
Programming I
Course 10
Introduction to
programming

What we talked about?

• Object Oriented Programming

• Classes

• Objects

What we talk today?

• Relation between classes
• Has a
• A kinf of
• Is a

• Inheritance

Classes. Objects

• Abstractization
• Possibility to add user defined data types (new abstractizations)

• Classes
• Describe one or more objects
• A template for creating, or instantiating, specific objects within a program.

• Objects
• A realization of the class

Classes & Objects

Class Implementation
• implementing a new object type

with a class
• define the class
• define data attributes (WHAT IS

the object)
• define methods

(HOW TO use the object)

Class Usage
• using the new object type in

code
• create instances of the object

type
• do operations with them

Classes & Objects

Class Definition
• class name is the type class

Coordinate(object)
• class is defined generically

• use self to refer to some instance
while defining the class

• self is a parameter to methods in
class definition

• class defines data and methods
common across all instances

Class Instantiation
• instance is one specific object
coord = Coordinate(1,2)
• data attribute values vary between

instances
• c1 = Coordinate(1,2)
• c2 = Coordinate(3,4)
• c1 and c2 have different data

attribute values c1.latitude and
c2.latitude because they are
different objects

• instance has the structure of the
class

Objects

• Objects
• A unique identifier
• A type
• A internal representation
• A set of operations that allows interaction with the information stored in the

object

• INTERACT WITH EACH OTHERS

Objects

• Objects
• A unique identifier
• A type
• A internal representation
• A set of operations that allows interaction with the information stored in the

object

• INTERACT WITH EACH OTHERS
• A Bird is a kind of Animal
• A Team has a list of Employee
• An Engine is a part of a Car
• A Shop uses Card Payment

Object Relations

• Inheritance
• A Bird is a kind of Animal

• Association
• A Team has a list of Employee

• Composition
• An Engine is a part of a Car

• Dependency
• A Shop uses Card Payment

Can be identified by the
constructions that are used

to describe the relation

Object Relations

• Inheritance
• A Bird is a kind of Animal
• Bird class is a subclass of Animal class

• Association
• A Team has a list of Employee
• The Team class has an attribute that contains the list of Employee and does not control the life circle of the

employees objects
• If a team is dissolved the employee are not fired

• Composition
• An Engine is a part of a Car
• The Car class has an attribute of type Engine and it controls the life circle of the engine object

• If the car is destroyed the engine is also destroyed

• Dependency
• A Shop uses Card Payment
• One of the methods of Shop class uses a Card Payment object in order to make the payment
• Card Payment is not an attribute of class Shop

Inheritance

Green Ellipse

Red Ellipse

Blue Ellipse Blue Rectangle

Brown Triangle

Violet Rectangle

Gray Triangle

Yellow Triangle

In how many classes can be
the objects grouped?

Inheritance

Green Ellipse

Red Ellipse

Blue Ellipse Blue Rectangle

Brown Triangle

Violet Rectangle

Gray Triangle

Yellow Triangle

Elipse Rectangle Triangle

Which could be the
properties of each class?

Inheritance

Green Ellipse

Red Ellipse

Blue Ellipse Blue Rectangle

Brown Triangle

Violet Rectangle

Gray Triangle

Yellow Triangle

Elipse Rectangle Triangle

Which could be the
properties of each class?

Inheritance

Green Ellipse

Red Ellipse

Blue Ellipse Blue Rectangle

Brown Triangle

Violet Rectangle

Gray Triangle

Yellow Triangle

Elipse Rectangle Triangle

Which is the difference
between the classes?

Color
Left Corner Coordinates
Width, Height
Rotation Angle

Color
Left Corner Coordinates
Width, Height
Rotation Angle

Color
Left Corner Coordinates
Width, Height
Rotation Angle

Inheritance

• In how many classes can be the objects grouped?
• Elipse
• Rectangles
• Triangles

• Which could be the properties of each class?
• Color
• Left Corner Coordinates
• Width
• Height
• Rotation Angle

• Which is the difference between the classes?
• The way in which the figures are rendered

Create three classes or just
one?

Inheritance. One class

• Creating only one class
• How we discriminate between different

types of figures?
• Add an attribute

• How we create objects?
• Pass the figure type as parameter to
__init__ method

• Define different functions for
creating different types of objects

class Figure(object):
def __init__(self, figure_type, color, x, y, width,

height, rotation_angle):
self.figure_type = figure_type
self.color = color
… the rest of the assignments here

def draw(self):
if self.figure_type == "Elipse":

print("Eclipse drawing ...")
elif self.figure_type == "Rectange":

print("Rectange drawing ...")
elif self.figure_type == "Triangle":

print("Triangle drawing ...")
else:

print("? ...")
f = Figure("Elipse", "red", 10, 10, 100, 50, 0)
f.draw()

• Figure_type attribute can

have any vakue

• Modify the class if new

figure is added
Disadvantages?

Inheritance. One class

• Creating only one class
• How we discriminate between different

types of figures?
• Add an attribute

• How we create objects?
• Pass the figure type as parameter to
__init__ method

• Define different functions for
creating different types of objects

class Figure(object):

def my_init(self, figure_type, color, x, y, width, height, rotation_angle):

self.figure_type = figure_type

… the rest of the assignments here

def create_eclipse(self, color, x, y, width, height, rotation_angle):

self.my_init("Elipse", color, x, y, width, height, rotation_angle)

def create_rectange(self, color, x, y, width, height, rotation_angle):

self.my_init("Rectange", color, x, y, width, height, rotation_angle)

def create_triangle(self, color, x, y, width, height, rotation_angle):

self.my_init("Triangle", color, x, y, width, height, rotation_angle)

def draw(self):

if self.figure_type == "Elipse":

print("Eclipse drawing ...")

elif self.figure_type == "Rectange":

print("Rectange drawing ...")

elif self.figure_type == "Triangle":

print("Triangle drawing ...")

f = Figure()

f.create_eclipse("red", 10, 10, 100, 50, 0)

f.draw()

Disadvantages?

• Modify the class if new

figure is added

Inheritance

• One class disadvantages
• Modify the class if new figure is

added

• Inheritance
• Allow to create new

abstractization without modifying
the existing ones

Figure

Elipse Rectangle Triangle

Circle

Inheritance

• Parent class (superclass)

• Child class (subclass)
• Inherits all data and behaviors of

parent class
• Add more info
• Add more behavior
• Override behavior

Figure

Elipse Rectangle Triangle

Circle

Inheritance. Parent class
class Figure(object):

def __init__(self, color, x, y, width, height, rotation_angle):
self.color = color
self.x = x
self.y = y
self.width = width
self.height = height
self.rotation_angle = rotation_angle

def __repr__(self):
return "x={}, y={}, w={}, h={}, color={}, rotationAngle={}".format(

self.x, self.y, self.width, self.height, self.color, self.rotation_angle)

f = Figure('red', 10, 10, 100, 50, 0)
print(f)

• Everything is an object

• Class obje
ct implements basic

operations in Python, like binding

variables, etc

Inheritance. Child class
class Ellipse(Figure):

def draw(self):
print("Elipse draw ...")

def __repr__(self):
return "Elipse " + super().__repr__()

f = Ellipse('red', 10, 10, 100, 50, 0)
f.draw()
print(f)

• add new functionality with draw()
• instance of type Elipse can be called with new methods
• instance of type Figure throws error if called with Ellipse's new method

• __init__ is not missing, uses the Figure version

• Inherits all attribues of Figure:

• __init__(), x, y, width,

height, color, rotation_angle,

__repr__()
New functionality

Overrides __repr__

Access hidden

implementation from

the superclass

Which Methods to Use?

• Subclass can have methods with same name as superclass

• For an instance of a class, look for a method name in current class
definition

• If not found, look for method name up the hierarchy (in parent, then
grandparent, and so on)

• Use first method up the hierarchy that you found with that method
name

More Subclasses
class Circle(Elipse):

def __init__(self, color, x, y, radius, filled):
Ellipse.__init__(self, color, x, y, radius*2, radius*2, 0)
self.filled = filled

def __add__(self, other):
self.width += other + other
return self

def __repr__(self):
return "Circle x={}, y={}, radius={}, color={}, filled={}".format(

self.x, self.y, self.width//2, self.color, self.filled)
f = Circle('red', 10, 10, 100, True)
f += 3
f.draw()
print(f)

Parent class
Call constructor of parent class

New attribute

Override parent method

New method

Class Variables
• class variables and their values are shared between all instances of a class

• figure_nr is used to create a unique ID for class instances

class Figure(object):
figure_nr =1
def __init__(self, color, x, y, width, height, rotation_angle):

self.color = color
self.x = x
self.y = y
self.width = width
self.height = height
self.rotation_angle = rotation_angle
self.id = Figure.figure_nr
Figure.figure_nr += 1

Class variable

Class variable

instance variable

OO Programming

• Create your own collections of data

• Organize information

• Division of work

• Access information in a consistent manner

• Add layers of complexity

• Like functions, classes are a mechanism for decomposition and abstraction in
programming

Bibliography

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-programming-
in-python-fall-2016/lecture-slides-code/

• http://www.cs.toronto.edu/~quellan/courses/summer11/csc108/lect
ures.shtml

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/
http://www.cs.toronto.edu/~quellan/courses/summer11/csc108/lectures.shtml

