
DESIGN PATTERNS  

COURSE 9 



CONTENT 

Applications split on levels 

 

J2EE Design Patterns 

 



APPLICATION 

SERVERS 

 In the 90’s, systems should be client-server 

 

 

 

 

 

 Today, enterprise applications use the multi-tier model 

 

 



APPLICATION 

SERVERS 

 “Multi-tier applications” have several independent 
components 

 

 An application server provides the infrastructure and 
services to run such applications 

 

 Application server products can be separated into 3 
categories: 

 J2EE-based solutions 

 Non-J2EE solutions (PHP, ColdFusion, Perl, etc.) 

 And the Microsoft solution (ASP/COM and now .NET with 
ASP.NET, VB.NET, C#, etc.) 

 

 



J2EE APPLICATION 

SERVERS 

 Major J2EE products: 

 BEA WebLogic 

 IBM WebSphere 

 Sun iPlanet Application Server 

 Oracle 9iAS 

 HP/Bluestone Total-e-Server 

 Borland AppServer 

 Jboss (free open source) 



J2EE 

 It is a public specification that embodies several 
technologies 

 Current version is 1.3 

 J2EE defines a model for developing multi-tier, web based, 
enterprise applications with distributed components 

 Benefits 

 High availability 

 Scalability 

 Integration with existing systems 

 Freedom to choose vendors of application servers, tools, 
components 

 Multi-platform 

 



J2EE 

 Main Components 

 JavaServer Pages (JSP) 

 Used for web pages with dynamic content 

 Processes HTTP requests (non-blocking call-and-return)  

 Accepts HTML tags, special JSP tags, and scriptlets of Java 
code 

 Separates static content from presentation logic 

 Can be created by web designer using HTML tools 

 Servlet 

 Enterprise JavaBeans (EJB) 

 



J2EE 

 Main Components 

 JavaServer Pages (JSP) 

 Servlet 

 Used for web pages with dynamic content 

 Processes HTTP requests (non-blocking call-and-return) 

 Written in Java; uses print statements to render HTML 

 Loaded into memory once and then called many times 

 Provides APIs for session management 

 Enterprise JavaBeans (EJB) 



J2EE 

 Main Components 

 JavaServer Pages (JSP) 

 Servlet 

 Enterprise JavaBeans (EJB) 

 EJBs are distributed components used to implement 

business logic (no UI) 

 Developer concentrates on business logic 

 Availability, scalability, security, interoperability and 

integrability handled by the J2EE server 

 Client of EJBs can be JSPs, servlets, other EJBs and 

external aplications 

 Clients see interfaces 

 

 



J2EE 



APPLICATIONS SPLIT 

ON LEVELS 



PATTERNS 

CLASSIFICATION 

 Patterns applicable on presentation level 

 

 Patterns applicable on business level 

 

 Patterns applicable on integration level 





PRESENTATION 

PATTERNS 

 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 



PRESENTATIONS 

PATTERNS 

 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

 Facilitates pre/post 
request/respons 
processing 

 

 Useful for security 
check, caching, 
packaging 

 

 Independent chain 
filtering 

 

 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 

 Problem 

 You want to intercept and manipulate a request and a response before 
and after the request is processed. 

 Example 

<% 

 if (session.getAttribute(“user”) == null) { 

 //redirect to a login page 

 } 

%> 

 

 Examples 

 Has the client a valid session? 

 The request satisfies all the constraints? 

 What encoding is used to pass date? 

 Is the request stream encoded or compressed? 

 From which browser came the request? 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 

 Forces 

 You want centralized, common processing across 
requests, such as checking the data-encoding scheme of 
each request, logging information about each request, or 
compressing an outgoing response. 

 

 You want pre and postprocessing components loosely 
coupled with core requesthandling services to facilitate 
unobtrusive addition and removal. 

 

 You want pre and postprocessing components 
independent of each other and self contained to facilitate 
reuse. 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 

 Solution 

 Use an Intercepting Filter as a pluggable filter to pre and 

postprocess requests and responses. A filter manager 

combines loosely coupled filters in a chain, delegating 

control to the appropriate filter. In this way, you can add, 

remove, and combine these filters in various ways without 

changing existing code. 

 

 Examples 

 Servlets Filter for HTTP request/responce 

 Message Handles for SOAP request/responce 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER. STRUCTURE 

 Filter  

  Filter which will performs certain task prior or after 

execution of request by request handler. 

 

 Filter Chain  

  Filter Chain carries multiple filters and help to execute 

them in defined order on target. 

 

 Target  

  Target object is the request handler 

 

 Filter Manager  

  Filter Manager manages the filters and Filter Chain. 

 

 Client  

  Client is the object who sends request to the Target 

object. 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 

 Strategies 

 Standard filters (Servlet 2.3) 

 Components used in deployment descriptor 

 

 Personalized filters 

 

 Base filters 

 

 Filters based on templates 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 

 Exemple 

 Standard Filter 

public class HelloWorldFilter implements Filter { 

public FilterConfig filterCfg; 

 @Override 

 public void destroy() { } 

 

 @Override 

 public void init(FilterConfig filterCfg) throws ServletException { this.filterCfg = filterCfg;} 

 

 public void doFilter(final ServletRequest request, final ServletResponse response,             

              FilterChain chain) throws java.io.IOException, javax.servlet.ServletException { 

                 System.out.println("In Filter"); 

                 request.setAttribute("hello", "Hello World!"); 

                 chain.doFilter(request, response); 

                 System.out.println("Out HelloWorldFilter"); 

 } } 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 

 Exemple 

 Standard Filte 

 Deployment descriptor 

<filter> 

 <filter-name>helloWorld</filter-name> 

 <filter-class>web.filter.baseStrategy.HelloWorldFilter </filter-class> 

</filter> 

<filter-mapping> 

 <filter-name>helloWorld</filter-name> 

 <url-pattern>/jsp/filter.jsp</url-pattern> 

</filter-mapping> 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 

 Exemple 

 Template filters focus on pre/post processing  

public abstract class TemplateFilter implements Filter { 

       private FilterConfig filterCfg; 

       public void init(FilterConfig filterCfg) throws ServletException { 

                     this.filterCfg = filterCfg; 

       } 

       public void doFilter(ServletRequest request, ServletResponse response, 

                                      FilterChain chain) throws IOException,ServletException { 

                     doPreProcessing(request, response); 

                     chain.doFilter(request, response); 

                     doPostProcessing(request, response); 

      } 

      public abstract void doPostProcessing(ServletRequest request,  

                                                                                    ServletResponse response); 

     public abstract void doPreProcessing(ServletRequest request,  

                                                                                     ServletResponse response); 

     public void destroy() { } 

} 



PRESENTATION PATTERNS. 

INTERCEPTING FILTER 

 Consequences 

 Centralizes control with loosely coupled handlers 

 

 Improves reusability 

 

 Declarative and flexible configuration 

 

 Information sharing is inefficient 



PRESENTATIONS 

PATTERNS 
 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

 Offers a centerlasid controller 
for request management 

 

 Enter point in system. It does 
not have to be too large (it 
delegates attributes to 
Application Controller) 

 

 Request processing: 

1. Protocol handeling and context 
transformations 

2. Navigation and routing 

3. Request pocessing 

4. Control transfer 

 



PRESENTATIONS 

PATTERNS 
 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

 Offers a centerlasid controller 
for request management 

 

 Enter point in system. It does 
not have to be too large (it 
delegates attributes to 
Application Controller) 

 

 Request processing: 

1. Protocol handeling and context 
transformations 

2. Navigation and routing 

3. Request pocessing 

4. Control transfer 

 



PRESENTATIONS 

PATTERNS 

 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 



PRESENTATIONS 

PATTERNS 
 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

 Incapsulates the state in 
order to avoid using 
protocol-specific system 
information outside of its 
relevant context 

 

 The application 
componesnts does not 
have to know HTTP 
protocol. They must call 
methods getXX on an 
object of the context. 

 

 Struts - ActionForm 

 

 



PRESENTATIONS 

PATTERNS 

 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

 You want to centralize and modularize 
action and view management. 

 

 You want to reuse action and view-
management code. 

 You want to improve request-handling 
extensibility, such as adding use case 
functionality to an application 
incrementally. 

 You want to improve code modularity 
and maintainability, making it easier to 
extend the application and easier to test 
discrete parts of your request-handling 
code independent of a web container. 

 

 Struts 

 

 



PRESENTATIONS 

PATTERNS 

 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

 You want to separate a view from 
its processing logic.  

 

 You want to use template-based 
views, such as JSP. 

 You want to avoid embedding 
program logic in the view. 

 You want to separate 
programming logic from the view 
to facilitate division of labor 
between software developers and 
web page designers. 

 

 Expresion Language, JSLT 

 

 



PRESENTATIONS 

PATTERNS 
 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

Creates and agregates 
views from atomic 
components 

 

Tiles 

 

 



PRESENTATIONS 

PATTERNS 
 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

 You want to perform core 
request handling and 
invoke business logic 
before control is passed to 
the view 

 

 Use Service to Worker to 
centralize control and 
request handling to retrieve 
a presentation model 
before turning control over 
to the view. The view 
generates a dynamic 
response based on the 
presentation model. 

 

 



PRESENTATIONS 

PATTERNS 
 Intercepting Filter 

 Front Controller 

 Context Object 

 Application Controller 

 View Helper 

 Composite View 

 Service to Worker 

 Dispatcher View 

 You want a view to handle a 
request and generate a 
response, while managing 
limited amounts of 
business processing. 

 

 Use Dispatcher View with 
views as the initial access 
point for a request. 
Business processing, if 
necessary in limited form, 
is managed by the views. 

 

 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object Assembler 

 Value List Handler 

 You want to hide clients from the complexity of 
remote communication with business service 
components.  

 

 You want to access the business-tier 
components from your presentation-tier 
components and clients, such as devices, web 
services, and rich clients. 

 You want to minimize coupling between clients 
and the business services, thus hiding the 
underlying implementation details of the 
service, such as lookup and access. 

 You want to avoid unnecessary invocation of 
remote services. 

 You want to translate network exceptions into 
application or user exceptions. 

 You want to hide the details of service creation, 
reconfiguration, and invocation retries from the 
clients. 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 You want to transparently locate 
busines components and services in a 
uniform manner 

 

 Use a Service Locator to implement 
and encapsulate service and 
component lookup. 

 A Service Locator hides the 
implementation details of the lookup 
mechanism and encapsulates related 
dependencies. 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 You want to expose business 
components and services to remote 
clients. 

 

 Use a Session Façade to encapsulate 
business-tier components and expose 
a coarse-grained service to remote 
clients. 

 Clients access a Session Façade 
instead of accessing business 
components directly 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 You want to centralize business logic 
across several business-tier 
components and services 

 

 Use an Application Service to 
centralize and aggregate behavior to 
provide a uniform service 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 You have a conceptual domain model 
with business logic and relationship 

 

 Use Business Objects to separate 
business data and logic using an 
object model.  



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 You want to use entity beans to 
implement your conceptual domain 
model. 

 

 Use a Composite Entity to implement 
persistent Business Objects using 
local entity beans and POJOs. 

 Composite Entity aggregates a set of 
related Business Objects into coarse-
grained entity bean implementations. 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 You want to transfer multiple data 
elements over a tier  

 

 Use a Transfer Object to carry multiple 
data elements across a tier. 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 You want to obtain an application 
model that aggregates transfer objects 
from several business components. 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 You have a remote client that wants to 
iterate over a large results list. 

 

 Use a Value List Handler to search, 
cache the results, and allow the client 
to traverse and select items from the 
results 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

 Use a Value List Handler to search, 
cache the results, and allow the client 
to traverse and select items from the 
results 



BUSINESS PATTERNS 
 Business Delegate 

 Service Locator 

 Session Facade 

 Application Service 

 Business Object 

 Composite Entity 

 Transfer Object 

 Transfer Object 
Assembler 

 Value List Handler 

Will be discussed in detail at the next 
course 



INTEGRATION 

PATTERNS 

 Data Access Object 

 

 Service Activator 

 

 Domain Store 

 

 Web Service Broker 


