DESIGN PATTERNS

N
[
o
o
=
o
(&

CONTENT

O Fundamental principles of OOP

oo pDp

Encapsulation
Inheritance
Abstractisation
Polymorphism
[Exception Handling]

J Fundamental Patterns

o000

Inheritance

Delegation

Interface

Abstract superclass

Inheritance and abstract superclass
Immutable objects

Marker interface

L OOD key principles

d

o 0O O 00

SRP - Single Responsibility
Principle

OCP - Open Close Principle
LSP — Liskov Substitution
Principle

ISP — Interface Segmentation
Principle

DIP — Dependency Inversion
Principle

DRY — Don’t Repeat Yourself

FUNDAMENTALS
PRINCIPLES OF OOP

UObjects

LIDescribe characteristics (properties) and behavior (methods) of
real life objects

UObject Oriented language

JEncapsulation
hide unnecessary details and provide a clear and simple interface for
working with them
UInheritance
Limprove code readability and enable the reuse of functionality

JAbstraction
(deal with objects considering their important characteristics and ignore
all other details
LPolymorphism
how to work in the same manner with different objects

[Error handling]

dthe process of responding to the occurrence, during computation,
of exceptions — anomalous or exceptional conditions requiring special
processing — often changing the normal flow of program execution.

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Execution_(computing)

FUNDAMENTALS PRINCIPLES
OF OOP. ABSTRACTION

LQAbstraction

Problem -> Model
UModel

Dates
LIOperations
O A simplification with a scope of a

problem
Simple model => accessible code

Model Views

A view for system major parts
interaction

A view of system details
A view from user point of view
a...

Example

[0 How does a person see a
computer?
[J Child: a device for

gaming
[0 Electronics: an assembly
of circuits and transistors

ZJCommon notation 00 Programmers: an

environment for developing

dUnified Modeling Model (UML)
tools

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION

O Hide unnecessary the properties and behavior of objects

0 Reduce the necessary knowledge about a class, in order
to user it

O In many cases the programmer does not need to know
implementation details of a class, if the class offers the
desired behavior

class WithoutEncapsulationOrinformationHide

{
public static final int STATUS_ACTIVE = 0;

public static final int STATUS HALTED = 1;
public int status = STATUS_ACTIVE;

k

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION

O Hide unnecessary the properties and behavior of objects

0 Reduce the necessary knowledge about a class, in order
to user it

O In many cases the programmer does not need to know
implementation details of a class, if the class offers the
desired behavior

class WithoutEncapsulationOrinformationHide

{ : - class EncapsulationWithoutInformationHide{
public static final int STATUS_AC pyplic static final int STATUS_ACTIVE = 0;
public static final int STATUS_HA 5 plic static final int STATUS_HALTED = 1;
public int status = STATUS_ACTI private int status = STATUS_ACTIVE;

3 public int getStatus() {
return status;

%

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION

O Hide unnecessary the properties and behavior of objects

0 Reduce the necessary knowledge about a class, in order
to user it

O In many cases the programmer does not need to know
if the class offers the

class EncapsulationAndinformationHide {
public static final int STATUS_ACTIVE = 0;
public static final int STATUS HALTED = 1,

private int status = STATUS_ACTIVE; class EncapsulationWithoutInformat
private int getStatus() { public static final int STATUS_ACTI
return status; public static final int STATUS HALT]

} private int status = STATUS_ACTIVI

public boolean isActive() { public int getStatus() {
return getStatus() == STATUS_ACTIVE; return status:

J

FUNDAMENTALS PRINCIPLES OF OOP.
INHERITANCE

O Inheritance is a mechanism which allows a class A to inherit
members (data and functions) of a class B. We say “A inherits from
B”. Objects of class A thus have access to members of class B
without the need to redefine them.

Figure

QTerminology
(1Base class

OThe class that is inherited /_‘F fﬁ_\
Derived class

Circle Rectangle Animal

A specialization of base class

LKind-of relation
Class level (Circle is a kind-of Shape)

UlIs-a relation o ,—ZF L\

JObject level (The object circlel is-a shape.) Fish Mamifer
UTypes of inheritance i

dSimple

QOne base class L| ,—"’

M ultlple Dolphin
dMultiple base classes

FUNDAMENTALS PRINCIPLES OF OOP.
POLYMORPHISM

O Polymorphism the ability to use a thing in different ways

- Run-time
A Inheritance
A Virtual functions (C++)
 Generics (Java)
O Compile-time
 Templates (C++)
J Ad-hoc
O Operator overloading (in C++)
- Parametric
d Casting

FUNDAMENTALS PRINCIPLES OF
OOP. ERROR HANDELING

L An exception is an error that appears at run-time.
U Examples

. Out of memory
[File already opened
. Null pointer exception
U Variants to resolve such situations

J Custom mechanism
J Program stops -> unacceptable solution

J Return of an error code -> the state of the program has to
test the error code returned

] A function that is called each time an error occurs -> no
control over the caller

[Using language mechanism of handling exceptions

FUNDAMENTALS PRINCIPLES OF
OOP. ERROR HANDELING

Exception is
thirown from
Source

L 3

Exception is Exception gets

caught and Mo thrown up the
handied chain fo the next

handler

t

Throw new
exception
(application or
system)

t

Optionally log
exception and
perform any
cleanup

¥ 1'

Provide infarmation
Is Exception Mo of exception reason

Recoverable? along with current

i exceplion

information

Yes

Yes

Keeping Running,
Do not re-throw

FUNDAMENTAL PATTERNS

U Fundamentals patterns
[Patterns already found permanent in modern programming
languages
(L Not classified in other categories

0 Fundamentals patterns types

O Inheritance

L Delegation

- Interface

[Abstract superclass

U Inheritance and abstract superclass
O Immutable objects

 Marker interface

FUNDAMENTALS PATTERNS.
DELEGATE

U Intent:
] Delegation allows objects to share behavior without using
Inheritance and without duplicating code
O Solution:
(] Delegation is a way of reusing and extending the behavior
of a class. It works writing a new class that incorporates the

functionality of the original class by using an instance of the
original class and calling its methods.

O Consequences:
1 Behavior can be changed at run-time (comparing to
Inheritance that is static)
[The ‘delegate’ is hidden to delegator’s clients
1 More difficult to implement comparing to inheritance

Delegator | Delegatee

uses used by

FUNDAMENTAL PATTERNS.
INTERFACE

Name: Interface
Intent:

[Classes change messages between them
[The implementation must be switched at run time

[At design-time when the implementation used at compile
time is not known

Definition
[Decouples the service from its clients

Consequences _
L Programming to abstraction T I e
[Easy change the service provider 4

] Transparency for client

Servicelmplementation

FUNDAMENTALS PATTERNS.
ABSTRACT SUPERCLASS

O Abstract superclass —ensures consistent behavior for its
subclasses
 Conseqguences:
d Common behavior is consistent over subclasses
[Clients are using the abstract superclass

AbstractClass

Attribute

commonMethod1(...) |
commonMethod2(...)

abstractMethod1(...)
abstractMethod2(...)

Py

ConcreteClass1 ConcreteClass? ConcreteClassN

Attribute | | Attribute | | Attribute

abstractMethod1(...) abstractMethod1(...) abstracthMethod1i...)
abstractMethod2(...) absfractMethod2(...) abstractMethod2(...)

FUNDAMENTALS PATTERNS. INTERFAC
AND ABSTRACT SUPERCLASS

d Combines Interface and Abstract
O Superclass patterns

 Conseqguences:
1 Combines the advantages of both patterns

 May provide a default behavior for the entire, or just a
subset, of the Service interface via AbstractService class

Client - — — <=uses== — = <<interface>>
(-]

Abstract Class

T T T

ConcreteClass1 ConcreteClass? ConcreteClassN

FUNDAMENTALS PATTERNS.
IMMUTABLE OBJECT

O Immutable object — the internal state of the object doesn’t
change after its creation

O Consequences:

[Only constructors can change object’s state
1 All member functions are constant functions (in C++)

 Any member function that need to change the state will
create a new instance

[Increase design’s robustness and maintainability
O Example:

 String class in JDK

FUNDAMENTALS PATTERNS.
IMMUTABLE OBJECT

class Position {
private int Xx;
private inty;
public Position(int x, int y) {
this.x = X;
this.y =vy;
} /I Position(int, int)
public int getX() { return x; }
public int getY() { returny; }
public Position offset(int xOffset, int yOffset) {
return new Position(x+xOffset, y+yOffset);
} /] offset(int, int)
} /I class Position

FUNDAMENTALS PATTERNS.
MARKER INTERFACE

O A class implements a marker interface in order to support
a semantic attribute of the system

J Motivation

 unrelated concepts do have something in common
1 however, how to use this information is context-dependent
 Consequences:
J Used by utility classes that need a specific behavior from
their elements, without requesting a common base class
O Example:

(] Cloneable, Serializable, Remote in JDK

FUNDAMENTALS PATTERNS.
MARKER INTERFACE

O Empty interfaces

L Are differences between marker interface in Java are
annotations? (homework for next course)

OBJECT ORIENTED DESIGN
PRINCIPLES

L OOD key principles

[collection of best practice, object-oriented design principles
which can be applied to design, allowing you to accomplish
various desirable goals such as loose-coupling, higher
maintainability, intuitive location of interesting code, e.t.c.

4 Types

J SRP — Single Responsibility Principle
1 OCP - Open Close Principle

O LSP — Liskov Substitution Principle
ISP — Interface Segmentation Principle
[DIP — Dependency Inversion Principle
 DRY — Don’t Repeat Yourself

SINGLE RESPONSABILITY
PRINCIPLE

1 SRP: Every object in your system should have a single
responsibility, and all the object’s services should be focused
In carrying out that single responsibility.

O

ONLY one reason to change something!

O

Code will be simpler and easier to maintain.

O

Example: Container and Iterator (Container manages objects;
Iterator traverses the container)

O How to spot multiple responsibilities? Forming sentences
ending in itself.

Driver
Avutomobile
The Automobile start itself. A bil Drive(Automobile)
Start() The Automobile stop itself. Lol
Stop() The Automobile changeTires itself.
ChangeTires() The Automobile Drive itself. :::"t{}] Mechanic
Drive() The Automobile CheckQil itself. P .
CheckOll| The Automobile GetOil itself. GetQil(]) ChangeTires(Automobile)
GetQil() CheckQil(Automobile)

OPEN CLOSE
PRINCIPLE

UOCP — Classes class Shape {
should be open for int type:
extension and closed void drawPolygon () { /*...*/)
fOI’ mOdIflcatIOH void drawPaint () { /*...*/ }
d Allowing change, but ™
without modifying veld ety
existing code. It offers *
flexibility. vole "“_‘:::""‘“::”

Wil ype
dUse inheritance to case POLYGON:
extend/change existing drowPolygon {); break
working code and don’t case POINT:
touch working code. drawPoint (); break;
QOCP can also be '
achieved using '

composition.

«
)

class Shape {
public:
virtual void draw() = 0;

¥

class Pelygon : public Shape {
public:
void draw();

k

class Point : public Shape {
public:
void draw();
¥

void Polygon::draw() { /* ...*/}
void Point:draw() { /*...*/ }

LISKOV SUBSTITUTION

PRINCIPLE

LLSP: Subtypes must
be substitutable for
their base types.

dWell-designed class
hierarchies

dSubtypes must be
substitutable for their
base class without
things going wrong.

Board

files: Title[][]

getTitle(int, int)
setTitle(Title, int,int)

3DBoard

tiles3D: Tile[J[]

getTitle(int, int, int)
setTitle(Title, int, int, int)

void f() {

Board* board = new 3DBoard; // ok!
// doesn’t make sense for a 3D board
board -> getTile (1,7); }

L |

Board

tiles: Title[][]

getTitle(int, int)
setTitle(Title, int,int)

<@

3DBoard

boards: Board[]

getTitle(int, int, int)
setTitle(Title, int, int, int)

Tile 3DBoard:getTile (int x, int y, int z
return boards[x].getTile (y,)

}

INTERFACE SEGMENTATION
PRINCIPLE

4 ISP: Clients should not be forced to depend on methods
they do not use

O Keep interfaces small, cohesive, and focused

O Whenever possible, let the client define the interface

Email Sender Database Reader File Reader

Service Service

Email Sender .
SendEmail SendEmail
=" |:r|cn GetMessageBody GetMessageBody
ReadFile
ReadFromDB

DEPENDENCY INVERSION
PRINCIPLE

O High-level modules should not depend on low-level
modules. Both should depend on abstractions

O Abstractions should not depend on details. Details should
depend upon abstractions

O Detail should be dependent on Policy. This means that you
should have the Policy define and own the abstraction that
the detail implements.

Foo Foo

Bar :> IBar Bar

DEPENDENCY

INVERSION PRINCIPLE

/I Bad example

class Worker {
public void work() {
/l...working

}

}

class Manager {
Worker worker;

public void setWorker(Worker w) {
worker = w;
}

public void manage() {
worker.work();

}

class SuperWorker {
public void work() {
} /l....working much more

}

/I Good example

interface IWorker {
public void work();

class Worker implements IWorker{
public void work() {
/Iworking

}
}

class SuperWorker implements IWorker{
public void work() {
} /l....working much more

}

class Manager {
IWorker worker;

public void setWorker(IWorker w) {
worker = w;

public void manage() {
worker.work();

DON’T REPEAT
YOURSELF

O DRY: Avoid duplicate code e orvate void Singeinifcanst char et
by abstracting out things e Hpchi=NULL {
th at al'e CommOn and ” =_ _) sir = mew charf{sz=strlen|pch]j1];
placing those things in a e B
single location. _—)
. _ _ else {
O No duplicate code => ONE o —"
requirement n ONE place! Ny = =0
. . . " }
Q This principle can and o S e }
should be applled _ I:Pc;:mlhzﬂ o String::Stringjconst char® pchj {
everywhere (e.g. in Analysis = new charsz=sen(peh 1] nitpen);
phase —don’t duplicate o o }
requirements or features!) pelse void Stringiseticonst char peh)
- . ifistri=NULL) delete [] str;
O Code s easier and safer to oo ik

maintain because we have N }
to change only one place.

