
Programming I
Course 12
Introduction to
programming

What we talked about?

• Relation between classes
• Has a
• A kinf of
• Is a

• Inheritance

What we talk today?

• Object Oriented Analyze/Design/Programming

• How to represent classes?
• Code

• Graphical notation

• Informal notation

What to do when a problem is enounced?

• Identify problem
• Input
• Output

• How to identify?
• Modeling the problem

• What not to do?
• Rush to the code

Way not to rush to the code?

• Cannot design a solution if the requirements are not understood

• One cannot implement the design if the design is faulty.

• Analyze different alternatives to resolve the problem

• Critical ability to develop in OO is to think in terms of objects and to
artfully assign responsibilities to software objects.

What to do?

• Analysis
• Investigate the problem and the requirements.
• What is needed? Required functions? Investigate domain objects.
• The What's of a system.

• Design
• Conceptual solution that meets requirements.
• Not an implementation
• Avoid commonly understood functionality (constructors, set/get methods, …).
• The How's of the system

Formalize the previous discussions

• Object Oriented Analyze – OOA
• find and describe objects or concepts in the problem domain

• Object Oriented Design – OOD
• define how these software objects collaborate to meet the requirements.

• Attributes and methods.

• Object Oriented Programming – OOP
• Implementation

• Different OO languages

Object Oriented Analyze

• Goal
• To model the problem domain by developing an object oriented system

• Input
• Problem requirements
• Specifications (can include use case diagrams or other types of diagrams)

• Output
• Conceptual model
• Uses case
• Any other documentation

Object Oriented Analyze

• Does not take into account implementations details (database structure,
persistence model) this are described by OOD

• Graphical notations
• Coad, Yourdon, Rumbaugh, Booch, Firesmith, Embley, Kurtz, etc

• Unified Modeling Language (www.uml.org) (UML) – standard for OOA

• Tasks of OOA

• Identifying the objects

• Identifying relations between objects

• Define use cases

• Define user interface (UI)

Object Oriented Design

• Goal
• To define(refine) the objects, the object interaction and the documents identified at object

oriented analyze step

• Makes the transition from software architecture to software development

• Input
• OOA output (conceptual model, use case diagram, UI documentation, others documents)

• Output
• Class diagrams

• Describe classes (attributes & methods) and interaction between them (inheritance, dependence, association,
composition)

• Sequence diagrams
• Message flow (communication) between objects

Object Oriented Design

• Steps
1. Object definition: attributes, behavior, exposed services
2. Developing diagrams from conceptual model
3. Identify application framework

• Identify a set of library or classes in order to structure the application
• Reduce the developing time by reusage of implemented functionalities

4. Identify persistent objects/data (data that is stored)
5. Identification & definition of remote objects
6. Evaluation of OO languages and choosing the appropriate one
7. Evaluate OO design
8. Define testing strategies

• Unit testing, integrations test, regression testing, etc

How to do this?

•
Through e

xpe
rien

ce and co
mmon sense

•
Usin

g OOD p
rinc

iple
s, design patte

rns

Objects Attributes

• Finding attributes
• Use first person
• Problem analyze, address questions to client

• Identify attribute definition domain

• Identify the relation between attribute

• Example
• A person has like attributes height

• Should be positive and less than 3 meters

Structuring objects

• Generalization/specialization (identify hierarchies)
• Use inheritance to group common attributes and behavior
• The reunion of all specializations covers the hole generalization?
• The specializations are exclude each other
• Example

• Figure, Circle, Line

• Hole-part relations (has a)
• The hole does not inherit the behavior from the parts => the inheritance is

not applicable
• Example

• Line, Polygonal Line

Objects services

• Member functions
• Implicit services

• New instances creation, set/get methods

• Services associated with messages
• Identify messages sent to objects

• Services associated with objects relations
• Example: A polygon has multiple points => add/remove points from it

• Services associated with attributes
• Protect some attributes, real time synchronization

What we talk today?

• Object Oriented Analyze/Design/Programming

• How to represent classes?
• Code

• Graphical notation

• Informal notation

Graphical Representation of objects

• Most accepted standard
• UML (Unified Modeling Language)

• Types of diagrams
• Behavior – describe the behavior of the system or business process

• Interaction – more detailed diagrams for system behavior

• Structural diagrams – describe in detail the specifications that are transparent
at design step
• Class diagram
• Object diagrams

Class Diagrams

• Graphical representation of classes and class
relations

• Class is represented like a rectangle that has three
parts
• Class name
• Class attributes

Syntax: visibility attribute_name : attribute_type
• Class methods

Syntax: visibility method_name (parameter:parametr_type) :
return_value_type

Course

- Id : number
- Name : string
- credits number : integer

﹢ pass_ration() : number
﹢ course_attendence(id:student)

Private (-)

Public (+)

Protected (#)

Package (~)

The type does not have to be linked to the exact name of a programming language data type

Class Diagrams

• Relations
• Inheritance

• A bird is a kind of animal
• Graphical representation

• A arrow that points to super class
• Dependency

• Association /Aggregation

• Composition

Animal

Bird

Code

class Animal(object):
def __init__(self):

print("Animal")

class Bird(Animal):
def __init__(self):

Animal.__init__(self)
print("Bird")

Class Diagrams

• Relations
• Inheritance

• Dependency
• A Shop uses Card Payment
• Graphical representation

• A dashed line (can have a arrow
starting from the dependent class
to it)

• Association /Aggregation

• Composition

Shop CardPaiment

Code

class Shop(object):
def __init__(self):

print("Shop")
def pay_with_card(self, amount, banck,

card_id):
…
cp = CardPayment(bank, card_id)
cp.pay(amount)
…

class CardPayment(object):
def __init__(self):

print("Card payment")

Class Diagrams

• Relations
• Inheritance

• Dependency

• Association/Aggregation
• A Team has a list of Employee
• Graphical representation

• Fill line

• Composition

Team Employee

Code

class Employee(object):
def __init__(self, name):

print("Employee")

class Team(object):
def __init__(self):

print("Team")
self.list_employees = []

def addEmployee(self, emp):
self.list_employees.append(emp)

Team Employee

Class Diagrams

• Relations
• Inheritance

• Dependency

• Association/Aggregation

• Composition
• An Engine is a part of a Car
• Graphical representation

• Fill line

Code

class Engine(object):
def __init__(self, power, type):

print("Engine")
self.power = power
self.type = type

class Car(object):
def __init__(self, engine_power):

print("car")
self.egnine = Engine(engine_power,

"Electric")

Car Engine

