y)

fun(77)
print (x, y)

x Variable values
-------------------------------
99 <- global declaration
77 <- function call 
(function parameter 
hides global x name)
99 <- global declaration

Result?
77 100
99 17

y Variable values
--------------------------------
17 <- global declaration
100 <- function body 
declaration
17 <- global declaration



Keyword global

• A global variable can be declared in a function using the keyword 
global
• Caution: function has to be called in order to define the variable, 

otherwise the variable is never defined

def fun():
global x
x=100

fun()
print (x)


