
DESIGN PATTERNS

COURSE 8

PREVIOUS COURSE
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

CURRENT COURSE
Other patterns

 Model – View -
Controller

 Interactive
applications with a
flexible human-
computer interface.

 Data Access Pattern

 encapsulate data
access and
manipulation in a
separate layer

 Filter

 filter a set of objects

CURRENT COURSE
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

TEMPLATE METHOD

 Intent

 Define the skeleton of an algorithm in an operation,
deferring some steps to client subclasses.Template Method
lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

 Base class declares algorithm 'placeholders', and derived
classes implement the placeholders.

 Problem

 Two different components have significant similarities, but
demonstrate no reuse of common interface or
implementation. If a change common to both components
becomes necessary, duplicate effort must be expended.

TEMPLATE METHOD.

EXAMPLE

 To implement the invariant parts of an algorithm once and

leave it up to subclasses to implement the behavior that

can vary.

 When refactoring is performed and common behavior is

identified among classes. A abstract base class containing

all the common code (in the template method) should be

created to avoid code duplication.

 TEMPLATE METHOD - respects

 Hollywood Priciple: Don't call us we will call you.

TEMPLATE METHOD.

STRUCTURE

 AbstractClass

 defines abstract primitive operations that concrete

subclasses define to implement steps of an algorithm.

 ConcreteClass

 implements the primitive operations to carry out subclass-

specific steps of the algorithm.

TEMPLATE METHOD.

EXAMPLE

 Example

 Develop an application for a travel agency. The travel
agency is managing each trip. All the trips contain common
behavior but there are several packages. For example
each trip contains the basic steps:

 The tourists are transported to the holiday location by
plane/train/ships,...

 Each day they are visiting something

 They are returning back home.

TEMPLATE METHOD.

EXAMPLE
public class Trip {

 public final void performTrip(){

 doComingTransport();

 doDayA();

 doDayB();

 doDayC();

 doReturningTransport

 }

public abstract void doComingTransport();

 public abstract void doDayA();

 public abstract void doDayB();

 public abstract void doDayC();

 public abstract void doReturningTransport();

}

TEMPLATE METHOD.

EXAMPLE

public class PackageA extends Trip {

 public void doComingTransport() {

 System.out.println("The turists are comming by air ..."); }

 public void doDayA() { System.out.println("The turists are visiting the aquarium..."); }

 public void doDayB() { System.out.println("The turists are going to the beach..."); }

 public void doDayC() { System.out.println("The turistsare going to mountains ..."); }

 public void doReturningTransport(){

 System.out.println("The turists are going home by air ..."); }

}

TEMPLATE METHOD.

EXAMPLE

public class PackageB extends Trip {

 public void doComingTransport() {

 System.out.println("The turists are comming by train ...");

 }

 public void doDayA() {

 System.out.println("The turists are visiting the mountain ...");

 }

 public void doDayB() { System.out.println("The turists are going to the beach ...");

 }

 public void doDayC() { System.out.println("The turists are going to zoo ...");

 }

 public void doReturningTransport() {

 System.out.println("The turists are going home by train ...");

 }

}

TEMPLATE METHOD.

EXAMPLE

public class TemplatePatternDemo {

 public static void main(String[] args) {

 Trip trip= new PackageA();

 trip.performTrip();

 System.out.println();

 trip= new PackageB();

 trip.performTrip();

 }

}

TEMPLATE METHOD.

EXAMPLE

TEMPLATE METHOD.

EXAMPLE

TEMPLATE METHOD

 Used in java API

 All non-abstract methods of java.io.InputStream,

java.io.OutputStream, java.io.Reader and java.io.Writer.

 All non-abstract methods of java.util.AbstractList,

java.util.AbstractSet and java.util.AbstractMap.

TEMPLATE METHOD

 Advantages

 No code duplication between the classes

 Inheritance and Not Composition

 By taking advantage of polymorphism the superclass

automatically calls themethods of the correct subclasses.

 Disadvantages

 Base classes tend to get cluttered up with a lot of

seemingly unrelated code.

 Program flow is a little more difficult to follow - without the

help of stepping throughthe code with a debugger.

TEMPLATE METHOD

VS. STATEGY

 Similarity

 Can appear quite similar in nature as both help us execute
an algorithm/ code steps and define executions differently
under different circumstances.

 Differences

 Strategy pattern let you decide complete different strategy
i.e. set of algorithm(s) based on requirement at the run
time, for example which tax strategy to be applied Indian or
Chinese

 Template pattern puts in some predefined steps (of a
algorithm), out of which some are fixed and others can be
implemented differently for different usages

CURRENT COURSE
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

VISITOR

Intent

Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

The classic technique for recovering lost type information.

Do the right thing based on the type of two objects.

 Double dispatch

Problem

Many distinct and unrelated operations need to be performed on
node objects in a heterogeneous aggregate structure. You want to
avoid "polluting" the node classes with these operations. And, you
don't want to have to query the type of each node and cast the
pointer to the correct type before performing the desired operation.

VISITOR. STRUCTURE
Visitor

 Declares a Visit operation for each class of ConcreteElement in the object

structure.

 The operation's name and signature identifies the class that sends the Visit

request to the visitor.

 That lets the visitor determine the concrete class of the element being visited.

 Then the visitor can access the elements directly through its particular interface

 ConcreteVisitor

 Implements each operation declared by Visitor.

 Each operation implements a fragment of the algorithm defined for the

corresponding class or object in the structure.

 ConcreteVisitor provides the context for the algorithm and stores its local state.

 This state often accumulates results during the traversal of the structure.

 Element

 Defines an Accept operation that takes a visitor as an argument.

 ConcreteElement

 Implements an Accept operation that takes a visitor as an argument

 ObjectStructure

 can enumerate its elements

 may provide a high-level interface to allow the visitor to visit its elements

 may either be a Composite (pattern) or a collection such as a list or a set

VISITOR

VISITOR. EXAMPLE

Example

Shopping cart where different type of items (Elements) an be

added

When checkout button is clicked, it calculates the total

amount to be paid.

VISITOR. EXAMPLE
public interface ItemElement {

 public int accept(ShoppingCartVisitor visitor);

}

public class Book implements ItemElement {

 private int price;

 private String isbnNumber;

 public Book(int cost, String isbn){

 this.price=cost;

 this.isbnNumber=isbn;

}

 public int getPrice() { return price; }

 public String getIsbnNumber() { return isbnNumber; }

 public int accept(ShoppingCartVisitor visitor) {

 return visitor.visit(this);

 }

}

public class Fruit implements ItemElement {

 private int pricePerKg;

 private int weight;

 private String name;

 public Fruit(int priceKg, int wt, String nm){

 this.pricePerKg=priceKg;

 this.weight=wt;

 this.name = nm;

 }

 public int getPricePerKg() { return pricePerKg; }

 public int getWeight() { return weight; }

 public String getName(){ return this.name; }

 public int accept(ShoppingCartVisitor visitor) {

 return visitor.visit(this);

 }

}

VISITOR. EXAMPLE

public interface ShoppingCartVisitor {

 int visit(Book book);

 int visit(Fruit fruit);

}

public class ShoppingCartVisitorImpl implements
ShoppingCartVisitor {

 @Override

 public int visit(Book book) {

 int cost=0;

 //apply 5$ discount if book price is greater than 50

 if(book.getPrice() > 50){

 cost = book.getPrice()-5;

 }else cost = book.getPrice();

 System.out.println("Book ISBN::"+book.getIsbnNumber()

 + " cost ="+cost);

 return cost;

 }

 @Override

 public int visit(Fruit fruit) {

 int cost = fruit.getPricePerKg()*fruit.getWeight();

 System.out.println(fruit.getName() + " cost = "+cost);

 return cost;

 }

}

VISITOR. EXAMPLE
public class ShoppingCartClient {

 public static void main(String[] args) {

 ItemElement[] items = new ItemElement[]{

 new Book(20, "1234"),

 new Book(100, "5678"),

 new Fruit(10, 2, "Banana"),

 new Fruit(5, 5, "Apple")

 };

 int total = calculatePrice(items);

 System.out.println("Total Cost = "+total);

}

 private static int calculatePrice(

 ItemElement[] items) {

 ShoppingCartVisitor visitor =

 new ShoppingCartVisitorImpl();

 int sum=0;

 for(ItemElement item : items){

 sum = sum + item.accept(visitor);

 }

 return sum;

 }

}

VISITOR

Consequences

Benefits

 Adding new operations is easy

 Related behavior isn't spread over the classes defining the object
structure; it's localized in a visitor. Unrelated sets of behavior are
partitioned in their own visitor subclasses.

 Visitors can accumulate state as they visit each element in the object
structure. Without a visitor, this state would have to be passed as extra
arguments to the operations that perform the traversal.

Liabilities

 Adding new ConcreteElement classes is hard. Each new
ConcreteElement gives rise to a new abstract operation on Visitor and a
corresponding implementation in every ConcreteVisitor class.

 The ConcreteElement interface must be powerful enough to let visitors do
their job. You may be forced to provide public operations that access an
element's internal state, which may compromise its encapsulation

CURRENT COURSE
Other patterns

 Model – View -
Controller

 Interactive
applications with a
flexible human-
computer interface.

 Data Access Pattern

 encapsulate data
access and
manipulation in a
separate layer

 Filter

 filter a set of objects

MODEL VIEW

CONTROLLER

Problem

 The same information is presented differently in different
windows, for example, in a bar or pie chart.

The display and behavior of the application must reflect data
manipulations immediately.

Changes to the user interface should be easy, and even possible
at run-time.

Supporting different ‘look and feel’ standards or porting the user
interface should not affect code in the core of the application

Solution

MVC divides an interactive application into the three areas:
processing, output, and input.

MODEL VIEW

CONTROLLER

Model „

The data (ie state) „

Methods for accessing and modifying state †

View „

Renders contents of model for user „

When model changes, view must be updated †

Controller „

Translates user actions (ie interactions with view) into
operations on the model „

Example user actions: button clicks, menu selections

MODEL VIEW

CONTROLLER

MODEL VIEW

CONTROLLER

Example – SWING

Mapping of classes to MVC parts „

View is a Swing widget (like a JFrame & JButtons) „

Controller is an ActionListener „

Model is an ordinary Java class (or database) †

Alternative mapping „

View is a Swing widget and includes (inner) ActionListener(s)
as event handlers „

Controller is an ordinary Java class with “business logic”,
invoked by event handlers in view „

Model is an ordinary Java class (or database) †

Difference: Where is the ActionListener? „ Regardless, model
and view are completely decoupled (linked only by controller)

MODEL VIEW

CONTROLLER

Benefits

Separation of concerns in the codebase

Developer specialization and focus

Parallel development by separate teams

CREATING AND

ASSEMBLING GUI

A typical main window would contain the following areas

Main working area (e.g., a drawing pane)

 Navigation (or Selection) area (e.g., a tree-based browser)

 Menu bar

 Tool bar

 Status line A

CURRENT COURSE
Other patterns

 Model – View -
Controller

 Interactive
applications with a
flexible human-
computer interface.

 Data Access Pattern

 encapsulate data
access and
manipulation in a
separate layer

 Filter

 filter a set of objects

DATA ACCESS

PATTERN.

Problem

You want to encapsulate data access and manipulation in a separate layer.

Forces

You want to implement data access mechanisms to access and manipulate
data in a persistent storage.

You want to decouple the persistent storage implementation from the rest of
your application.

You want to provide a uniform data access API for a persistent mechanism to
various types of data sources, such as RDBMS, LDAP, OODB, XML
repositories, flat files, and so on.

You want to organize data access logic and encapsulate proprietary features
to facilitate maintainability and portability.

Solution

Use a Data Access Object to abstract and encapsulate all access to the
persistent store. The Data Access Object manages the connection with
the data source to obtain and store data.

DATA ACCESS PATTERN.

STRUCTURE

DataAcessObject

Implementation of the data
access oprerations

Datasouce

Storage source of data

ResultSet

Database query result

Data

Resulting data after
performing an operation

Client

DataAcessObject cllient

DATA ACCESS

PATTERN

DATA ACCESS

PATTERN

Example

Manage table Student from DB

DATA ACCESS

PATTERN. EXAMPLE
public class Student {

 private String name;

 private int rollNo;

 Student(String name, int rollNo){

 this.name = name;

 this.rollNo = rollNo;

 }

 public String getName() { return name; }

 public void setName(String name) {

 this.name = name;

 }

 public int getRollNo() { return rollNo; }

 public void setRollNo(int rollNo) {

 this.rollNo = rollNo;

 }

}

public interface StudentDao {

 public List<Student> getAllStudents();

 public Student getStudent(int rollNo);

 public void updateStudent(Student student);

 public void deleteStudent(Student student);

}

DATA ACCESS

PATTERN. EXAMPLE
public class StudentDaoImpl implements StudentDao {

//list is working as a database

List<Student> students;

public StudentDaoImpl(){

 students = new ArrayList<Student>();

 Student student1 = new Student("Robert",0);

 Student student2 = new Student("John",1);

 students.add(student1);

 students.add(student2);

 }

 @Override

public void deleteStudent(Student student) {

 students.remove(student.getRollNo());

 System.out.println("Student: Roll No " +

 student.getRollNo() + ", deleted from database");

}

 //retrive list of students from the database

 @Override

 public List<Student> getAllStudents() {

 return students;

 }

@Override

 public Student getStudent(int rollNo) {

 return students.get(rollNo);

 }

 @Override

 public void updateStudent(Student student) {

 students.get(student.getRollNo())

 .setName(student.getName());

 System.out.println("Student: Roll No " +

 student.getRollNo() + ", updated in the
database");

 }

}

DATA ACCESS

PATTERN. EXAMPLE
public class DaoPatternDemo {

 public static void main(String[] args) {

 StudentDao studentDao = new StudentDaoImpl();

 //print all students

 for (Student student : studentDao.getAllStudents()) {

 System.out.println("Student: [RollNo : " + student.getRollNo()

 + ", Name : " + student.getName() + "]");

 }

 //update student

 Student student =studentDao.getAllStudents().get(0);

 student.setName("Michael");

 studentDao.updateStudent(student);

 //get the student

 studentDao.getStudent(0);

 System.out.println("Student: [RollNo : " + student.getRollNo() + ", Name : “

 + student.getName() + "]");

 }

}

Output

Student: [RollNo : 0, Name : Robert]

Student: [RollNo : 1, Name : John]

Student: Roll No 0, updated in the database

Student: [RollNo : 0, Name : Michael]

DATA ACCESS

PATTERN

Consequences

Centralizes control with loosely coupled handlers

Enables transparency

Provides object-oriented view and encapsulates database
schemas

Enables easier migration

Reduces code complexity in clients

Organizes all data access code into a separate layer

Adds extra layer

Needs class hierarchy design (Factory Method Strategies)

Introduces complexity to enable object-oriented design
(RowSet Wrapper List Strategy)

CURRENT COURSE
Other patterns

 Model – View -
Controller

 Interactive
applications with a
flexible human-
computer interface.

 Data Access Pattern

 encapsulate data
access and
manipulation in a
separate layer

 Filter

 filter a set of objects

FILTER

Problem

Use filter or criteria pattern when you need to filter a set of
objects, using different criteria, changing them in a decoupled
way throw logical application

Pattern Type

Strategy pattern

Usage

Use when the search results for a query are very numerous and
reviewing them would be very time consuming.

Use when search results can be categorized into filters: the
search must be contextual.

Do not use when your search is not easily categorized into
filters.

FILTER. EXAMPLE

FILTER. EXAMPLE
public class Person {

 private String name;

 private String gender;

 private String maritalStatus;

 public Person(String name, String gender, String maritalStatus){

 this.name = name;

 this.gender = gender;

 this.maritalStatus = maritalStatus;

 }

 public String getName() { return name; }

 public String getGender() { return gender; }

 public String getMaritalStatus() { return maritalStatus; }

}

FILTER. EXAMPLE

public interface Criteria { public List meetCriteria(List persons); }

public class CriteriaMale implements Criteria {

 @Override

 public List meetCriteria(List persons) {

 List malePersons = new ArrayList();

 for (Person person : persons) {

 if(person.getGender().equalsIgnoreCase("MALE")){

 malePersons.add(person);

 }

 }

 return malePersons;

 }

}

FILTER. EXAMPLE

public class CriteriaFemale implements Criteria {

 @Override

 public List meetCriteria(List persons) {

 List femalePersons = new ArrayList();

 for (Person person : persons) {

 if(person.getGender().equalsIgnoreCase(“FEMALE")){

 femalePersons.add(person);

 }

 }

 return malePersons;

 }

}

FILTER. EXAMPLE

public class CriteriaSingle implements Criteria {

 @Override

 public List meetCriteria(List persons) {

 List singlePersons = new ArrayList();

 for (Person person : persons) {

 if(person.getMaritalStatus().equalsIgnoreCase("SINGLE")){

 singlePersons.add(person);

 }

 }

 return singlePersons;

 }

}

FILTER. EXAMPLE

public class AndCriteria implements Criteria {

 private Criteria criteria;

 private Criteria otherCriteria;

 public AndCriteria(Criteria criteria, Criteria otherCriteria) {

 this.criteria = criteria;

 this.otherCriteria = otherCriteria;

 }

 @Override

 public List meetCriteria(List persons) {

 List firstCriteriaPersons = criteria.meetCriteria(persons);

 return otherCriteria.meetCriteria(firstCriteriaPersons);

 }

}

FILTER. EXAMPLE

public class OrCriteria implements Criteria {

 private Criteria criteria;

 private Criteria otherCriteria;

 public OrCriteria(Criteria criteria, Criteria otherCriteria) {

 this.criteria = criteria; this.otherCriteria = otherCriteria;

 }

 @Override

 public List meetCriteria(List persons) {

 List firstCriteriaItems = criteria.meetCriteria(persons);

 List otherCriteriaItems = otherCriteria.meetCriteria(persons);

 for (Person person : otherCriteriaItems) {

 if(!firstCriteriaItems.contains(person)){

 firstCriteriaItems.add(person);

 } }

 return firstCriteriaItems;

}}

FILTER. EXAMPLE
public class CriteriaPatternDemo {

 public static void main(String[] args) {

 List persons = new ArrayList();

 persons.add(new

 Person("Robert","Male",
"Single"));

 persons.add(new Person("John",

 "Male", "Married"));

 persons.add(new Person("Laura",

 "Female", "Married"));

 persons.add(new Person("Diana",

 "Female", "Single"));

 persons.add(new Person("Mike", "Male",

 "Single"));

 persons.add(new Person("Bobby",

 "Male", "Single"));

Criteria male = new CriteriaMale();

Criteria female = new CriteriaFemale();

Criteria single = new CriteriaSingle();

Criteria singleMale = new

 AndCriteria(single, male);

Criteria singleOrFemale = new

 OrCriteria(single, female);

System.out.println("Males: ");

printPersons(

 male.meetCriteria(persons));

FILTER. EXAMPLE

 System.out.println("Males: ");

 printPersons(male.meetCriteria(persons));

 System.out.println("\nFemales: ");

 printPersons(female.meetCriteria(persons));

 System.out.println("\nSingle Males: ");

 printPersons(singleMale.meetCriteria(persons));

 System.out.println("\nSingle Or Females: ");

 printPersons(singleOrFemale.meetCriteria(persons));

 }

 public static void printPersons(List persons){

 for (Person person : persons) {

 System.out.println("Person : [Name : " + person.getName() + ", Gender : " +

 person.getGender() + ", Marital Status : " + person.getMaritalStatus() + "]");

 }

 }

}

FILTER. EXAMPLE
Males:

Person : [Name : Robert, Gender : Male,
Marital Status : Single]

Person : [Name : John, Gender : Male, Marital
Status : Married]

Person : [Name : Mike, Gender : Male, Marital
Status : Single]

Person : [Name : Bobby, Gender : Male,
Marital Status : Single]

Females:

Person : [Name : Laura, Gender : Female,
Marital Status : Married]

Person : [Name : Diana, Gender : Female,
Marital Status : Single]

Single Males:

Person : [Name : Robert, Gender : Male, Marital
Status : Single]

 Person : [Name : Mike, Gender : Male, Marital
Status : Single]

Person : [Name : Bobby, Gender : Male, Marital
Status : Single]

Single Or Females:

 Person : [Name : Robert, Gender : Male, Marital
Status : Single]

Person : [Name : Diana, Gender : Female, Marital
Status : Single]

Person : [Name : Mike, Gender : Male, Marital
Status : Single]

Person : [Name : Bobby, Gender : Male, Marital
Status : Single]

Person : [Name : Laura, Gender : Female, Marital
Status : Married]

FILTER

JDK example

Stream API

 Criteria API JDBC

