
DESIGN PATTERNS

COURSE 9

CONTENT

Applications split on levels

J2EE Design Patterns

APPLICATION

SERVERS

 In the 90’s, systems should be client-server

 Today, enterprise applications use the multi-tier model

APPLICATION

SERVERS

 “Multi-tier applications” have several independent
components

 An application server provides the infrastructure and
services to run such applications

 Application server products can be separated into 3
categories:

 J2EE-based solutions

 Non-J2EE solutions (PHP, ColdFusion, Perl, etc.)

 And the Microsoft solution (ASP/COM and now .NET with
ASP.NET, VB.NET, C#, etc.)

J2EE APPLICATION

SERVERS

 Major J2EE products:

 BEA WebLogic

 IBM WebSphere

 Sun iPlanet Application Server

 Oracle 9iAS

 HP/Bluestone Total-e-Server

 Borland AppServer

 Jboss (free open source)

J2EE

 It is a public specification that embodies several
technologies

 Current version is 1.3

 J2EE defines a model for developing multi-tier, web based,
enterprise applications with distributed components

 Benefits

 High availability

 Scalability

 Integration with existing systems

 Freedom to choose vendors of application servers, tools,
components

 Multi-platform

J2EE

 Main Components

 JavaServer Pages (JSP)

 Used for web pages with dynamic content

 Processes HTTP requests (non-blocking call-and-return)

 Accepts HTML tags, special JSP tags, and scriptlets of Java
code

 Separates static content from presentation logic

 Can be created by web designer using HTML tools

 Servlet

 Enterprise JavaBeans (EJB)

J2EE

 Main Components

 JavaServer Pages (JSP)

 Servlet

 Used for web pages with dynamic content

 Processes HTTP requests (non-blocking call-and-return)

 Written in Java; uses print statements to render HTML

 Loaded into memory once and then called many times

 Provides APIs for session management

 Enterprise JavaBeans (EJB)

J2EE

 Main Components

 JavaServer Pages (JSP)

 Servlet

 Enterprise JavaBeans (EJB)

 EJBs are distributed components used to implement

business logic (no UI)

 Developer concentrates on business logic

 Availability, scalability, security, interoperability and

integrability handled by the J2EE server

 Client of EJBs can be JSPs, servlets, other EJBs and

external aplications

 Clients see interfaces

J2EE

APPLICATIONS SPLIT

ON LEVELS

PATTERNS

CLASSIFICATION

 Patterns applicable on presentation level

 Patterns applicable on business level

 Patterns applicable on integration level

PRESENTATION

PATTERNS

 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

PRESENTATIONS

PATTERNS

 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

 Facilitates pre/post
request/respons
processing

 Useful for security
check, caching,
packaging

 Independent chain
filtering

PRESENTATION PATTERNS.

INTERCEPTING FILTER

PRESENTATION PATTERNS.

INTERCEPTING FILTER

 Problem

 You want to intercept and manipulate a request and a response before
and after the request is processed.

 Example

<%

 if (session.getAttribute(“user”) == null) {

 //redirect to a login page

 }

%>

 Examples

 Has the client a valid session?

 The request satisfies all the constraints?

 What encoding is used to pass date?

 Is the request stream encoded or compressed?

 From which browser came the request?

PRESENTATION PATTERNS.

INTERCEPTING FILTER

 Forces

 You want centralized, common processing across
requests, such as checking the data-encoding scheme of
each request, logging information about each request, or
compressing an outgoing response.

 You want pre and postprocessing components loosely
coupled with core requesthandling services to facilitate
unobtrusive addition and removal.

 You want pre and postprocessing components
independent of each other and self contained to facilitate
reuse.

PRESENTATION PATTERNS.

INTERCEPTING FILTER

 Solution

 Use an Intercepting Filter as a pluggable filter to pre and

postprocess requests and responses. A filter manager

combines loosely coupled filters in a chain, delegating

control to the appropriate filter. In this way, you can add,

remove, and combine these filters in various ways without

changing existing code.

 Examples

 Servlets Filter for HTTP request/responce

 Message Handles for SOAP request/responce

PRESENTATION PATTERNS.

INTERCEPTING FILTER. STRUCTURE

 Filter

 Filter which will performs certain task prior or after

execution of request by request handler.

 Filter Chain

 Filter Chain carries multiple filters and help to execute

them in defined order on target.

 Target

 Target object is the request handler

 Filter Manager

 Filter Manager manages the filters and Filter Chain.

 Client

 Client is the object who sends request to the Target

object.

PRESENTATION PATTERNS.

INTERCEPTING FILTER

PRESENTATION PATTERNS.

INTERCEPTING FILTER

 Strategies

 Standard filters (Servlet 2.3)

 Components used in deployment descriptor

 Personalized filters

 Base filters

 Filters based on templates

PRESENTATION PATTERNS.

INTERCEPTING FILTER

 Exemple

 Standard Filter

public class HelloWorldFilter implements Filter {

public FilterConfig filterCfg;

 @Override

 public void destroy() { }

 @Override

 public void init(FilterConfig filterCfg) throws ServletException { this.filterCfg = filterCfg;}

 public void doFilter(final ServletRequest request, final ServletResponse response,

 FilterChain chain) throws java.io.IOException, javax.servlet.ServletException {

 System.out.println("In Filter");

 request.setAttribute("hello", "Hello World!");

 chain.doFilter(request, response);

 System.out.println("Out HelloWorldFilter");

 } }

PRESENTATION PATTERNS.

INTERCEPTING FILTER

 Exemple

 Standard Filte

 Deployment descriptor

<filter>

 <filter-name>helloWorld</filter-name>

 <filter-class>web.filter.baseStrategy.HelloWorldFilter </filter-class>

</filter>

<filter-mapping>

 <filter-name>helloWorld</filter-name>

 <url-pattern>/jsp/filter.jsp</url-pattern>

</filter-mapping>

PRESENTATION PATTERNS.

INTERCEPTING FILTER

 Exemple

 Template filters focus on pre/post processing

public abstract class TemplateFilter implements Filter {

 private FilterConfig filterCfg;

 public void init(FilterConfig filterCfg) throws ServletException {

 this.filterCfg = filterCfg;

 }

 public void doFilter(ServletRequest request, ServletResponse response,

 FilterChain chain) throws IOException,ServletException {

 doPreProcessing(request, response);

 chain.doFilter(request, response);

 doPostProcessing(request, response);

 }

 public abstract void doPostProcessing(ServletRequest request,

 ServletResponse response);

 public abstract void doPreProcessing(ServletRequest request,

 ServletResponse response);

 public void destroy() { }

}

PRESENTATION PATTERNS.

INTERCEPTING FILTER

 Consequences

 Centralizes control with loosely coupled handlers

 Improves reusability

 Declarative and flexible configuration

 Information sharing is inefficient

PRESENTATIONS

PATTERNS
 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

 Offers a centerlasid controller
for request management

 Enter point in system. It does
not have to be too large (it
delegates attributes to
Application Controller)

 Request processing:

1. Protocol handeling and context
transformations

2. Navigation and routing

3. Request pocessing

4. Control transfer

PRESENTATIONS

PATTERNS
 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

 Offers a centerlasid controller
for request management

 Enter point in system. It does
not have to be too large (it
delegates attributes to
Application Controller)

 Request processing:

1. Protocol handeling and context
transformations

2. Navigation and routing

3. Request pocessing

4. Control transfer

PRESENTATIONS

PATTERNS

 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

PRESENTATIONS

PATTERNS
 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

 Incapsulates the state in
order to avoid using
protocol-specific system
information outside of its
relevant context

 The application
componesnts does not
have to know HTTP
protocol. They must call
methods getXX on an
object of the context.

 Struts - ActionForm

PRESENTATIONS

PATTERNS

 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

 You want to centralize and modularize
action and view management.

 You want to reuse action and view-
management code.

 You want to improve request-handling
extensibility, such as adding use case
functionality to an application
incrementally.

 You want to improve code modularity
and maintainability, making it easier to
extend the application and easier to test
discrete parts of your request-handling
code independent of a web container.

 Struts

PRESENTATIONS

PATTERNS

 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

 You want to separate a view from
its processing logic.

 You want to use template-based
views, such as JSP.

 You want to avoid embedding
program logic in the view.

 You want to separate
programming logic from the view
to facilitate division of labor
between software developers and
web page designers.

 Expresion Language, JSLT

PRESENTATIONS

PATTERNS
 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

Creates and agregates
views from atomic
components

Tiles

PRESENTATIONS

PATTERNS
 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

 You want to perform core
request handling and
invoke business logic
before control is passed to
the view

 Use Service to Worker to
centralize control and
request handling to retrieve
a presentation model
before turning control over
to the view. The view
generates a dynamic
response based on the
presentation model.

PRESENTATIONS

PATTERNS
 Intercepting Filter

 Front Controller

 Context Object

 Application Controller

 View Helper

 Composite View

 Service to Worker

 Dispatcher View

 You want a view to handle a
request and generate a
response, while managing
limited amounts of
business processing.

 Use Dispatcher View with
views as the initial access
point for a request.
Business processing, if
necessary in limited form,
is managed by the views.

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object Assembler

 Value List Handler

 You want to hide clients from the complexity of
remote communication with business service
components.

 You want to access the business-tier
components from your presentation-tier
components and clients, such as devices, web
services, and rich clients.

 You want to minimize coupling between clients
and the business services, thus hiding the
underlying implementation details of the
service, such as lookup and access.

 You want to avoid unnecessary invocation of
remote services.

 You want to translate network exceptions into
application or user exceptions.

 You want to hide the details of service creation,
reconfiguration, and invocation retries from the
clients.

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 You want to transparently locate
busines components and services in a
uniform manner

 Use a Service Locator to implement
and encapsulate service and
component lookup.

 A Service Locator hides the
implementation details of the lookup
mechanism and encapsulates related
dependencies.

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 You want to expose business
components and services to remote
clients.

 Use a Session Façade to encapsulate
business-tier components and expose
a coarse-grained service to remote
clients.

 Clients access a Session Façade
instead of accessing business
components directly

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 You want to centralize business logic
across several business-tier
components and services

 Use an Application Service to
centralize and aggregate behavior to
provide a uniform service

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 You have a conceptual domain model
with business logic and relationship

 Use Business Objects to separate
business data and logic using an
object model.

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 You want to use entity beans to
implement your conceptual domain
model.

 Use a Composite Entity to implement
persistent Business Objects using
local entity beans and POJOs.

 Composite Entity aggregates a set of
related Business Objects into coarse-
grained entity bean implementations.

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 You want to transfer multiple data
elements over a tier

 Use a Transfer Object to carry multiple
data elements across a tier.

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 You want to obtain an application
model that aggregates transfer objects
from several business components.

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 You have a remote client that wants to
iterate over a large results list.

 Use a Value List Handler to search,
cache the results, and allow the client
to traverse and select items from the
results

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

 Use a Value List Handler to search,
cache the results, and allow the client
to traverse and select items from the
results

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object
Assembler

 Value List Handler

Will be discussed in detail at the next
course

INTEGRATION

PATTERNS

 Data Access Object

 Service Activator

 Domain Store

 Web Service Broker

