
DESIGN PATTERNS

COURSE 6

PREVIOUS COURSE

 Structural patterns

 Adapter

 Bridge

 Façade

 Flyweight

 Proxy

 Composite

 Decorator

 Behavioral patterns

 Chain of responsibility

CHAIN OF

RESPONSIBILITY

Only one receiver in the chain handles the Request

One or more Receivers in the chain handles the Request

BEHAVIORAL

PATTERNS
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

BEHAVIORAL

PATTERNS
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

COMMAND

Intent

encapsulate a request in an object

allows the parameterization of clients with different requests

allows saving the requests in a queue

Problem

Need to issue requests to objects without knowing anything

about the operation being requested or the receiver of the

request

COMMAND

Command

declares an interface for executing an
operation

ConcreteCommand

defines a binding between a Receiver object
and an action

implements Execute by invoking the
corresponding operation(s) on Receiver

Client

creates a ConcreteCommand object and
sets its receiver

Invoker

asks the command to carry out the request

Receiver

knows how to perform the operations
associated with carrying out the request.

COMMAND

The client (main program) creates a concrete Command object and sets its Receiver.

The Invoker issues a request by calling execute on the Command object. The
concrete Command object invokes operations on its Receiver to carry out the request.

The key idea here is that the concrete command registers itself with the Invoker and
the Invoker calls it back, executing the command on the Receiver.

COMMAND

Example

adding actions to menus in java

Create a class that Extends ActionListerner interface and overwrite
actionPerformed () method

puclic class MyActionHandler extends ActionListener {

 public void actionPerformed(ActionEvent e) {

 Object o = e.getSource();

 if (o = fileNewMenuItem) doFileNewAction();

 else if (o = fileOpenMenuItem) doFileOpenAction();

 else if (o = fileOpenRecentMenuItem) doFileOpenRecentAction();

 else if (o = fileSaveMenuItem) doFileSaveAction();

 // and more ... }

}

FileOpenMenuItem fomi = new FileOpenMenuItem(“OpenFile”)

fomi.addActionListener(new MyActionHandler());

COMMAND

Example

adding actions to menus in java

If we follow the command pattern first we create a command and
after that each menu entry will implement the command

public interface Command { public void execute(); }

public class FileOpenMenuItem extends JMenuItem implements
Command {

 public void execute() { // your business logic goes here }

}

FileOpenMenuItem fomi = new FileOpenMenuItem(“OpenFile”)

fomi.addActionListener(e->{

 Command command = (Command)e.getSource();

 command.execute();

});

COMMAND

Java API examples

ActionListener

Comparator

Runnable / Thread

COMMAND

Applicability

Parameterizes objects depending on the action they must
perform

Specifies or adds in a queue and executes requests at different
moments in time

Offers support for undoable actions (the Execute method can
memorize the state and allow going back to that state)

Structures the system in high level operations that based on
primitive operations

Decouples the object that invokes the action from the object that
performs the action. Due to this usage it is also known as
Producer - Consumer design pattern.

COMMANDER.

EXERCISE

Implement

Undo/redo operation for a TV remote stating from the

following class diagram

COMMAND

Advantages

Command decouples the object that invokes the operation
from the one that knows how to perform it.

Commands are first-class objects. They can be manipulated
and extended like any other object.

You can assemble commands into a composite command. In
general, composite commands are an instance of the
Composite pattern.

It's easy to add new Commands, because you don't have to
change existing classes.

Disadvantages

Proliferation of little classes, that are more readable

BEHAVIORAL

PATTERNS
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

INTERPRETER

Intent

Given a language, define a representation for its grammar

along with an interpreter that uses the representation to

interpret sentences in the language.

Map a domain to a language, the language to a grammar,

and the grammar to a hierarchical object-oriented design

Problem

A class of problems occurs repeatedly in a well-defined and

well-understood domain. If the domain were characterized

with a "language", then problems could be easily solved with

an interpretation "engine"

INTERPRETER.

EXAMPLE

Language translation

SQL parsing

Symbol processing engine

Music

Grammar = musical notes

 Interprets = musicians, playing the music

INTERPRETER.

STRUCTURE

Client.

 Client objects build the tree of expressions that represent the commands to be executed, often with the help of
a parser class.

 The Interpret method of the top item in the tree is then called, passing any context object, to execute all of the
commands in the tree.

Context.

 The context class is used to store any information that needs to be available to all of the expression objects.

 If no global context is required this class is unnecessary.

AbstarctExpression.

 This abstract class is the base class for all expressions.

 It defines the Interpret method, which must be implemented for each subclass.

TerminalExpression.

 Terminal expressions are those that can be interpreted in a single object.

 These are created as concrete subclasses of the AbstarctExpression class.

NonterminalExpression.

 Non-terminal expressions are represented using a concrete subclass of AbstractExpression.

 These expressions are aggregates containing one or more further expressions, each of which may be terminal
or non-terminal.

When a non-terminal expression class's Interpret method is called, the process of interpretation includes calls
to the Interpret method of the expressions it holds.

http://www.blackwasp.co.uk/CSharpMethods.aspx
http://www.blackwasp.co.uk/AbstractClasses.aspx
http://www.blackwasp.co.uk/Inheritance.aspx

INTERPRETER.

EXAMPLE

Musicians are examples of

Interpreters.

The pitch of a sound and its

duration can be represented in

musical notation on a staff.

This notation provides the

language of music.

Musicians playing the music

from the score are able to

reproduce the original pitch

and duration of each sound

represented.

INTERPRETER.

EXAMPLE

Evaluation of a post-fix (Reverse Polish Notation) of an

arithmetic expression

7 3 – 2 1 + *

The result would be?

INTERPRETER.

EXAMPLE

Evaluation of a post-fix (Reverse Polish Notation) of an

arithmetic expression

7 3 – 2 1 + *

The result would be?

12

INTERPRETER.

EXAMPLE

public interface Expression { public int interpret(); }

public class Add implements Expression{

 private final Expression leftExpression;

 private final Expression rightExpression;

 public Add(Expression leftExpression, Expression rightExpression){

 this.leftExpression = leftExpression;

 this.rightExpression = rightExpression;

 }

 @Override

 public int interpret() {

 return leftExpression.interpret() + rightExpression.interpret();

 }

 }

INTERPRETER.

EXAMPLE
public class Product implements Expression{

 private final Expression leftExpression;

 private final Expression rightExpression;

 public Add(Expression leftExpression, Expression rightExpression){

 this.leftExpression = leftExpression;

 this.rightExpression = rightExpression;

 }

 @Override

 public int interpret() {

 return leftExpression.interpret() * rightExpression.interpret();

 }

 }

public class Substract implements Expression{

…

}

INTERPRETER.

EXAMPLE

public class Number implements Expression{

 private final int n;

 public Number(int n){ this.n = n; }

 @Override

 public int interpret() { return n; }

}

INTERPRETER.

EXAMPLE

public class ExpressionUtils {

 public static boolean isOperator(String s) {

 if (s.equals("+") || s.equals("-") || s.equals("*")) return true;

 else return false;

 }

 public static Expression getOperator(String s, Expression left, Expression right) {

 switch (s) {

 case "+": return new Add(left, right);

 case "-": return new Substract(left, right);

 case "*": return new Product(left, right);

 }

 return null;

 }

}

INTERPRETER.

EXAMPLE
public class TestInterpreterPattern {

 public static void main(String[] args) {

 String tokenString = "7 3 - 2 1 + *";

 Stack<Expression> stack = new Stack<>();

 String[] tokenArray = tokenString.split(" ");

 for (String s : tokenArray) {

 if (ExpressionUtils.isOperator(s)) {

 Expression rightExpression = stack.pop(), leftExpression = stack.pop();

 Expression operator = ExpressionUtils.getOperator(s, leftExpression,rightExpression);

 int result = operator.interpret();

 stack.push(new Number(result));

 } else {

 Expression i = new Number(Integer.parseInt(s));

 stack.push(i);

 }

 }

System.out.println("("+tokenString+"): "+stack.pop().interpret());

} }

INTERPRETER

 Interpreter pattern can be used when we can create a

syntax tree for a grammar.

 Interpreter pattern requires a lot of error checking and a

lot of expressions and code to evaluate them, it gets

complicated when the grammar becomes more

complicated and hence hard to maintain and provide

efficiency.

 java.util.Pattern and subclasses of java.text.Format are

some of the examples of interpreter pattern used in JDK.

BEHAVIORAL

PATTERNS
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

ITERATOR

Intent

Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

The C++ and Java standard library abstraction that makes it
possible to decouple collection classes and algorithms.

Problem

An object that provides a standard way to examine all elements of
any collection

Uniform interface for traversing many different data structures
without exposing their implementations

Supports concurrent iteration and element removal

Removes need to know about internal structure of collection or
different methods to access data from different collections

ITERATOR. SUCTURE
 Aggregate

 defines an interface for the
creation of the Iterator
object.

 ConcreteAggregate

 implements this interface,
and returns an instance of
the ConcreteIterator.

 Iterator

 defines the interface for
access and traversal of the
elements

 ConcreteIterator

 implements this interface
while keeping track of the
current position in the
traversal of the Aggregate.

ITERATOR. JDK

EXAMPLE

public interface java.util.Iterator {

 public boolean hasNext();

 public Object next();

 public void remove();

}

public interface java.util.Collection {

 ... // List, Set extend Collection

 public Iterator iterator();

}

public interface java.util.Map {

 ...

 public Set keySet(); // keys,values are Collections

 public Collection values(); // (can call iterator() on them)

}

ITERATOR. JDK

EXAMPLE

 All Java collections have a method iterator that returns an
iterator for the elements of the collection

 Can be used to look through the elements of any kind of
collection (an alternative to for loop)

List list = new ArrayList();

... add some elements ...

for (Iterator itr = list.iterator(); itr.hasNext()) {

 BankAccount ba = (BankAccount)itr.next();

 System.out.println(ba);

}

ITERATOR. EXAMPLE

 Iterate through a list of database query records

interface IIterator{

 public boolean hasNext();

 public Object next();

}

interface IContainer{

 public IIterator createIterator();

}

ITERATOR. EXAMPLE

class RecordCollection implements IContainer{

 private String recordArray[] = {"first","second","third","fourth","fifth"};

 public IIterator createIterator(){

 RecordIterator iterator = new RecordIterator();

 return iterator;

 }

 private class RecordIterator implements IIterator{

 private int index=0;

 public boolean hasNext(){

 if (index < recordArray.length) return true;

 else return false;

 }

 public Object next(){

 if (this.hasNext()) return recordArray[index++];

 else return null;

 }

 }

}

ITERATOR. EXAMPLE

 Client class

public class TestIterator {

 public static void main(String[] args) {

 RecordCollection recordCollection = new
RecordCollection();

 IIterator iter = recordCollection.createIterator();

 while(iter.hasNext()){

 System.out.println(iter.next());

 }

 }

}

ITERATOR

 Consequences

 It supports variations in the traversal of an aggregate. Complex
aggregates may be traversed in many ways. For example, code
generation and semantic checking involve traversing parse trees.
Code generation may traverse the parse tree inorder or preorder.
Iterators make it easy to change the traversal algorithm: Just
replace the iterator instance with a different one. You can also
define Iterator subclasses to support new traversals.

 Iterators simplify the Aggregate interface. Iterator's traversal
interface obviates the need for a similar interface in Aggregate,
thereby simplifying the aggregate's interface.

 More than one traversal can be pending on an aggregate. An
iterator keeps track of its own traversal state. Therefore you can
have more than one traversal in progress at once.

BEHAVIORAL

PATTERNS
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

MEDIATOR

 Intent

 Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their
interaction independently.

 Design an intermediary to decouple many peers.

 Promote the many-to-many relationships between interacting
peers to "full object status".

 Problem

 We want to design reusable components, but dependencies
between the potentially reusable pieces demonstrates the
"spaghetti code" phenomenon (trying to scoop a single serving
results in an "all or nothing clump").

MEDIATOR. EXAMPLES

 GUI components

 Dialog window is a collection of graphic and non-graphic controls

 Dialog class provides the mechanism to facilitate the interaction between
controls

 JMS (JAVA MESSAGE SERVICE)

 Allows applications to subscribe and publish data to other applications

 Chat application

 In a chat application we can have several participants

 Not a good idea to connect each participant to all the other

 Solution is to have a hub where all participants will connect

 Airport control tower

 The tower looks after who can take off and land - all communications are
done from the airplane to control tower, rather than having plane-to-plane
communication.

MEDIATOR.

STRUCTURE
Mediator

defines an interface for
communicating with
Colleague objects

ConcreteMediator

knows and maintains its
colleagues

implements cooperative
behavior by coordinating
Colleagues

Colleague classes

each Colleague class knows
its Mediator object

each colleague
communicates with its
mediator whenever it would
have otherwise
communicated with another
colleague

MEDIATOR. EXAMPLE
 GUI interface mediator

MEDIATOR. EXAMPLE

 Chatroom application

//Mediator interface

public interface Mediator {

 public void send(String message, Colleague colleague);

}

//Colleage interface

public abstract Colleague{

 private Mediator mediator;

 public Colleague(Mediator m) { mediator = m; }

 //send a message via the mediator

 public void send(String message) { mediator.send(message, this); }

 //get access to the mediator

 public Mediator getMediator() {return mediator;}

 public abstract void receive(String message);

}

MEDIATOR. EXAMPLE

public class ApplicationMediator implements Mediator {

 private ArrayList<Colleague> colleagues;

 public ApplicationMediator() { colleagues = new ArrayList<Colleague>(); }

 public void addColleague(Colleague colleague) { colleagues.add(colleague); }

 public void send(String message, Colleague originator) {

 //let all other screens know that this screen has changed

 for(Colleague colleague: colleagues) {

 //don't tell ourselves

 if(colleague != originator) {

 colleage.receive(message);

 }

 } } }

MEDIATOR. EXAMPLE

// concrete colleague

public class ConcreteColleague extends Colleague {

 public void receive(String message) {

 System.out.println("Colleague Received: " + message);

 }

}

// concrete colleague

public class MobileColleague extends Colleague {

 public void receive(String message) {

 System.out.println("Mobile Received: " + message);

 }

}

MEDIATOR. EXAMPLE

// client class

public class Client {

 public static void main(String[] args) {

 ApplicationMediator mediator = new ApplicationMediator();

 ConcreteColleague desktop = new ConcreteColleague(mediator);

 ConcreteColleague mobile = new MobileColleague(mediator);

 mediator.addColleague(desktop);

 mediator.addColleague(mobile);

 desktop.send("Hello World");

 mobile.send("Hello");

 }

}

MEDIATOR

 When to use mediator pattern?

 When one or more objects must interact with several

different objects.

 When centralized control is desired

 When simple object need to communicate in complex

ways.

 When you want to reuse an object that frequently interacts

with other objects

MEDIATOR

Benefits

Increases the reusability of the objects supported by the Mediator
by decoupling them from the system.

 Simplfies maintenance of the system by centralizing control logic.

 Simplifies and reduces the variety of messages sent between
objects in the system.

 Partition a system into pieces or small objects.

 Centralize control to manipulate participating objects.

 Most of the complexity involved in managing dependencies is
shifted from other objects to the Mediator object.This makes other
objects easier to implement and maintain.

Disadvantages:

Without proper design, the Mediator object itself can become
overly complex.

BEHAVIORAL

PATTERNS
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

MEMENTO

 Intent

 Without violating encapsulation, capture and externalize an

object's internal state so that the object can be returned to

this state later.

 Problem

 Need to restore an object back to its previous state

MEMENTO. EXAMPLES

 Undo and restore operations in most software.

 Database transactions

 A transaction can contain multiple operations on the database

 Each operation can succeed or fail

 A transaction guarantees that if all operations succeed, the
transaction would commit and would be final

 Rolling back mechanism uses the memento design pattern

 Browser history

 Persistency

 save / load state between executions of program

MEMENTO.

STRUCTURE

 Originator - the object that knows how to save itself

The state variable contains information that represents the state of the Originator
object. This is the variable that will be saved and restored.

The CreateMemento method is used to save the state of the Originator.

The SetMemento method restores the Originator by accepting a Memento object,
unpackage it, and sets its state variable using the state variable from the
Memento

 Caretaker - the object that knows why and when the Originator
needs to save and restore itself.

 Memento stores the historical information of the Originator. The
information is stored in its state variable.

MEMENTO

Organizer

 creates a memento containg a snapshot of its current
state and uses the memento to restore its internal state

Memento

 hods internal state of organizer

Caretaker

 responsable for kipping the memento

MEMENTO

class Originator {

 private String state;

 public void set(String state) {

 System.out.println("Originator: Setting state to" + state);

 this.state = state;

 }

 public Object saveToMemento() {

 System.out.println("Originator: Saving to memento");

 return new Memento(state);

 }

//continue on next page

MEMENTO

public void restoreFromMemento(Object o) {

 if (o instanceof Memento) {

 Memento m = (Memento) o;

 state = m.getSavedState();

 System.out.println("Originator:State after restoring from Memento:" +
state);

 }

 }

private static class Memento {

 private String state;

 public Memento(String stateToSave) { state = stateToSave; }

 public String getSavedState() { return state; }

 }

}

MEMENTO

class CareTaker {

 private List<Object> savedStates = new ArrayList<>();

 public void addMemento(Object m) {

 savedStates.add(m);

 }

 public Object getMemento(int index) {

 return savedStates.get(index);

 }

}

MEMENTO

public class MementoPatternExample {

 public static void main(String[] args) {

 CareTaker careTaker = new CareTaker();

 Originator originator = new Originator();

 originator.set("State1");

 originator.set("State2");

 careTaker.addMemento(originator.saveToMemento());

 originator.set("State 3");

 careTaker.addMemento(originator.saveToMemento());

 originator.set("State 4");

 originator.restoreFromMemento(careTaker.getMemento(0));

 }

}

MEMENTO

Benefits

Since object oriented programming dictates that objects should
encapsulate their state it would violate this law if objects’ internal variables
were accessible to external objects. The memento pattern provides a way
of recording the internal state of an object in a separate object without
violating this law

The memento eliminates the need for multiple creation of the same object
for the sole purpose of saving its state.

The memento simplifies the Originator since the responsibility of managing
Memento storage is no longer centralized at the Originator but rather
distributed among the Caretakers

Drawbacks

The Memento object must provide two types of interfaces: a narrow
interface to the Caretaker and a wide interface to the Originator. That is, it
must acts like a black box to everything except for the class that created it.

 Using Mementos might be expensive if the Originator must store a large
portion of its state information in the Memento or if the Caretakers
constantly request and return the Mementos to the Originator.

