
DESIGN PATTERNS

COURSE 3

PREVIOUS COURSE
 Fundamental principles of OOP

 Encapsulation

 Inheritance

 Abstractisation

 Polymorphism

 [Exception Handling]

 Fundamental Patterns

 Inheritance

 Delegation

 Interface

 Abstract superclass

 Inheritance and abstract superclass

 Immutable objects

 Marker interface

 OOD key principles

 SRP – Single Responsibility
Principle

 OCP - Open Close Principle

 LSP – Liskov Substitution
Principle

 ISP – Interface Segmentation
Principle

 DIP – Dependency Inversion
Principle

 DRY – Don’t Repeat Yourself

CONTENT

 Creational patterns

 Factory Method

 Abstract Factory

 Builder

 Prototype

 Singleton

CREATIONAL

PATTERNS

 Design patterns that deal with object creation

mechanisms, trying to create objects in a manner suitable

to the situation

 Make a system independent of the way in which objects

are created, composed and represented

 Easily Change

 What gets created?

 Who creates it?

 When is it created?

CREATIONAL

PATTERNS

 Patterns used to abstract the process of instantiating

objects.

 class-scoped patterns

 uses inheritance to choose the class to be instantiated

 Factory Method

 object-scoped patterns

 uses delegation

 Abstract Factory

 Builder

 Prototype

 Singleton

CREATIONAL

PATTERNS

 Factory Method defines an interface for creating objects,

but lets subclasses decide which classes to instantiate

 Abstract Factory provides an interface for creating families

of related objects, without specifying concrete classes

 Builder separates the construction of a complex object

from its representation, so that the same construction

process can create different representation

 Prototype specifies the kind of objects to create using a

prototypical instances

 Singleton ensures that a class has only one instance, and

provides a global point of access to that instance

FACTORY METHOD

Other names

Virtual Constructor

Intent

 Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class
defer instantiation to subclasses.

Defining a "virtual" constructor.

The new operator considered harmful.

Problem

A framework needs to standardize the architectural model for a
range of applications, but allow for individual applications to
define their own domain objects and provide for their
instantiation.

FACTORY METHOD.

STRUCTURE

Product

Defines the interface for objects the
factory method creates.

ConcreteProduct

Implements the Product interface.

Creator

Provides an interface for objects
creation, known as factory method

Declares the method
factoryMethod(), which returns a
Product object.

 All other methods in the abstract
Creator are written only to operate on
the Products

ConcreteCreator

Overrides the generating method for
creating ConcreteProduct objects

FACTORY METHOD

A client makes a call to the abstract Creator, which then uses the factoryMethod() to
get a new instance of the ConcreteProduct, complete's the anOperation() method
and completes.

FACTORY METHOD.

EXAMPLE

interface Currency {

 String getSymbol();

}

// Concrete Rupee Class code

class Rupee implements Currency {

 @Override

 public String getSymbol() {

 return "Rs";

 }

 }

// Concrete US Dolars Class code

class USDolars implements Currency {

 @Override

 public String getSymbol() {

 return “USD";

 }

 }

// Concrete Euro Class code

class Euro implements Currency {

 @Override

 public String getSymbol() {

 return “EUR";

 }

 }

FACTORY METHOD.

EXAMPLE

class CurrencyFactory {

 // Factroy Class code

 public static CurrencyFactory createCurrency (String country) {

 if (country. equalsIgnoreCase ("India")){

 return new Rupee();

 } else if(country. equalsIgnoreCase (“Germany")){

 return new Euro();

 } else if(country. equalsIgnoreCase ("US")){

 return new USDollar();

 }

 throw new IllegalArgumentException("No such currency");

 }

}

public class FactoryClient {

 // Factory client code

 public static void main(String args[]) {

 String country = args[0];

 Currency rupee =

 CurrencyFactory.createCurrency(country);

 System.out.println(rupee.getSymbol());

 }

}

FACTORY METHOD.

EXAMPLE

FACTORY METHOD

Advantage

eliminates the need to bind application specific classes into

your code; your code deals with Product interface

implemented by ConcreteProduct subclasses

Potential disadvantage

clients might have to subclass the Creator class just to create

a particular ConcreteProduct object

Provides hooks for subclasses

Factory Method gives subclasses a hook for providing an

extended version of an object

Connects parallel class hierarchies

ABSTRACT FACTORY

Intent

Abstract Factory offers the interface for creating a family of
related objects, without explicitly specifying their classes.

A hierarchy that encapsulates: many possible "platforms",
and the construction of a suite of "products".

The new operator considered harmful

Problem

If an application is to be portable, it needs to encapsulate
platform dependencies. These "platforms" might include:
windowing system, operating system, database, etc.

ABSTRACT FACTORY.

STRUCTURE

ConcreteProduct

provides an implementation for the product

created by the corresponding

ConcreteFactory Client

creates products by calling the

ConcreteFactory uses the AbstractProduct

interface

AbstractFactory

provides an interface for creating products

of a family

ConcreteFactory

 implements the operations to create

concrete products

AbstractProduct

declares the interface for concrete products

ABSTRACT FACTORY

Class diagram looked a bit busy,

The client has no need to worry about what implementations are
lying behind the interfaces, protecting them from change further
down the line.

ABSTRACT FACTORY.

EXAMPLE

//Abstract Product

interface Button {

 void paint();

}

 //Abstract Product

interface Label {

 void paint();

}

 //Abstract Factory interface

GUIFactory {

 Button createButton();

 Label createLabel();

}

//Concrete Factory class

WinFactory implements GUIFactory {

 public Button createButton() {

 return new WinButton();

 }

 public Label createLabel() {

 return new WinLabel();

 }

 }

ABSTRACT FACTORY.

EXAMPLE

//Concrete Product
class IOSButton implements Button {
 public void paint() {
 System.out.println("I'm an IOSButton");
 } }

//Concrete Product
class WinButton implements Button {
 public void paint() {
 System.out.println("I'm a WinButton");
 }
 }

//Concrete Factory

class IOSFactory implements GUIFactory {

 public Button createButton() {

 return new OSXButton();

 }

 public Label createLabel() {

 return new OSXLabel();

 }

}

//Concrete Product

class IOSLabel implements Label {

 public void paint() {

 System.out.println("I'm an IOSLabel");

 }

 }

ABSTRACT FACTORY.

EXAMPLE

public class ApplicationRunner {

 public static void main(String[] args) {

 new Application(createOsSpecificFactory());

 }

 public static GUIFactory createOsSpecificFactory() {

 String osname =

 System.getProperty("os.name").toLowerCase();

 if(osname != null && osname.contains("windows"))

 return new WinFactory();

 else return new IOSFactory();

} }

//Concrete Product

class WinLabel implements Label {

 public void paint() {

 System.out.println("I'm a WinLabel");

 }

}

//Client application is not aware about the

how the product is created. Its only

responsible to give a name of

//concrete factory

class Application {

 public Application(GUIFactory factory) {

 Button button = factory.createButton();

 Label label = factory.createLabel();

 button.paint();

 label.paint();

 } }

ABSTRACT FACTORY.

EXAMPLE

ABSTRACT FACTORY

When to use Abstract Factory design pattern?

the system needs to be independent from the way the

products it works with are created.

the system is or should be configured to work with multiple

families of products.

a family of products is designed to work only all together.

the creation of a library of products is needed, for which is

relevant only the interface, not the implementation, too.

Example

Look and Feel

ABSTRACT FACTORY

It isolates concrete classes

Factory encapsulates the responsibility and the process of

creating product objects, it isolates clients from

implementation classes

It makes exchanging product families easy

The class of a concrete factory appears only once in an

application - that is, where it's instantiated

It promotes consistency among products

Supporting new kinds of products is difficult

AbstractFactory interface fixes the set of products that can be

created

ABSTRACT FACTORY VS.

FACTORY METHOD

Both patterns are good at decoupling applications from

specific implementations

Both patterns create objects – that’s their job

Factory Method uses inheritance to decouple applications

form specific implementations

Abstract Factory uses object composition to decouple

applications form specific implementations

BUILDER

Intent

 Separate the construction of a complex object from its
representation so that the same construction process can
create different representations.

Parse a complex representation, create one of several
targets

Problem

The algorithm for creating a complex object should be
independent of the parts that make up the object and how
they are assembled

The construction process must allow different representations
for the object that is constructed

BUILDER. STRUCTURE

Builder

specifies an abstract interface for creating parts of a Product

ConcreteBuilder

constructs and assembles parts of the Product by implementing
the Builder interface

defines and keeps track of the representation it creates

provides an interface for retrieving the product

Director

constructs an object using the Builder interface

Product

Represents the complex object under construction

Includes classes that define the constituent parts including the
interfaces for assembling the parts into the final result

BUILDER

First, we tell it that we want to build a new ConcreteBuilder (a more
complex class), maybe passing some initial parameters.

Then we call all the steps required to build that class

BUILDER. EXAMPLE

Used by fast food restaurants to construct children's meals

Children's meals typically consist of a main item, a side item, a

drink, and a toy

Propose a class

diagram for

meals creation

problem

BUILDER
A possible

solution

BUILDER. EXAMPLE

Problem

User creation

Mandatory fields

First name

Last name

Optional fields

Age

Phone

address

BUILDER
USER CLASS

public class User {

//required

 private final String firstName;

 private final String lastName;

//optional

 private final int age;

 private final String phone;

 private final String address;

...

}

CREATIONAL METHODS

public User(String firstName, String lastName) {

 this(firstName, lastName, 0);

}

public User(String firstName, String lastName, int age) {

 this(firstName, lastName, age, "");

}

public User(String firstName, String lastName, int age, String phone) {

 this(firstName, lastName, age, phone, "");

}

public User(String firstName, String lastName, int age, String phone,
String address) {

 this.firstName = firstName;

 this.lastName = lastName;

 this.age = age;

 this.phone = phone;

 this.address = address;

}

BUILDER

public class User {

 private String firstName; // required

 private String lastName; // required

 private int age; // optional

 private String phone; // optional

 private String address; //optional

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

public void setLastName(String lastName) {

 this.lastName = lastName;

}

public int getAge() { return age; }

public void setAge(int age) {

 this.age = age;

}

public String getPhone() { return phone; }

public void setPhone(String phone) {

 this.phone = phone;

}

public String getAddress() { return address; }

public void setAddress(String address) {

 this.address = address;

}

 }

BUILDER
public class User {

 private final String firstName; // required

 private final String lastName; // required

 private final int age; // optional

 private final String phone; // optional

 private final String address; // optional

 private User(UserBuilder builder) {

 this.firstName = builder.firstName;

 this.lastName = builder.lastName;

 this.age = builder.age;

 this.phone = builder.phone;

 this.address = builder.address;

}

public String getFirstName() {

 return firstName;

}

public String getLastName() {

 return lastName;

}

public int getAge() {

 return age;

}

public String getPhone() {

 return phone;

}

public String getAddress() {

 return address;

}

BUILDER
public static class UserBuilder {

 private final String firstName;

 private final String lastName;

 private int age;

 private String phone;

 private String address;

 public UserBuilder(String firstName,

 String lastName) {

 this.firstName = firstName;

 this.lastName = lastName;

 }

 public UserBuilder age(int age) {

 this.age = age; return this;

 }

public UserBuilder age(int age) {

 this.age = age;

 return this;

}

public UserBuilder phone(String phone) {

 this.phone = phone;

 return this;

}

public UserBuilder address(String address) {

 this.address = address;

 return this;

}

public User build() {

 return new User(this);

 }

 }

}

BUILDER

OBSERVATIONS

The User constructor is private, which
means that this class can not be directly
instantiated from the client code.

The class is immutable. All attributes are
final and they’re set on the constructor.
Only provide getters for them.

The builder constructor only receives the
required attributes and this attributes are
the only ones that are defined “final” on the
builder to ensure that their values are set
on the constructor.

INSTANTIATION

public User getUser() {

 return new

 User.UserBuilder("Jhon", "Doe")

 .age(30)

 .phone("1234567")

 .address("Fake address 1234")

 .build();

}

BUILDER

Where are the attributes validated?

BUILDER

Where are the attributes validated?

 public User build() {

 if (age 120) {

 throw new IllegalStateException(“Age out of range”);

 }

 return new User(this);

}

BUILDER

Advantages

Allows you to vary a product’s internal representation

Encapsulates code for construction and representation

Provides control over steps of construction process

Disadvantages

Requires creating a separate ConcreteBuilder for each

different type of Product

PROTOTYPE

Intent

Specify the kinds of objects to create using a prototypical
instance and create new objects by copying this prototype

The new operator considered harmful.

Problem

When an application needs the flexibility to be able to specify
the classes to instantiate at run time

Avoiding the creation of a factory hierarchy is needed

When instance of a class have only very few different
combinations of state, it is more convenient to copy an
existing instance than to create a new one

PROTOTYPE. EXAMPLES

 1. In Java:

 usage of the clone() method or de-serialization when
deep copies are needed

2. The mitotic division of a cell

 resulting in two identical cells

3. Building stages for a game

 that uses a maze and different visual objects that the
character encounters it is needed a quick method of
generating the haze map using the same objects: wall, door,
passage, room...

PROTOTYPE.

STRUCTURE

Prototype

Declares an interface for
cloning itself

ConcretePrototype

Implements an operation for
cloning itself

Client

Creates a new object by
asking a prototype to clone
itself and then making
required modifications

PROTOTYPE.

IMPLEMENTATION

Implementation

Declare an interface that contains a clone() method

A concrete class that implements the interface

 Clone can be implemented either as a deep copy or a

shallow copy:

 In a deep copy, all objects are duplicated,

 In a shallow copy, only the top-level objects are duplicated

and the lower levels contain references.

PROTOTYPE

public interface Prototype {

 public abstract Object clone ();

}

 public class ConcretePrototype implements Prototype {

 public Object clone() {

 return super.clone();

 }

 }

public class Client {

 public static void main(String arg[]) {

 ConcretePrototype obj1= new ConcretePrototype ();

 ConcretePrototype obj2 = (ConcretePrototype)obj1.clone();

 }

}

EXERCICE:

Propose a cache

management system

for a list of figures

PROTOTYPE

Benefits

Hides the complexities of making new instances from the client,

Provides the option for the client to generate objects whose type
is not known,

In some circumstances, copying an object can be more efficient
than creating a new object.

Uses

Prototype should be considered when a system must create new
objects of many types in a complex class hierarchy.

Drawbacks

A drawback to using the Prototype is that making a copy of an
object can sometimes be complicated.

 Abstract Factory and Protoype Patterns may work together

SINGLETON

Intent

 Ensure a class has only one instance, and provide a global

point of access to it.

 Encapsulated "just-in-time initialization" or "initialization on

first use“

Problem

Application needs one, and only one, instance of an object.

Additionally, lazy initialization and global access are

necessary.

SINGLETON.

STRUCTURE

SINGLETON.

EXAMPLES

1. Incremental counter, the simple counter class needs to

keep track of an integer value that is being used in

multiple areas of an application

2. Logging

3. Reading configuration files that should only be read at

startup time and encapsulating them in a Singleton.

SINGLETON

How to implement?

Define a private static attribute in the "single instance" class.

Define a public static accessor function in the class.

Do "lazy initialization" (creation on first use) in the accessor
function.

Define all constructors to be protected or private.

Clients may only use the accessor function to manipulate the
Singleton

SINGLETON.

IMPLEMENTATION

public class Singleton {

 private static Singleton instance = null;

 protected Singleton() {

 // Exists only to defeat instantiation.

 }

 public static Singleton getInstance() {

 if(instance == null) {

 instance = new Singleton();

 }

 return instance;

 }

}

What problem can occur

in case of Java

language?

SINGLETON. IMPLEMENTATION.

POSSIBLE SOLUTION

public class Singleton {

 private static volatile Singleton instance = null;

 // private constructor

 private Singleton() { }

 public static Singleton getInstance() {

 if (instance == null) {

 synchronized (Singleton.class) {

 // Double check

 if (instance == null) {

 instance = new Singleton();

 }

 }

 }

 return instance;

}

PROBLEM:

Multithreading

SINGLETON

Singleton vs static variables

The advantage of Singleton over global variables is that you are
absolutely sure of the number of instances when you use
Singleton, and, you can change your mind and manage any
number of instances

When is Singleton unnecessary?

most of the time – visibility of objects

when it's simpler to pass an object resource as a reference to
the objects that need it, rather than letting objects access the
resource globally

Global data

Transforming global data into singletons

SINGLETON. PRO AND

CONS

POSITIVE

Lazy instantiation

the singleton variable will not get
memory until the property or function
designated to return the reference is
first called

 Static Initialization

memory is allocated to the variable
at the time it is declared. The
instance creation takes place behind
the scenes when any of the member
singleton classes is accessed for the
first time

private static Singleton instance =
new Singleton()

NEGATIVE

A singleton class has
the responsibility to
create an instance of
itself along with other
business responsibilities.

Singleton classes
cannot be sub classed.

Singletons can hide
dependencies

EXERCISE

Which creational pattern can be used in the bank

application?

Explain the choice

 Creational patterns

Singleton patterns

Builder pattern

Prototype pattern

Factory method pattern

Abstract factory pattern

