
DESIGN PATTERNS

COURSE 4

PREVIOUS COURSE

 Creational Patterns

 Factory Method defines an interface for creating objects,

but lets subclasses decide which classes to instantiate

 Abstract Factory provides an interface for creating families

of related objects, without specifying concrete classes

 Builder separates the construction of a complex object from

its representation, so that the same construction process

can create different representation

 Prototype specifies the kind of objects to create using a

prototypical instances

 Singleton ensures that a class has only one instance, and

provides a global point of access to that instance

CONTENT

 Structural patterns

 Adapter

 Bridge

 Façade

 Flyweight

 Proxy

 Composite

 Decorator

STRUCTURAL PATTERNS

Help identify and describe relationships between entities

 Address how classes and objects are composed to form

large structures

Class-oriented patterns use inheritance to compose

interfaces or implementations

Object-oriented patterns describe ways to compose objects

to realize new functionality, possibly by changing the

composition at run-time

Example

Proxy in distributed programming

Bridge in JDBC drivers

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

ADAPTER

Indent

Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

Wrap an existing class with a new interface.

Also Known As

Wrapper

Problem

Sometimes a toolkit or class library can not be used because its
interface is incompatible with the interface required by an application

We can not change the library interface, since we may not have its
source code

Even if we did have the source code, we probably should not change the
library for each domain-specific application

Target

defines the domain-specific interface that Client uses.

 Adapter

 adapts the interface Adaptee to the Target interface.

 Adaptee

 defines an existing interface that needs adapting.

 Client

collaborates with objects conforming to the Target interface

ADAPTER

STRUCTURE

ADAPTER.

Client is concerned it's just calling the request method of the Target

interface, which the Adapter has implemented.

In the background however, the Adapter knows that to return the right

result, it needs to call a different method, specificAdapteeRequest, on the

Adaptee.

ADAPTER. EXAMPLE

 Eclipse plug-ins

For a particular object to contribute to the Properties view, adapters are
used display the objects data.

The view itself doesn't need to know anything about the object the it is
displaying properties for.

ADAPTER

 Applicability

Use the Adapter pattern when
 You want to use an existing class, and its interface does not match the

one you need

 You want to create a reusable class that cooperates with unrelated
classes with incompatible interfaces

2 types of implementations

Class adapter (suitable for programming languages that allow multiple
inheritance)

 Concrete Adapter class

 Unknown Adaptee subclasses might cause problem

 Overloads Adaptee behavior

 Introduces only one object

Object adapter
 Adapter can service many different Adaptees

 May require the creation of Adaptee subclasses and referencing those
objects

ADAPTER

How much adapting should be done?

Simple interface conversion that just changes operation names
and order of arguments

Totally different set of operations

When to use adapter?

you want to use an existing class, and its interface does not
match the one you need

you want to create a reusable class that cooperates with
unrelated or unforeseen classes, that is, classes that don't
necessarily have compatible interfaces.

you have several subclasses and would like to adapt some of
their operations. Use Object Adapter to adapt their parent class
instead of adapting all subclasses

ADAPTER EXAMPLE 1

 Consider that we have a third party library that provides print string
functionality through PrintString class = adaptee

public class PrintString {

 public void print(String s) {

 System.out.println(s);

 }

}

 Client deals with ArrayList<String> but not with string.

 provided a PrintableList interface that expects the client input.This is our
target = target

public interface PrintableList {

 void printList(ArrayList<String> list);

}

 Clients should see the printable list

ADAPTER EXAMPLE 1
 Adapter pattern

public class PrintableListAdapter implements PrintableList{

 public void printList(ArrayList<String> list) {

//Converting ArrayList<String> to String so that

// we can pass String to adaptee class

 String listString = "";

 for (String s : list) {

 listString += s + "\t";

 }

 // instantiating adaptee class

 PrintString printString=new PrintString();

 ps.print(listString);

 }

}

 Client

public class AdapterDesignPatternMain {

 public static void main(String[] args)

 {

 ArrayList<String> list=new

 ArrayList<String>();

 list.add("one");

 list.add("two");

 list.add("three");

 PrintableList pl=new

 PrintableListAdapter();

 pl.printList(list);

 }

}

ADAPTER EXAMPLE 2

 We have the following 3th party library = adaptee

public class CelciusReporter {

 double temperatureInC;

 public CelciusReporter() {

 }

 public double getTemperature() {

 return temperatureInC;

 }

 public void setTemperature(double temperatureInC) {

 this.temperatureInC = temperatureInC;

 }

}

ADAPTER EXAMPLE 2

 Target interface

public interface TemperatureInfo {

 public double getTemperatureInF();

 public void setTemperatureInF(double temperatureInF);

 public double getTemperatureInC();

 public void setTemperatureInC(double temperatureInC);

}

ADAPTER EXAMPLE 2

 Propose a way to create an adapter using

 inderitance

 composition

 Hellper methos that allows transormation from celcius in

farenheit

 private double fToC(double f) {

 return ((f - 32) * 5 / 9);

 }

 private double cToF(double c) {

 return ((c * 9 / 5) + 32);

 }

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

BRIDGE

 Intent

 Separate a (logical) abstraction interface from its (physical)

implementation(s)

 Allows different implementations of an interface to be

decided upon dynamically.

 Applicability

 When interface & implementation should vary

independently

 Require a uniform interface to interchangeable class

hierarchies

BRIDGE

Can this hierarchy be simplified and easy to understand? How?

BRIDGE

BRIDGE. STRUCTURE

 Abstraction

 defines the abstraction's
interface

 maintains a reference to the
Implementor

 RefinedAbstraction

 extends abstraction interface

 Implementor

 defines interface for
implementations

 ConcreteImplementor

 implements Implementor
interface, ie defines an
implementation

BRIDGE. EXAMPLE

 Graphical User Interface Frameworks.

 Use the bridge pattern to separate abstractions from

platform specific implementation.

 GUI frameworks separate a Window abstraction from a

Window implementation for Linux or Mac OS using the

bridge pattern.

 Object Persistence API.

 Many implementations depending on the presence or

absence of a relational database, a file system, as well as

on the underlying operating system

BRIDGE. EXAMPLE

IMPLEMENTATION
public abstract class Car {

 private CarManufator manufactor;

 public Car (CarManufator manufactor) {

 this.manufactor = manufactor

 }

}

public interface CarManufactor{

 public void getManufactor();

}

public class Ford implements

 CarManufactor{

 public void getManufactor(){

 System.out.print(“Ford producer”);

 }

}

public class Toyota implements

 CarManufactor{

 public void getManufactor(){

 System.out.print(“Toyota producer”);

 }

}

BRIDGE. EXAMPLE

IMPLEMENTATION
public class Sporty extends Car {

 public Sporty(CarManufator manufactor) {

 super(manufactor);

System.out.println(manufactor.getManufactor()

 +“ for Sporty car”);

 }

}

public class Truck extends Car {

 public Truck(CarManufator manufactor) {

 super(manufactor);

System.out.println(manufactor.getManufactor()

 + “ for Truck car”);

 }

}

public class Client {

 public static void main(String
args[]){

 CarManufator mFord = new
Ford();

 CarManufator mToyota = new

Toyota();

 Car sportyFord = new

Sporty(mFord);

 Car sportyToyota = new

Sporty(mToyota);

 Car truckFord = new
Truck(mFord);

 Car truckToyota = new

BRIDGE

How you will refactor the following class hierarchy in order

to follow bridge pattern?

BRIDGE

 Decouples interface and implementation

 Decoupling Abstraction and Implementor also eliminates

compile-time dependencies on implementation. Changing

implementation class does not require recompile of

abstraction classes.

 Improves extensibility

 Both abstraction and implementations can be extended

independently

 Hides implementation details from clients

 More of a design-time pattern

BRIDGE

Disadvantages

abstractions that have only one implementation

creating the right Implementor

sharing implementors

use of multiple inheritance

Implementation Isues

How, where, and when to decide which implementer to instantiate?

Depends:

 If Abstraction knows about all concrete implementer, then it can
instantiate in the constructor.

 It can start with a default and change it later

 Or it can delegate the decision to another object (to an abstract
factory for example)

Can’t implement a true bridge using multiple inheritance

A class can inherit publicly from an abstraction and privately from
an implementation, but since it is static inheritance it bind an
implementation permanently to its interface

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

FACADE

Intent

To provide a unified interface to a set of interfaces in a subsystem

To simplify an existing interface

Defines a higher-level interface that makes the subsystem easier
to use

Problem

Situation I: Wish to simplify a process for most clients
Subsystems are built for multiple applications

Most applications use only a small subset

Most applications interact in a predefined manner

Situation II: Wish to reduce the number of dependencies between
client and implementation classes
Requires an interface that allows a level of isolation

Situation III: Wish to build a layered software design with all inter-
layer communication between interfaces

FACADE. STRUCTURE

FACADE. EXAMPLE

FACADE. EXAMPLE

FACADE. STRUCTURE

FACADE. EXAMPLE

 Travel agent site that allows you to book hotels and flights

 we have 2 agents

 HotelBooker

 FlightBroker

 HotelBooker

 public class HotelBooker{

 public ArrayList<Hotel> getHotelNamesFor(Date from, Date to)
{

 //returns hotels available in the particular date range

}}

 FlightBooker

public class FlightBooker{

 public ArrayList<Flight> getFlightsFor(Date from, Date to) {

 //returns flights available in the particular date range

}}

FACADE. EXAMPLE

 TravelFacade class allows the user to get their Hotel and Flight
information in one call

 public class TravelFacade{

 private HotelBooker hotelBooker;

 private FlightBooker flightBooker;

 public void getFlightsAndHotels(Date from, Data to) {

 ArrayList<Flight> flights = flightBooker.getFlightsFor(from, to);

 ArrayList<Hotel> hotels = hotelBooker.getHotelsFor(from, to);

 //process and return

}}

 Client

public class Client{

 public static void main(String[] args) {

 TravelFacade facade = new TravelFacade();

 facade.getFlightsAndHotels(from, to);

}}

FACADE

 Consequences

 Shields clients from subsystem complexity

 Promotes weak coupling between clients and subsystems

 Easier to swap out alternatives

 Allows more advanced clients to by-pass and have direct

subsystem access

FACADE

 Implementation Issues

 Can involve nontrivial manipulation of subsystem

 May require several steps in sequence or composition

 May require temporary storage

 Can completely hide subsystem

 Place subsystem and façade in package

 Make façade only public class

 Can be difficult if subsystem objects returned to client

 Can implement Façade as abstract class

 Allows different concrete facades under same interface

STRUCTURAL PATTERNS

 Adapter

 interface converter

 Bridge

 decouple abstraction from its implementation

 Façade

 provide a unified interface to a subsystem

 Flyweight

 using sharing to support a large number of fine-grained objects efficiently

 Proxy

 provide a surrogate for another object to control access

 Composite

 compose objects into tree structures, treating all nodes uniformly

 Decorator

 attach additional responsibilities dynamically

FLYWEIGHT

 Intent

 “Use Sharing to support large numbers of fine-grained
objects efficiently.”

 Simply put, a method for storing a small number of complex
objects that are used repeatedly.

 Flyweight factors the common properties of multiple
instances of a class into a single object, saving space and
maintenance of duplicate instances.

 Problem

 Designing objects down to the lowest levels of system
"granularity" provides optimal flexibility, but can be
unacceptably expensive in terms of performance and
memory usage.

FLYWEIGHT

Flyweighted

strings

 Java Strings are

flyweighted by

the compiler

wherever

possible

Flyweighting

works best on

immutable

objects

public class StringTest {

 public static void main(String[] args) {

 String fly = "fly", weight = "weight";

 String fly2 = "fly", weight2 = "weight";

 System.out.println(fly == fly2);

 System.out.println(weight == weight2);

 String distinctString = fly + weight;

 System.out.println(distinctString == "flyweight");

 String flyweight = (fly + weight).intern();

 System.out.println(flyweight == "flyweight");

 }

}

FLYWEIGHT

Flyweighted

strings

 Java Strings are

flyweighted by

the compiler

wherever

possible

Flyweighting

works best on

immutable

objects

public class StringTest {

 public static void main(String[] args) {

 String fly = "fly", weight = "weight";

 String fly2 = "fly", weight2 = "weight";

 System.out.println(fly == fly2); //true

 System.out.println(weight == weight2); //true

 String distinctString = fly + weight;

 System.out.println(distinctString == "flyweight"); //false

 String flyweight = (fly + weight).intern();

 System.out.println(flyweight == "flyweight"); //true

 }

}

FLYWEIGH.

APPLICABILITY

 Application has a large number of objects.

 Storage costs are high because of the large quantity of
objects.

 Most object state can be made extrinsic.

 Many groups of objects may be replaced by relatively few
once you remove their extrinsic state.

 The application doesn’t depend on object identity

FLYWEIGHT.

DESIGN

Flyweight

Declares an interface through which flyweights can
receive and act on extrinsic state.

 ConcreteFlyweight

Stores intrinsic state of the object.

Must be sharable.

Must maintain state that it is intrinsic to it, and must
be able to manipulate state that is extrinsic.

FlyweightFactory

The factory that creates and manages flyweight
objects.

The factory ensures sharing of the flyweight objects.

The factory maintains a pool of different flyweight
objects and returns an object from the pool if it is
already created, adds one to the pool and returns it
in case it is new.

Client

A client maintains references to flyweights in addition
to computing and maintaining extrinsic state

FLYWEIGHT

 Clients don't directly instantiate

flyweights; instead they get them

from a factory.

 The factory first checks to see if it

has a flyweight that fits specific

criteria (e.g., a blue or white line); if

so, the factory returns a reference

to the flyweight.

 If the factory can't locate a flyweight

for the specified criteria, it

instantiates one, adds it to the pool,

and returns it to the client

FLYWEIGHT. EXAMPLE

 Drawi 20 circles of different locations but using only 5

objects.

 Only 5 objects because we have only 5 colors to draw

FLYWEIGHT. EXAMPLE
public interface Shape {

 void draw();

}

public class Circle

 implements Shape {

 private String color;

 private int x;

 private int y;

 private int radius;

 public Circle(String color){

 this.color = color;

 }

public void setX(int x) {

 this.x = x;

 }

 public void setY(int y) {

 this.y = y;

}

public void setRadius(int radius) {

 this.radius = radius;

}

@Override

 public void draw() {

 System.out.println("Circle: Draw() [Color : "

 + color + ", x : " + x + ", y :" + y + ", radius :" + radius);

 }}

FLYWEIGHT. EXAMPLE
public class ShapeFactory {

 private static final HashMap<String, Shape> circleMap =

 new HashMap();

 public static Shape getCircle(String color) {

 Circle circle = (Circle)circleMap.get(color);

 if(circle == null) {

 circle = new Circle(color);

 circleMap.put(color, circle);

 System.out.println("Creating circle of color : "

 + color);

 }

 return circle;

 }

}

public class FlyweightPatternDemo {

 private static String getRandomColor() {

 return colors[(int)(Math.random()*colors.length)];

 }

 private static final String colors[] = { "Red", "Green", "Blue",

 "White","Black" };

 public static void main(String[] args) {

 for(int i=0; i < 20; ++i) {

 Circle circle = (Circle) ShapeFactory.

 getCircle(getRandomColor());

 circle.setX(getRandomX());

 circle.setY(getRandomY());

 circle.setRadius(100);

 circle.draw();

 }

 }

 private static int getRandomY() {

 return (int)(Math.random()*100);

 }

 private static int getRandomX() {

 return (int)(Math.random()*100);

 }

}

FLYWEIGHT

Benefits

If the size of the set of objects used repeatedly is substantially smaller than
the number of times the object is logically used, there may be an
opportunity for a considerable cost benefit

When To Use Flyweight:

There is a need for many objects to exist that share some intrinsic, unchanging
information

Objects can be used in multiple contexts simultaneously

Acceptable that flyweight acts as an independent object in each instance

Consequences

Overhead to track state

Transfer

Search

Computation

 When Not To Use Flyweight:

If the extrinsic properties have a large amount of state information that would
need passed to the flyweight (overhead)

Need to be able to be distinguished shared from non-shared objects

