
DESIGN PATTERNS

COURSE 5

PREVIOUS COURSE

 Creational Patterns

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects
efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

CONTENT

 Structural patterns

 Adapter

 Bridge

 Façade

 Flyweight

 Proxy

 Composite

 Decorator

 Behavioral patterns

STRUCTURAL PATTERNS

Help identify and describe relationships between entities

 Address how classes and objects are composed to form

large structures

Class-oriented patterns use inheritance to compose

interfaces or implementations

Object-oriented patterns describe ways to compose objects

to realize new functionality, possibly by changing the

composition at run-time

Example

Proxy in distributed programming

Bridge in JDBC drivers

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

PROXY

 Intent

 Provide a surrogate or placeholder for another object to control

access to it.

 Use an extra level of indirection to support distributed,

controlled, or intelligent access.

 Add a wrapper and delegation to protect the real component

from undue complexity.

 Problem

 You need to support resource-hungry objects, and you do not

want to instantiate such objects unless and until they are

actually requested by the client.

PROXY. STRUCTURE

 Subject

 Interface implemented by the RealSubject
and representing its services. The
interface must be implemented by the
proxy as well so that the proxy can be
used in any location where the
RealSubject can be used.

 Proxy

 Maintains a reference that allows the
Proxy to access the RealSubject.

 Implements the same interface
implemented by the RealSubject so that
the Proxy can be substituted for the
RealSubject.

 Controls access to the RealSubject and
may be responsible for its creation and
deletion.

 Other responsibilities depend on the kind
of proxy.

 RealSubject

 The real object that the proxy represents

PROXY

 Proxy is providing a barrier between the client and the real

implementation.

PROXY. EXAMPLE

 Image viewer program

that lists and displays

high resolution

photos.

 The program has to

show a list of all

photos however it

does not need to

display the actual

photo until the user

selects an image

item from a list.

PROXY. EXAMPLE
/**

* Subject Interface

*/

public interface Image {

 public void showImage();

}

/*** Proxy */

public class ImageProxy implements Image {

 /** Private Proxy data */

 private String imageFilePath;

 /** Reference to RealSubject */

 private Image proxifiedImage;

 public ImageProxy(String imageFilePath) {

 this.imageFilePath= imageFilePath;

 }

 @Override

 public void showImage() {

 // create the Image Object only when the

 // image is required to be shown

 proxifiedImage = new

 HighResolutionImage(imageFilePath);

 // now call showImage on realSubject

 proxifiedImage.showImage();

 }

}

PROXY. EXAMPLE
/**

RealSubject

*/

public class HighResolutionImage implements Image {

 public HighResolutionImage(String imageFilePath) {

 loadImage(imageFilePath);

 }

 private void loadImage(String imageFilePath) {

 // load Image from disk into memory

 // this is heavy and costly operation

 }

 @Override

 public void showImage() {

 // Actual Image rendering logic

 }

 }

PROXY. EXAMPLE

/** * Image Viewer program */

public class ImageViewer {

 public static void main(String[] args) {

 // assuming that the user selects a folder that has 3 images

 //create the 3 images

 Image highResolutionImage1 =

 new ImageProxy("sample/veryHighResPhoto1.jpeg");

 Image highResolutionImage2 =

 new ImageProxy("sample/veryHighResPhoto2.jpeg");

 Image highResolutionImage3 =

 new ImageProxy("sample/veryHighResPhoto3.jpeg");

 // assume that the user clicks on Image one item in a list

 // this would cause the program to call showImage()

 // for that image only

 // note that in this case only image one

 // was loaded into memory

 highResolutionImage1.showImage();

// consider using the high resolution image object directly

Image highResolutionImageNoProxy1 = new

HighResolutionImage("sample/veryHighResPhoto1.jpeg");

Image highResolutionImageNoProxy2 = new

HighResolutionImage("sample/veryHighResPhoto2.jpeg");

Image highResolutionImageBoProxy3 = new

HighResolutionImage("sample/veryHighResPhoto3.jpeg");

// assume that the user selects image two item

 // from images list

highResolutionImageNoProxy2.showImage();

// note that in this case all images have

 // been loaded into memory

// and not all have been actually displayed

// this is a waste of memory resources

}

 }

PROXY. EXAMPLE

 Java API Usage

 java.rmi library

 “Remote Method Invocation”

 Allows objects in separate virtual machines to be used as if

local (language specific)

 Security Proxies that controls access to objects can be

found in many object oriented languages including java,

C#, C++

PROXY. TYPES

Remote Proxy

Provides a reference to an object located in a different address space on the same or
different machine

Virtual Proxy

Allows the creation of a memory intensive object on demand. The object will not be
created until it is really needed.

 Copy-On-Write Proxy

Defers copying (cloning) a target object until required by client actions. Really a form of
virtual proxy.

Protection (Access) Proxy

 Provides different clients with different levels of access to a target object

Cache Proxy

 Provides temporary storage of the results of expensive target operations so that
multiple clients can share the results

 Firewall Proxy

 Protects targets from bad clients

 Synchronization Proxy

 Provides multiple accesses to a target object

 Smart Reference Proxy

 Provides additional actions whenever a target object is referenced such as counting
the number of references to the object

PROXY

 When to use

 The object being represented is external to the system.

 Objects need to be created on demand.

 Access control for the original object is required

 Added functionality is required when an object is accessed

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

COMPOSITE

Intent

Compose objects into tree structures to represent whole-part
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Recursive composition

"Directories contain entries, each of which could be a directory."

1-to-many "has a" up the "is a" hierarchy

Problem

Application needs to manipulate a hierarchical collection of
"primitive" and "composite" objects. Processing of a primitive
object is handled one way, and processing of a composite object
is handled differently. Having to query the "type" of each object
before attempting to process it is not desirable.

COMPOSITE.

STRUCTURE

Component

declares the interface for objects in the composition.

 implements default behavior for the interface common to all classes, as
appropriate.

declares an interface for accessing and managing its child components.

 (optional) defines an interface for accessing a component's parent in the
recursive structure, and implements it if that's appropriate.

Leaf

 represents leaf objects in the composition. A leaf has no children.

defines behavior for primitive objects in the composition.

Composite

defines behavior for components having children.

stores child components.

 implements child-related operations in the Component interface.

Client

manipulates objects in the composition through the Component interface.

COMPOSITE.

EXAMPLE

File System

XML

Html tags

Hierarchy of an office

starting from the president to employees

COMPOSITE.

EXAMPLE

File System

Stating from the following abstraction how you would

refectory in order to follow the composite pattern?

class File {

 public File(String name) {

 m_name = name;

 }

 public void ls() {

 System.out.println(Composite.g_indent + m_name);

 }

 private String m_name;

}

COMPOSITE.

EXAMPLE

class Directory {

 public Directory(String name) { m_name = name; }

 public void add(Object obj) { m_files.add(obj); }

 public void ls() {

 System.out.println(m_name);

 for (int i = 0; i < m_files.size(); ++i) {

 Object obj = m_files.get(i);

 // Recover the type of this object

 if (obj.getClass().getName().equals("Directory")) ((Directory)obj).ls();

 else ((File)obj).ls();

 }

 }

 private String m_name;

 private ArrayList<Object> m_files = new ArrayList<>();

}

COMPOSITE.

EXAMPLE

class CompositeDemo {

 public static void main(String[] args) {

 Directory one = new Directory("dir111"), two = new Directory("dir222"), thr =
new Directory("dir333");

 File a = new File("a"), b = new File("b"), c = new File("c"), d = new File("d"), e
= new File("e");

 one.add(a);

 one.add(two);

 one.add(b);

 two.add(c);

 two.add(d);

 two.add(thr);

 thr.add(e);

 one.ls();

} }

COMPOSITE.

EXAMPLE. REFACTOR

interface AbstractFile { public void ls(); }

class File implements AbstractFile { … }

class Directory implements AbstractFile {

 public void ls() {

 for (int i = 0; i < m_files.size(); ++i) {

 // Leverage the "lowest common denominator"

 AbstractFile obj = m_files.get(i);

 obj.ls();

 }

 private ArrayList< AbstractFile> m_files = new ArrayList<>();

…

}

COMPOSITE

Propose a implementation of composite pattern for the

following examples

Html tags

Hierarchy of an office

starting from the president to employees

COMPOSITE

When to use Composite Pattern

When you want to represent part-whole hierarchies of

objects.

When you want clients to be able to ignore the difference

between compositions of objects and individual objects.

Clients will treat all objects in the composite structure

uniformly.

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

DECORATOR

Intent

Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for

extending functionality.

Problem

Want to add properties to an existing object

Add borders or scrollbars to a GUI component

Add headers and footers to an advertisement

Add stream functionality such as reading a line of input or

compressing a file before sending it over the wire

DECORATOR

How could we design the following example?

An automated machine that prepares drinks.

For a drink we have the following base drinks: coffee, tee,

espresso, decaf

And the following ingredients: milk, mocha, rum

Based on the base drink and ingredients that are chose in

order to prepare a drink the price of the drink varies

DECORATOR

<<abstract>>

DRINK

COFFEE TEE EXPRESO DEDACF

Drink classes hierarchy

DECORATOR
<<abstract>>

DRINK

getDescription()

getCost()

COFFEE TEE EXPRESO DEDACF

Drink classes hierarchy, adding methods to display the description and cost

How we add

ingredients?

DECORATOR

How to add ingredients?

Member fields to Drink class

Possible problems?

Other variants?

DECORATOR

How to add ingredients?

Member fields to Drink class

Possible problems?

Code changes in the superclass when a new ingredient is

added

Prices can change => code change

Double the amount of milk

Other variants?

RUM

cost()

 MILK

cost()

DECORATOR

How to add ingredients?

Solution using decorator

start from a base drink and add ingredients

TEE

cost()

TEE

cost()

 MILK

cost()

TEE

cost()

DECORATOR.

STRUCTURE

Component

defines the interface for objects that can have

responsibilities added to them dynamically.

ConcreteComponent

defines an object to which additional

responsibilities can be attached.

Decorator

maintains a reference to a Component object

and defines an interface that conforms to

Component's interface.

ConcreteDecorator

adds responsibilities to the component.

DECORATOR.

EXAMPLE
<<abstract>>

DRINK

getDescription()

getCost()

COFFEE

TEE EXPRESO

DEDACF

<<interdace>>

IgradientDecorator

MILK RUM

MOCHA

DECORATOR.

EXAMPLE

DRINK

public abstract class Drink{

 String description = "Unknown Drink";

 public String getDescription () {

 // already implemented

 return description;

 }

 public abstract double cost(); // Need to

implement cost()

}

INGREDIENT

public abstract class IngredientDecorator

 extends Drink{

}

DECORATOR.

EXAMPLE

DRINK

public class Tee extends Drink{

 public Tee() {

 description = “Tee";

 }

 public double cost() {

 return .89;

 }

}

INGREDIENT

public class Mocha extends IngredientDecorator{

 Drink drink;

 public Mocha(Drink drink) {

 this.drink = drink;

 }

 public String getDescription () {

 return drink.getDescription() + ", Mocha";

 }

 public double cost() {

 return .20 + drink.cost ();

 }

}

DECORATOR.

EXAMPLE

Public class Client{

public static void main(String args []) {

 // espresso order, no condiments

 Drink drink= new Espresso();

 System.out.println(drink.getDescription() + " $" + drink.cost());

 Drink drink2 = new Coffee(); //get a Coffee with milk

 drink2 = new Milk(drink2);

 drink2 = new Milk(drink2); // wrap it with Milk

 System.out.println(drink2.getDescription() +" $" +drink2.cost());

 Drink drink3 = new Tee(); // get a Tee

 drink3 = new Milk(drink3); // wrap with Milk

 drink3 = new Rum(drink3); // wrap with Rum

 System.out.println(drink3.getDescription() + " $" + drink3.cost())

}

}

DECORATOR.

EXAMPLES

Java I/O

InputStreamReader decorates InputStream

 Bridge from byte streams to character streams: It reads bytes and
translates them into characters using the specified character encoding

BufferReader decorates InputStreamReader

 Read text from a character - input stream, buffering characters so as to
provide for the efficient reading of characters, arrays, and lines.

 BufferedReader keyboard = new BufferedReader(new
InputStreamReader(System.in));

Java Swing

Any JComponent can have 1 or more borders

 Borders are useful objects that, while not themselves components, know
how to draw the edges of Swing components

 Borders are useful not only for drawing lines and fancy edges, but also for
providing titles and empty space around components

DECORATOR

Advantages

It is flexible than inheritance because inheritance adds
responsibility at compile time but decorator pattern adds at
run time.

We can have any number of decorators and also in any order.

It extends functionality of object without affecting any other
object

Disadvantages

The main disadvantage of decorator design pattern is code
maintainability because this pattern creates lots of similar
decorators which are sometimes hard to maintain and
distinguish.

BEHAVIORAL

PATTERNS

Behavioral design patterns are design patterns that identify common
communication patterns between objects and realize these patterns

Chain of responsibility

A way of passing a request between a chain of objects

Command

Encapsulate a command request as an object

Interpreter

A way to include language elements in a program

Iterator

Sequentially access the elements of a collection

Mediator

Defines simplified communication between classes

Memento

Capture and restore an object's internal state

BEHAVIORAL

PATTERNS

Null Object

Designed to act as a default value of an object

Observer

A way of notifying change to a number of classes

State

Alter an object's behavior when its state changes

Strategy

Encapsulates an algorithm inside a class

Template method

Defer the exact steps of an algorithm to a subclass

Visitor

Defines a new operation to a class without change

BEHAVIORAL

PATTERNS
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

CHAIN OF

RESPONSIBILITY

Intent

Avoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request. Chain the
receiving objects and pass the request along the chain until an
object handles it.

Launch-and-leave requests with a single processing pipeline that
contains many possible handlers.

An object - oriented linked list with recursive traversal.

Problem

There is a potentially variable number of "handler" or
"processing element" or "node" objects, and a stream of requests
that must be handled. Need to efficiently process the requests
without hard-wiring handler relationships and precedence, or
request-to-handler mappings

CHAIN OF

RESPONSIBILITY

CHAIN OF

RESPONSIBILITY

Only one receiver in the chain handles the Request

One or more Receivers in the chain handles the Request

CHAIN OF

RESPONSIBILITY

Handler

defines an interface for handling the
requests

(optional) implements the successor link

ConcreteHandler

handles requests it is responsible for

can access its successor

if the ConcreteHandler can handle the
request, it does so; otherwise it forwards the
request to its successor

Client

initiates the request to a ConcreteHandler
object on the chain

CHAIN OF

RESPONSIBILITY

Examples

Designing the software that uses a set of GUI classes where it is needed
to propagate GUI events from one object to another

 When an event, such as the pressing of a key or the click of the mouse,
the event is needed to be sent to the object that has generated it and also
to the object or objects that will handle it.

Designing the software for a system that approves the purchasing
requests.

 In this case, the values of purchase are divided into categories, each
having its own approval authority. The approval authority for a given value
could change at any time and the system should be flexible enough to
handle the situation.

Designing a shipping system for electronic orders
 The steps to complete and handle the order differs form one order to

another based on the customer, the size of the order, the way of shipment,
destination and more other reasons. The business logic changes also as
special cases appear, needing the system to be able to handle all cases.

CHAIN OF

RESPONSIBILITY

Simple chain of responsibility example

Transmitting a message to a planet

CHAIN OF

RESPONSIBILITY

public abstract class PlanetHandler {

 PlanetHandler successor;

 public void setSuccessor(PlanetHandler successor) {

 this.successor = successor;

 }

 public abstract void handleRequest(PlanetEnum request);

}

public enum PlanetEnum { MERCURY, VENUS, EARTH,

MARS, JUPITER, SATURN, URANUS, NEPTUNE; }

CHAIN OF

RESPONSIBILITY

public class MercuryHandler extends PlanetHandler {

 public void handleRequest(PlanetEnum request) {

 if (request == PlanetEnum.MERCURY) {

 System.out.println("MercuryHandler handles " + request);

 System.out.println("Mercury is hot.\n");

 } else {

 System.out.println("MercuryHandler doesn't handle " + request);

 if (successor != null) {

 successor.handleRequest(request);

 }

 }

 }

}

CHAIN OF

RESPONSIBILITY

public class VenusHandler extends PlanetHandler {

 public void handleRequest(PlanetEnum request) {

 if (request == PlanetEnum.VENUS) {

 System.out.println(“VenusHandler handles " + request);

 System.out.println(“Venus is poisonous.\n");

 } else {

 System.out.println(“VenusHandler doesn't handle " + request);

 if (successor != null) {

 successor.handleRequest(request);

 }

 }

 }

}

CHAIN OF

RESPONSIBILITY

public class EarthHandler extends PlanetHandler {

 public void handleRequest(PlanetEnum request) {

 if (request == PlanetEnum.EARTH) {

 System.out.println(“EarthsHandler handles " + request);

 System.out.println(“Earth is comfortable.\n");

 } else {

 System.out.println(“EarthHandler doesn't handle " + request);

 if (successor != null) {

 successor.handleRequest(request);

 }

 }

 }

}

CHAIN OF

RESPONSIBILITY

CLIENT

public class Demo {

 public static void main(String[] args) {

 PlanetHandler chain = setUpChain();

 chain.handleRequest(PlanetEnum.VENUS);

 chain.handleRequest(PlanetEnum.MERCURY);

 chain.handleRequest(PlanetEnum.EARTH);

 chain.handleRequest(PlanetEnum.JUPITER);

 }

 public static PlanetHandler setUpChain() {

 PlanetHandler mercuryHandler = new MercuryHandler();

 PlanetHandler venusHandler = new VenusHandler();

 PlanetHandler earthHandler = new EarthHandler();

 mercuryHandler.setSuccessor(venusHandler);

 venusHandler.setSuccessor(earthHandler);

 return mercuryHandler;

}

OUTPUT

MercuryHandler doesn't handle VENUS

VenusHandler handles VENUS

Venus is poisonous.

MercuryHandler handles MERCURY

Mercury is hot.

MercuryHandler doesn't handle EARTH

VenusHandler doesn't handle EARTH

EarthHandler handles EARTH

Earth is comfortable.

 MercuryHandler doesn't handle JUPITER

VenusHandler doesn't handle JUPITER

EarthHandler doesn't handle JUPITER

CHAIN OF

RESPONSIBILITY

Propose a chain of responsibility pattern implementation

for ATM problem

CHAIN OF

RESPONSIBILITY

Benefits

Decoupling of senders and receivers

Added flexibility

Sender doesn’t need to know specifically who the handlers

are

Disadvantages

Client can’t explicitly specify who handles a request

No guarantee of request being handled (request falls off end

of chain)

CHAIN OF

RESPONSIBILITY

JDK Example

try catch block

javax.servlet.Filter#doFilter()

java.util.logging.Logger#log

BEHAVIORAL

PATTERNS
Chain of responsibility

 A way of passing a request between
a chain of objects

Command

 Encapsulate a command request as
an object

Interpreter

 A way to include language elements
in a program

Iterator

 Sequentially access the elements of
a collection

Mediator

 Defines simplified communication
between classes

Memento

 Capture and restore an object's
internal state

Null Object

 Designed to act as a default value
of an object

Observer

 A way of notifying change to a
number of classes

State

 Alter an object's behavior when its
state changes

Strategy

 Encapsulates an algorithm inside a
class

Template method

 Defer the exact steps of an
algorithm to a subclass

Visitor

 Defines a new operation to a class
without change

COMMAND

Intent

encapsulate a request in an object

allows the parameterization of clients with different requests

allows saving the requests in a queue

Problem

Need to issue requests to objects without knowing anything

about the operation being requested or the receiver of the

request

COMMAND

Command

declares an interface for executing an
operation

ConcreteCommand

defines a binding between a Receiver object
and an action

implements Execute by invoking the
corresponding operation(s) on Receiver

Client

creates a ConcreteCommand object and
sets its receiver

Invoker

asks the command to carry out the request

Receiver

knows how to perform the operations
associated with carrying out the request.

COMMAND

The client (main program) creates a concrete Command object and sets its Receiver.

The Invoker issues a request by calling execute on the Command object. The
concrete Command object invokes operations on its Receiver to carry out the request.

The key idea here is that the concrete command registers itself with the Invoker and
the Invoker calls it back, executing the command on the Receiver.

COMMAND

Example

adding actions to menus in java

Create a class that Extends ActionListerner interface and overwrite
actionPerformed () method

puclic class MyActionHandler extends ActionListener {

 public void actionPerformed(ActionEvent e) {

 Object o = e.getSource();

 if (o = fileNewMenuItem) doFileNewAction();

 else if (o = fileOpenMenuItem) doFileOpenAction();

 else if (o = fileOpenRecentMenuItem) doFileOpenRecentAction();

 else if (o = fileSaveMenuItem) doFileSaveAction();

 // and more ... }

}

FileOpenMenuItem fomi = new FileOpenMenuItem(“OpenFile”)

fomi.addActionListener(new MyActionHandler());

COMMAND

Example

adding actions to menus in java

If we follow the command pattern first we create a command and
after that each menu entry will implement the command

public interface Command { public void execute(); }

public class FileOpenMenuItem extends JMenuItem implements
Command {

 public void execute() { // your business logic goes here }

}

FileOpenMenuItem fomi = new FileOpenMenuItem(“OpenFile”)

fomi.addActionListener(e->{

 Command command = (Command)e.getSource();

 command.execute();

});

COMMAND

Java API examples

ActionListener

Comparator

Runnable / Thread

COMMAND

Applicability

Parameterizes objects depending on the action they must
perform

Specifies or adds in a queue and executes requests at different
moments in time

Offers support for undoable actions (the Execute method can
memorize the state and allow going back to that state)

Structures the system in high level operations that based on
primitive operations

Decouples the object that invokes the action from the object that
performs the action. Due to this usage it is also known as
Producer - Consumer design pattern.

COMMANDER.

EXERCISE

Implement

Undo/redo operation for a TV remote stating from the

following class diagram

COMMAND

Advantages

Command decouples the object that invokes the operation
from the one that knows how to perform it.

Commands are first-class objects. They can be manipulated
and extended like any other object.

You can assemble commands into a composite command. In
general, composite commands are an instance of the
Composite pattern.

It's easy to add new Commands, because you don't have to
change existing classes.

Disadvantages

Proliferation of little classes, that are more readable

