DESIGN PATTERNS

™
[
o
o
=
o
(&

PREVIOUS COURSE

O Fundamental principles of OOP

oo pDp

Encapsulation
Inheritance
Abstractisation
Polymorphism
[Exception Handling]

J Fundamental Patterns

o000

Inheritance

Delegation

Interface

Abstract superclass

Inheritance and abstract superclass
Immutable objects

Marker interface

L OOD key principles

d

o 0O O 00

SRP - Single Responsibility
Principle

OCP - Open Close Principle
LSP — Liskov Substitution
Principle

ISP — Interface Segmentation
Principle

DIP — Dependency Inversion
Principle

DRY — Don’t Repeat Yourself

CONTENT

O Creational patterns

. Factory Method
1 Abstract Factory
1 Builder

. Prototype

. Singleton

CREATIONAL
PATTERNS

O Design patterns that deal with object creation
mechanisms, trying to create objects in a manner suitable
to the situation

0 Make a system independent of the way in which objects
are created, composed and represented

O Easily Change

J What gets created?
J Who creates it?
J When is it created?

CREATIONAL
PATTERNS

1 Patterns used to abstract the process of instantiating
objects.

] class-scoped patterns
] uses inheritance to choose the class to be instantiated
O Factory Method

] object-scoped patterns
] uses delegation
J Abstract Factory
1 Builder
Prototype
Singleton

CREATIONAL
PATTERNS

U Factory Method defines an interface for creating objects,
but lets subclasses decide which classes to instantiate

O Abstract Factory provides an interface for creating families
of related objects, without specifying concrete classes

U Builder separates the construction of a complex object
from its representation, so that the same construction
process can create different representation

U Prototype specifies the kind of objects to create using a
prototypical instances

4 Singleton ensures that a class has only one instance, and
provides a global point of access to that instance

FACTORY METHOD

JOther names
JVirtual Constructor

Uintent

1 Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class
defer instantiation to subclasses.

Defining a "virtual" constructor.

dThe new operator considered harmful.

Problem

A framework needs to standardize the architectural model for a
range of applications, but allow for individual applications to
define their own domain objects and provide for their
instantiation.

FACTORY METHOD.

STRUCTURE

Product

LDefines the interface for objects the
factory method creates.

dConcreteProduct

dImplements the Product interface.
QCreator

Provides an interface for objects
creation, known as factory method

Declares the method
factoryMethod(), which returns a
Product object.

[All other methods in the abstract

Creator are written only to operate on
the Products

UdConcreteCreator

LOverrides the generating method for
creating ConcreteProduct objects

winterface:
Product

?

«abstracts
Creator

+ factorybdethod(: Product
+ anOperation] : void

Concrete Product

Concrete Creator

cregtes
e T T]

+ factoryhdethod() : Froduoct

FACTORY METHOD

Client wabstracts ConcretaCraator

Creator

anOperation)

|

|

|
L

factongbdethodi

ConcreteProduct
newy ConcreteProduch])

|

|

|

T T |
| | |

| | |

| | |

| | |

| | |

A client makes a call to the abstract Creator, which then uses the factoryMethod() to
get a new instance of the ConcreteProduct, complete's the anOperation() method
and completes.

FACTORY METHOD.
EXAM I L E « Interface » CurrencyFactory
« dependency »

Curency | «dependency » | §#3 createCurrency(): Currency
& getSymbeol(): String

interface Currency {
String getSymbol();

}

I A

« dépendency »

Rupee USDDolars Euro FactoryClinet

I/l Concrete Rupee Class code
class Rupee implements Currency {
@Override
public String getSymbol() {
return "Rs";
}
}
/l Concrete US Dolars Class code /| Concrete Euro Class code
class USDolars implements Currency { class Euro implements Currency {
@Override @Override
public String getSymbol() { public String getSymbol() {
return “USD"; return “EUR";
} }

} }

« Interface » CurrencyFactory
EXAM P L E Currency | « dependency | & createCurrency(): Currency

. getSymbol(): String

booh

A
« dgpendency »

Rupee USDDolars Euro FactoryClinet

class CurrencyFactory {
/I Factroy Class code
public static CurrencyFactory createCurrency (String country) {
if (country. equalsignoreCase ("India"){
return new Rupee();

} else if(country. equalsignoreCase (“Germany")){
return new Euro();

} else if(country. equalsignoreCase ("US")X{

return new USDollar(); public class FactoryClient {
} /I Factory client code
throw new lllegalArgumentException("No such currency"); | public static void main(String args[]) {
} String country = args|0];
} Currency rupee =

CurrencyFactory.createCurrency(country);
System.out.printin(rupee.getSymbol());

}
}

FACTORY METHOD.
EXAMPLE

Shape

+draw() : void

implements

{

<<Interface>>

implements

Circle

Iimplements

Square

+draw() : void

+draw() : void

FactoryPattern
Demo

+main() : void

asks
Rectangle 2
ShapeFactory
creates
be
+draw() : void +getShape() :

Shape

FACTORY METHOD

UJAdvantage

eliminates the need to bind application specific classes into
your code; your code deals with Product interface
Implemented by ConcreteProduct subclasses

dPotential disadvantage
clients might have to subclass the Creator class just to create
a particular ConcreteProduct object
UProvides hooks for subclasses
JFactory Method gives subclasses a hook for providing an
extended version of an object
dConnects parallel class hierarchies

ABSTRACT FACTORY

dintent
JAbstract Factory offers the interface for creating a family of
related objects, without explicitly specifying their classes.

A hierarchy that encapsulates: many possible "platforms”,
and the construction of a suite of "products".

dThe new operator considered harmful

Problem

LIf an application is to be portable, it needs to encapsulate
platform dependencies. These "platforms" might include:
windowing system, operating system, database, etc.

ABSTRACT FACTORY.
STRUCTUR

AbsiraciFactory = Clisnt
CraatalCroducid)
CregtarroductEy) AbstractProguctd ———————
[|
-l Product2 ProductA] fe--,
ConcreteFactoryl - ConcreteFactory2 SE— |
CreateProductAj) | CreateProducta() | i
CreateProductB() l GreateProduciBi) AbstractProductt =
E ‘--w ProductB2 | | Productdi f--’
UAbstractFactory : :
U provides an interface for creating products
of a family UConcreteProduct
dConcreteFactory O provides an implementation for the product

created by the corresponding
UConcreteFactory Client

U implements the operations to create
concrete products

UAbstractProduct creates products by calling the

ConcreteFactory uses the AbstractProduct

U declares the interface for concrete products .
interface

ABSTRACT FACTORY

Client winterfaces
AbstractF actony

wintarfaces
—————— = AbstractP roduct

UClass diagram looked a bit busy,

dThe client has no need to worry about what implementations are
lying behind the interfaces, protecting them from change further
down the line.

ABSTRACT FACTORY.

EXAMPLE

//Abstract Product
interface Button {

void paint();

/[Abstract Product
interface Label {

void paint();

/[Abstract Factory interface
GUIFactory {
Button createButton();

Label createLabel();

Client

« dependency »

Vv q

« Interface » « Interface »
Button Label
¥ paint() 48, paint()

5 O

WinButton | 10SButton WinLabel 10SLabel

//Concrete Factory class
WinFactory implements GUIFactory {
public Button createButton() {
return new WinButton();
}
public Label createLabel() {
return new WinLabel();

}
}

« dependency »

-
« Interface »
GUIFactory
ﬁi}_ createButton(): Button
#3 createLabel(): Label

5 5

WinFactory I0SFactory

ABSTRACT FACTORY.
EXAMPLE ce s SRS « dependency » |

a dependency »

//Concrete Factory o 4 v

: a Interface » « Interface » « Interface »
class IOSFactory implements GUIFactory { — L abel GUIFactory
public Button createButton() { 4 paint() 4 paint() i creat=thlandl_Hutton
{5 createl abel(): Label
return new OSXButton(); a & 4 A A A
} : H : : : :
pUb"C Label createLabeI(){ WinButton || I0SButton WinLabel [0SLabel WinFactory I0SFactory
return new OSXLabel();
}

}
//Concrete Product
/IConcrete Product class I0SButton implements Button {

: public void paint() {
class I0SLabel implements Label { System.out.printin("I'm an IOSButton");

public void paint() { b
- e . //IConcrete Product
System.out.printin(*'m an 10SLabel"); class WinButton implements Button {
} public void paint() {

System.out.printin("I'm a WinButton");

} }
}

ABSTRACT FACTORY.

EXAMPLE

//Concrete Product
class WinLabel implements Label {
public void paint() {

System.out.printin("I'm a WinLabel");

} WinButton | 105Button

//Client application is not aware about the
how the product is created. Its only
responsible to give a name of

//concrete factory
class Application {
public Application(GUIFactory factory) {
Button button = factory.createButton();
Label label = factory.createLabel();
button.paint();
label.paint();

1}

Client | « dependency » « dependency »

« dependency »

v g ¥l
« Interface » « Interface » « Interface »
Button Label GUIFactory
5 paint() &3 paint() §} createButton(): Button

{5 createl abel(): Label
5 b 5 5

WinLabel | | 10SLabel WinFactory I0SFactory

public class ApplicationRunner {
public static void main(String[] args) {
new Application(createOsSpecificFactory());
}
public static GUIFactory createOsSpecificFactory() {
String osname =
System.getProperty("os.name").toLowerCase();
if(losname != null && osname.contains("windows"))
return new WinFactory();
else return new IOSFactory();

H}

ABSTRACT FACTORY.
EXAMPLE

AbstractFactory FactoryProducer usec AbstractFactory
uses PatternDemo
o mmm— €
etFactory():
+getShape() : Shape AﬁtractFaZg +main() : void
|__Adstractractory |
+getColor() : Color
extends
extends
ShapeFactory ColorFactory
+getShape():Shape +getColor():Color
creates l creates 1
Shape <Interface>> Color <<Interface>>
+draw() : void +fill() : void
implements implements
implement implement
Circle Square Rectangle Red Green Blue

ABSTRACT FACTORY

UWhen to use Abstract Factory design pattern?
the system needs to be independent from the way the
products it works with are created.

the system is or should be configured to work with multiple
families of products.

Ja family of products is designed to work only all together.

the creation of a library of products is needed, for which is
relevant only the interface, not the implementation, too.

UExample
JLook and Feel

ABSTRACT FACTORY

LIt isolates concrete classes

Factory encapsulates the responsibility and the process of
creating product objects, it isolates clients from
Implementation classes

LIt makes exchanging product families easy

The class of a concrete factory appears only once in an
application - that is, where it's instantiated

It promotes consistency among products
U Supporting new kinds of products is difficult

JAbstractFactory interface fixes the set of products that can be
created

ABSTRACT FACTORY VS.
FACTORY METHOD

Both patterns are good at decoupling applications from
specific implementations

Both patterns create objects — that’s their job

Factory Method uses inheritance to decouple applications
form specific implementations

UADbstract Factory uses object composition to decouple
applications form specific implementations

BUILDER

Qintent

] Separate the construction of a complex object from its
representation so that the same construction process can
create different representations.

Parse a complex representation, create one of several
targets

Problem

The algorithm for creating a complex object should be
iIndependent of the parts that make up the object and how
they are assembled

The construction process must allow different representations
for the object that is constructed

BUILDER. STRUCTURE

Director Builder ConcreteBuilder
e o |7
builder ; Builder) - -)
buildPart() buildPart{)
construct) Q getResult]y : Praduct
i i E'ﬁ'ﬂ [ay L. 14 300
D B U I I d er | PRSP o thig baildar busd Parti) b} !

'y

specifies an abstract interface for creating parts of a Product | product
dConcreteBuilder
constructs and assembles parts of the Product by implementing
the Builder interface
ldefines and keeps track of the representation it creates
provides an interface for retrieving the product
dDirector

constructs an object using the Builder interface
dProduct

Represents the complex object under construction

diIncludes classes that define the constituent parts including the
interfaces for assembling the parts into the final result

BUILDER

Client i r Concrete Builder

I
1

e ConcreteBuilder)

fiew Director| ConcreteBiilder)

|______
- -

-~ |

BuildPartal}

-—|

Construct BuildPart2()

Build PartC()

1
I
Gethesult I
|
I
I
I

T |
QFirst, we tell it that we want to build a new ConcreteBuilder (a more
complex class), maybe passing some initial parameters.

UThen we call all the steps required to build that class

BUILDER. EXAMPLE

Customer Cashier Restaurant crew
client director builder

Crder kKid's meal
Build -
Build l e (\
Build
Build &

Get meal \/

Used by fast food restaurants to construct children's meals

dChildren's meals typically consist of a main item, a side item, a
drink, and a toy

BUILDER

_ Y

ltem Meal MealBuilder
- - S— builds
‘_uses -items : Arraylist <item>) Pt
+name() : String +addltem(Iltem item) : void +prepareVegMeal() :
+packing() : Packing +getCost() : float Meal
+price() : float +showitems() : void +prepareNonVegMeal()
ﬁ : Meal
implement
asks
Packing
BuilderPattern
T Demo
implement implement +main() : void
Burger Wrapper Bottle ColdDrink
juses uses
—> | €
extend extend

VegBurger ChickenBurger Pepsi Coke

BUILDER. EXAMPLE

dProblem

JUser creation
 Mandatory fields
L First name
 Last name
 Optional fields
dAge
J Phone
Jaddress

BUILDER

USER CLASS CREATIONAL METHODS

public User(String firstName, String lastName) {
this(firstName, lastName, 0);

public class User { }

/lrequired public User(String firstName, String lastName, int age) {

' i - . this(firstName, lastName, age, "");
private final String firstName; |

private final String lastName; public User(String firstName, String lastName, int age, String phone) {

this(firstName, lastName, age, phone, "");

/loptional }

) . . ublic User(String firstName, String lastName, int age, String phone,
private final int age; gmng addréss) {g J J Ip
private final String phone; this.firstName = firstName;
private final String address; this.lastName = lastName;

this.age = age;
this.phone = phone;
this.address = address;

BUILDER

public class User {
private String firstName; // required
private String lastName; // required
private int age; // optional
private String phone; // optional
private String address; //optional
public String getFirstName() {
return firstName;
}
public void setFirstName(String firstName) {
this.firstName = firstName;
}
public String getLastName() {
return lastName,;

public void setLastName(String lastName) {
this.lastName = lastName;

}

public int getAge() { return age; }

public void setAge(int age) {
this.age = age;

}

public String getPhone() { return phone; }

public void setPhone(String phone) {
this.phone = phone;

}

public String getAddress() { return address; }

public void setAddress(String address) {
this.address = address;

BUILDER

public class User {

private final String firstName; // required public String getFirstName() {
private final String lastName; // required return firstName;
private final int age; // optional }
private final String phone; // optional public String getLastName() {
private final String address; // optional return lastName;
}
private User(UserBuilder builder) { public int getAge() {
this.firstName = builder.firstName; return age;
this.lastName = builder.lastName; }
this.age = builder.age; public String getPhone() {
this.phone = builder.phone; return phone;
this.address = builder.address; }
} public String getAddress() {

return address:

BUILDER

public static class UserBuilder {

private final String firstName;

private final String lastName;

private int age;

private String phone;

private String address;

public UserBuilder(String firstName,

String lastName) {

this.firstName = firstName;
this.lastName = lastName;

}

public UserBuilder age(int age) {
this.age = age; return this;

public UserBuilder age(int age) {
this.age = age;
return this;
}
public UserBuilder phone(String phone) {
this.phone = phone;
return this;
}
public UserBuilder address(String address) {
this.address = address;
return this;
}
public User build() {
return new User(this);

BUILDER

OBSERVATIONS

QThe User constructor is private, which
means that this class can not be directly
instantiated from the client code.

UThe class is immutable. All attributes are
final and they’re set on the constructor.
Only provide getters for them.

QThe builder constructor only receives the
required attributes and this attributes are
the only ones that are defined “final” on the
builder to ensure that their values are set
on the constructor.

INSTANTIATION
public User getUser() {

return new
User.UserBuilder("Jhon", "Doe")
.age(30)
.phone("1234567")
.address("Fake address 1234")
Dbuild();

BUILDER

Where are the attributes validated?

BUILDER

Where are the attributes validated?

public User build() {
If (age 120) {
throw new lllegalStateException(“Age out of range”);

}

return new User(this);

BUILDER

UJAdvantages

JAllows you to vary a product’s internal representation
JEncapsulates code for construction and representation
Provides control over steps of construction process

UDisadvantages

Requires creating a separate ConcreteBuilder for each
different type of Product

PROTOTYPE

Qintent

Specify the kinds of objects to create using a prototypical
Instance and create new objects by copying this prototype

JThe new operator considered harmful.

dProblem
dWhen an application needs the flexibility to be able to specify
the classes to instantiate at run time
JAvoiding the creation of a factory hierarchy is needed

dWhen instance of a class have only very few different
combinations of state, it is more convenient to copy an
existing instance than to create a new one

PROTOTYPE. EXAMPLES

1. In Java:

1 usage of the clone() method or de-serialization when
deep copies are needed

2. The mitotic division of a cell

[resulting in two identical cells

3. Building stages for a game

] that uses a maze and different visual objects that the
character encounters it is needed a quick method of

generating the haze map using the same objects: wall, door,
passage, room...

PROTOTYPE.
STRUCTURE

UPrototype

Declares an interface for
cloning itself

dConcretePrototype

dImplements an operation for
cloning itself

dClient

Creates a new object by
asking a prototype to clone
itself and then making
required modifications

Client prolotype

Prototype

+0pearation|() .

AN

p=profotype, Clone()

+Clone()

T T

ConcretePrototype

ConcretePrototype2

+Clonel) |

return copy of this B‘

+Clone()

refurn copy of his Il\l

PROTOTYPE.
IMPLEMENTATION

dimplementation

Declare an interface that contains a clone() method
A concrete class that implements the interface

U Clone can be implemented either as a deep copy or a
shallow copy:

1 In a deep copy, all objects are duplicated,

. In a shallow copy, only the top-level objects are duplicated
and the lower levels contain references.

PROTOTYPE

public interface Prototype {

public abstract Object clone (); —~_

}

public class ConcretePrototype implements Prototype {
public Object clone() {
return super.clone();

}

public class Client {
public static void main(String arg[]) {
ConcretePrototype objl= new ConcretePrototype ();
ConcretePrototype obj2 = (ConcretePrototype)objl.clone();

PROTOTYPE

Benefits

(JHides the complexities of making new instances from the client,

JProvides the option for the client to generate objects whose type
IS not known,

In some circumstances, copying an object can be more efficient
than creating a new object.

dUses
JPrototype should be considered when a system must create new
objects of many types in a complex class hierarchy.
dDrawbacks
A drawback to using the Prototype is that making a copy of an
object can sometimes be complicated.
J Abstract Factory and Protoype Patterns may work together

SINGLETON

dintent
 Ensure a class has only one instance, and provide a global
point of access to it.

[Encapsulated "just-in-time initialization" or "initialization on
first use”

Problem

JApplication needs one, and only one, instance of an object.
Additionally, lazy initialization and global access are
necessary.

SINGLETON.
STRUCTURE

SingletonPatternDemo

+main() : void

asks

h 4
SingleObject returns

-instance: SingleObject

-SingleObject ()
+getinstance():SingleObject
+showMessage():void

SINGLETON.
EXAMPLES

1. Incremental counter, the simple counter class needs to
keep track of an integer value that is being used in
multiple areas of an application

2. Logging

3. Reading configuration files that should only be read at
startup time and encapsulating them in a Singleton.

SINGLETON

UHow to implement?
Define a private static attribute in the "single instance" class.

Define a public static accessor function in the class.

Do "lazy initialization" (creation on first use) in the accessor
function.

Define all constructors to be protected or private.

Clients may only use the accessor function to manipulate the
Singleton

SINGLETON.
IMPLEMENTATION

public class Singleton {
private static Singleton instance = null;

protected Singleton() {
I/l Exists only to defeat instantiation. R/
}

public static Singleton getinstance() {
if(instance == null) {
instance = new Singleton();

}

return instance;

SINGLETON. IMPLEMENTATION.
POSSIBLE SOLUTION

public class Singleton {
private static volatile Singleton instance = null;
/[private constructor
private Singleton() { }
public static Singleton getinstance() {
if (instance == null) {

synchronized (Singleton.class) {
/[Double check
if (instance == null) {

instance = new Singleton();

}
}
}

return instance;

SINGLETON

dSingleton vs static variables

The advantage of Singleton over global variables is that you are
absolutely sure of the number of instances when you use
Singleton, and, you can change your mind and manage any
number of instances

dWhen is Singleton unnecessary?

most of the time — visibility of objects

dwhen it's simpler to pass an object resource as a reference to
the objects that need it, rather than letting objects access the
resource globally

QGlobal data
dTransforming global data into singletons

SINGLETON. PRO AND

CONS

POSITIVE
dLazy instantiation

the singleton variable will not get
memory until the property or function
designated to return the reference is
first called

dStatic Initialization

dmemory is allocated to the variable
at the time it is declared. The
instance creation takes place behind
the scenes when any of the member
singleton classes is accessed for the
first time

Hprivate static Singleton instance =
new Singleton()

NEGATIVE

UA singleton class has
the responsibility to
create an instance of
itself along with other
business responsibilities.

dSingleton classes
cannot be sub classed.

USingletons can hide
dependencies

EXERCISE

Which creational pattern can be used in the bank
application?

UExplain the choice

4 Creational patterns

Singleton patterns
CIBuilder pattern
Prototype pattern
JFactory method pattern
Abstract factory pattern

