
DESIGN PATTERNS

COURSE 4

PREVIOUS COURSE

 Creational Patterns

 Factory Method defines an interface for creating objects,

but lets subclasses decide which classes to instantiate

 Abstract Factory provides an interface for creating families

of related objects, without specifying concrete classes

 Builder separates the construction of a complex object from

its representation, so that the same construction process

can create different representation

 Prototype specifies the kind of objects to create using a

prototypical instances

 Singleton ensures that a class has only one instance, and

provides a global point of access to that instance

CONTENT

 Structural patterns

 Adapter

 Bridge

 Façade

 Flyweight

 Proxy

 Composite

 Decorator

STRUCTURAL PATTERNS

Help identify and describe relationships between entities

 Address how classes and objects are composed to form

large structures

Class-oriented patterns use inheritance to compose

interfaces or implementations

Object-oriented patterns describe ways to compose objects

to realize new functionality, possibly by changing the

composition at run-time

Example

Proxy in distributed programming

Bridge in JDBC drivers

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

ADAPTER

Indent

Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

Wrap an existing class with a new interface.

Also Known As

Wrapper

Problem

Sometimes a toolkit or class library can not be used because its
interface is incompatible with the interface required by an application

We can not change the library interface, since we may not have its
source code

Even if we did have the source code, we probably should not change the
library for each domain-specific application

Target

defines the domain-specific interface that Client uses.

 Adapter

 adapts the interface Adaptee to the Target interface.

 Adaptee

 defines an existing interface that needs adapting.

 Client

collaborates with objects conforming to the Target interface

ADAPTER

STRUCTURE

ADAPTER.

Client is concerned it's just calling the request method of the Target

interface, which the Adapter has implemented.

In the background however, the Adapter knows that to return the right

result, it needs to call a different method, specificAdapteeRequest, on the

Adaptee.

ADAPTER. EXAMPLE

 Eclipse plug-ins

For a particular object to contribute to the Properties view, adapters are
used display the objects data.

The view itself doesn't need to know anything about the object the it is
displaying properties for.

ADAPTER

 Applicability

Use the Adapter pattern when
 You want to use an existing class, and its interface does not match the

one you need

 You want to create a reusable class that cooperates with unrelated
classes with incompatible interfaces

2 types of implementations

Class adapter (suitable for programming languages that allow multiple
inheritance)

 Concrete Adapter class

 Unknown Adaptee subclasses might cause problem

 Overloads Adaptee behavior

 Introduces only one object

Object adapter
 Adapter can service many different Adaptees

 May require the creation of Adaptee subclasses and referencing those
objects

ADAPTER

How much adapting should be done?

Simple interface conversion that just changes operation names
and order of arguments

Totally different set of operations

When to use adapter?

you want to use an existing class, and its interface does not
match the one you need

you want to create a reusable class that cooperates with
unrelated or unforeseen classes, that is, classes that don't
necessarily have compatible interfaces.

you have several subclasses and would like to adapt some of
their operations. Use Object Adapter to adapt their parent class
instead of adapting all subclasses

ADAPTER EXAMPLE 1

 Consider that we have a third party library that provides print string
functionality through PrintString class = adaptee

public class PrintString {

 public void print(String s) {

 System.out.println(s);

 }

}

 Client deals with ArrayList<String> but not with string.

 provided a PrintableList interface that expects the client input.This is our
target = target

public interface PrintableList {

 void printList(ArrayList<String> list);

}

 Clients should see the printable list

ADAPTER EXAMPLE 1
 Adapter pattern

public class PrintableListAdapter implements PrintableList{

 public void printList(ArrayList<String> list) {

//Converting ArrayList<String> to String so that

// we can pass String to adaptee class

 String listString = "";

 for (String s : list) {

 listString += s + "\t";

 }

 // instantiating adaptee class

 PrintString printString=new PrintString();

 ps.print(listString);

 }

}

 Client

public class AdapterDesignPatternMain {

 public static void main(String[] args)

 {

 ArrayList<String> list=new

 ArrayList<String>();

 list.add("one");

 list.add("two");

 list.add("three");

 PrintableList pl=new

 PrintableListAdapter();

 pl.printList(list);

 }

}

ADAPTER EXAMPLE 2

 We have the following 3th party library = adaptee

public class CelciusReporter {

 double temperatureInC;

 public CelciusReporter() {

 }

 public double getTemperature() {

 return temperatureInC;

 }

 public void setTemperature(double temperatureInC) {

 this.temperatureInC = temperatureInC;

 }

}

ADAPTER EXAMPLE 2

 Target interface

public interface TemperatureInfo {

 public double getTemperatureInF();

 public void setTemperatureInF(double temperatureInF);

 public double getTemperatureInC();

 public void setTemperatureInC(double temperatureInC);

}

ADAPTER EXAMPLE 2

 Propose a way to create an adapter using

 inderitance

 composition

 Hellper methos that allows transormation from celcius in

farenheit

 private double fToC(double f) {

 return ((f - 32) * 5 / 9);

 }

 private double cToF(double c) {

 return ((c * 9 / 5) + 32);

 }

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

BRIDGE

 Intent

 Separate a (logical) abstraction interface from its (physical)

implementation(s)

 Allows different implementations of an interface to be

decided upon dynamically.

 Applicability

 When interface & implementation should vary

independently

 Require a uniform interface to interchangeable class

hierarchies

BRIDGE

Can this hierarchy be simplified and easy to understand? How?

BRIDGE

BRIDGE. STRUCTURE

 Abstraction

 defines the abstraction's
interface

 maintains a reference to the
Implementor

 RefinedAbstraction

 extends abstraction interface

 Implementor

 defines interface for
implementations

 ConcreteImplementor

 implements Implementor
interface, ie defines an
implementation

BRIDGE. EXAMPLE

 Graphical User Interface Frameworks.

 Use the bridge pattern to separate abstractions from

platform specific implementation.

 GUI frameworks separate a Window abstraction from a

Window implementation for Linux or Mac OS using the

bridge pattern.

 Object Persistence API.

 Many implementations depending on the presence or

absence of a relational database, a file system, as well as

on the underlying operating system

BRIDGE. EXAMPLE

IMPLEMENTATION
public abstract class Car {

 private CarManufator manufactor;

 public Car (CarManufator manufactor) {

 this.manufactor = manufactor

 }

}

public interface CarManufactor{

 public void getManufactor();

}

public class Ford implements

 CarManufactor{

 public void getManufactor(){

 System.out.print(“Ford producer”);

 }

}

public class Toyota implements

 CarManufactor{

 public void getManufactor(){

 System.out.print(“Toyota producer”);

 }

}

BRIDGE. EXAMPLE

IMPLEMENTATION
public class Sporty extends Car {

 public Sporty(CarManufator manufactor) {

 super(manufactor);

System.out.println(manufactor.getManufactor()

 +“ for Sporty car”);

 }

}

public class Truck extends Car {

 public Truck(CarManufator manufactor) {

 super(manufactor);

System.out.println(manufactor.getManufactor()

 + “ for Truck car”);

 }

}

public class Client {

 public static void main(String
args[]){

 CarManufator mFord = new
Ford();

 CarManufator mToyota = new

Toyota();

 Car sportyFord = new

Sporty(mFord);

 Car sportyToyota = new

Sporty(mToyota);

 Car truckFord = new
Truck(mFord);

 Car truckToyota = new

BRIDGE

How you will refactor the following class hierarchy in order

to follow bridge pattern?

BRIDGE

 Decouples interface and implementation

 Decoupling Abstraction and Implementor also eliminates

compile-time dependencies on implementation. Changing

implementation class does not require recompile of

abstraction classes.

 Improves extensibility

 Both abstraction and implementations can be extended

independently

 Hides implementation details from clients

 More of a design-time pattern

BRIDGE

Disadvantages

abstractions that have only one implementation

creating the right Implementor

sharing implementors

use of multiple inheritance

Implementation Isues

How, where, and when to decide which implementer to instantiate?

Depends:

 If Abstraction knows about all concrete implementer, then it can
instantiate in the constructor.

 It can start with a default and change it later

 Or it can delegate the decision to another object (to an abstract
factory for example)

Can’t implement a true bridge using multiple inheritance

A class can inherit publicly from an abstraction and privately from
an implementation, but since it is static inheritance it bind an
implementation permanently to its interface

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

FACADE

Intent

To provide a unified interface to a set of interfaces in a subsystem

To simplify an existing interface

Defines a higher-level interface that makes the subsystem easier
to use

Problem

Situation I: Wish to simplify a process for most clients
Subsystems are built for multiple applications

Most applications use only a small subset

Most applications interact in a predefined manner

Situation II: Wish to reduce the number of dependencies between
client and implementation classes
Requires an interface that allows a level of isolation

Situation III: Wish to build a layered software design with all inter-
layer communication between interfaces

FACADE. STRUCTURE

FACADE. EXAMPLE

FACADE. EXAMPLE

FACADE. STRUCTURE

FACADE. EXAMPLE

 Travel agent site that allows you to book hotels and flights

 we have 2 agents

 HotelBooker

 FlightBroker

 HotelBooker

 public class HotelBooker{

 public ArrayList<Hotel> getHotelNamesFor(Date from, Date to)
{

 //returns hotels available in the particular date range

}}

 FlightBooker

public class FlightBooker{

 public ArrayList<Flight> getFlightsFor(Date from, Date to) {

 //returns flights available in the particular date range

}}

FACADE. EXAMPLE

 TravelFacade class allows the user to get their Hotel and Flight
information in one call

 public class TravelFacade{

 private HotelBooker hotelBooker;

 private FlightBooker flightBooker;

 public void getFlightsAndHotels(Date from, Data to) {

 ArrayList<Flight> flights = flightBooker.getFlightsFor(from, to);

 ArrayList<Hotel> hotels = hotelBooker.getHotelsFor(from, to);

 //process and return

}}

 Client

public class Client{

 public static void main(String[] args) {

 TravelFacade facade = new TravelFacade();

 facade.getFlightsAndHotels(from, to);

}}

FACADE

 Consequences

 Shields clients from subsystem complexity

 Promotes weak coupling between clients and subsystems

 Easier to swap out alternatives

 Allows more advanced clients to by-pass and have direct

subsystem access

FACADE

 Implementation Issues

 Can involve nontrivial manipulation of subsystem

 May require several steps in sequence or composition

 May require temporary storage

 Can completely hide subsystem

 Place subsystem and façade in package

 Make façade only public class

 Can be difficult if subsystem objects returned to client

 Can implement Façade as abstract class

 Allows different concrete facades under same interface

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

FLYWEIGHT

 Intent

 “Use Sharing to support large numbers of fine-grained
objects efficiently.”

 Simply put, a method for storing a small number of complex
objects that are used repeatedly.

 Flyweight factors the common properties of multiple
instances of a class into a single object, saving space and
maintenance of duplicate instances.

 Problem

 Designing objects down to the lowest levels of system
"granularity" provides optimal flexibility, but can be
unacceptably expensive in terms of performance and
memory usage.

FLYWEIGHT

Flyweighted

strings

 Java Strings are

flyweighted by

the compiler

wherever

possible

Flyweighting

works best on

immutable

objects

public class StringTest {

 public static void main(String[] args) {

 String fly = "fly", weight = "weight";

 String fly2 = "fly", weight2 = "weight";

 System.out.println(fly == fly2);

 System.out.println(weight == weight2);

 String distinctString = fly + weight;

 System.out.println(distinctString == "flyweight");

 String flyweight = (fly + weight).intern();

 System.out.println(flyweight == "flyweight");

 }

}

FLYWEIGHT

Flyweighted

strings

 Java Strings are

flyweighted by

the compiler

wherever

possible

Flyweighting

works best on

immutable

objects

public class StringTest {

 public static void main(String[] args) {

 String fly = "fly", weight = "weight";

 String fly2 = "fly", weight2 = "weight";

 System.out.println(fly == fly2); //true

 System.out.println(weight == weight2); //true

 String distinctString = fly + weight;

 System.out.println(distinctString == "flyweight"); //false

 String flyweight = (fly + weight).intern();

 System.out.println(flyweight == "flyweight"); //true

 }

}

FLYWEIGH.

APPLICABILITY

 Application has a large number of objects.

 Storage costs are high because of the large quantity of
objects.

 Most object state can be made extrinsic.

 Many groups of objects may be replaced by relatively few
once you remove their extrinsic state.

 The application doesn’t depend on object identity

FLYWEIGHT.

DESIGN

Flyweight

Declares an interface through which flyweights can
receive and act on extrinsic state.

 ConcreteFlyweight

Stores intrinsic state of the object.

Must be sharable.

Must maintain state that it is intrinsic to it, and must
be able to manipulate state that is extrinsic.

FlyweightFactory

The factory that creates and manages flyweight
objects.

The factory ensures sharing of the flyweight objects.

The factory maintains a pool of different flyweight
objects and returns an object from the pool if it is
already created, adds one to the pool and returns it
in case it is new.

Client

A client maintains references to flyweights in addition
to computing and maintaining extrinsic state

FLYWEIGHT

 Clients don't directly instantiate

flyweights; instead they get them

from a factory.

 The factory first checks to see if it

has a flyweight that fits specific

criteria (e.g., a blue or white line); if

so, the factory returns a reference

to the flyweight.

 If the factory can't locate a flyweight

for the specified criteria, it

instantiates one, adds it to the pool,

and returns it to the client

FLYWEIGHT. EXAMPLE

 Drawi 20 circles of different locations but using only 5

objects.

 Only 5 objects because we have only 5 colors to draw

FLYWEIGHT. EXAMPLE
public interface Shape {

 void draw();

}

public class Circle

 implements Shape {

 private String color;

 private int x;

 private int y;

 private int radius;

 public Circle(String color){

 this.color = color;

 }

public void setX(int x) {

 this.x = x;

 }

 public void setY(int y) {

 this.y = y;

}

public void setRadius(int radius) {

 this.radius = radius;

}

@Override

 public void draw() {

 System.out.println("Circle: Draw() [Color : "

 + color + ", x : " + x + ", y :" + y + ", radius :" + radius);

 }}

FLYWEIGHT. EXAMPLE
public class ShapeFactory {

 private static final HashMap<String, Shape> circleMap =

 new HashMap();

 public static Shape getCircle(String color) {

 Circle circle = (Circle)circleMap.get(color);

 if(circle == null) {

 circle = new Circle(color);

 circleMap.put(color, circle);

 System.out.println("Creating circle of color : "

 + color);

 }

 return circle;

 }

}

public class FlyweightPatternDemo {

 private static String getRandomColor() {

 return colors[(int)(Math.random()*colors.length)];

 }

 private static final String colors[] = { "Red", "Green", "Blue",

 "White","Black" };

 public static void main(String[] args) {

 for(int i=0; i < 20; ++i) {

 Circle circle = (Circle) ShapeFactory.

 getCircle(getRandomColor());

 circle.setX(getRandomX());

 circle.setY(getRandomY());

 circle.setRadius(100);

 circle.draw();

 }

 }

 private static int getRandomY() {

 return (int)(Math.random()*100);

 }

 private static int getRandomX() {

 return (int)(Math.random()*100);

 }

}

FLYWEIGHT

Benefits

If the size of the set of objects used repeatedly is substantially smaller than
the number of times the object is logically used, there may be an
opportunity for a considerable cost benefit

When To Use Flyweight:

There is a need for many objects to exist that share some intrinsic, unchanging
information

Objects can be used in multiple contexts simultaneously

Acceptable that flyweight acts as an independent object in each instance

Consequences

Overhead to track state

Transfer

Search

Computation

 When Not To Use Flyweight:

If the extrinsic properties have a large amount of state information that would
need passed to the flyweight (overhead)

Need to be able to be distinguished shared from non-shared objects

