
DESIGN PATTERNS

COURSE 2

CONTENT
 Fundamental principles of OOP

 Encapsulation

 Inheritance

 Abstractisation

 Polymorphism

 [Exception Handling]

 Fundamental Patterns

 Inheritance

 Delegation

 Interface

 Abstract superclass

 Inheritance and abstract superclass

 Immutable objects

 Marker interface

 OOD key principles

 SRP – Single Responsibility
Principle

 OCP - Open Close Principle

 LSP – Liskov Substitution
Principle

 ISP – Interface Segmentation
Principle

 DIP – Dependency Inversion
Principle

 DRY – Don’t Repeat Yourself

FUNDAMENTALS

PRINCIPLES OF OOP

Objects

Describe characteristics (properties) and behavior (methods) of
real life objects

Object Oriented language

Encapsulation
hide unnecessary details and provide a clear and simple interface for

working with them

Inheritance
improve code readability and enable the reuse of functionality

Abstraction
deal with objects considering their important characteristics and ignore

all other details

Polymorphism
how to work in the same manner with different objects

[Error handling]
the process of responding to the occurrence, during computation,

of exceptions – anomalous or exceptional conditions requiring special
processing – often changing the normal flow of program execution.

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Execution_(computing)

FUNDAMENTALS PRINCIPLES

OF OOP. ABSTRACTION

Abstraction

Problem -> Model

Model

Dates

Operations

 A simplification with a scope of a
problem

Simple model => accessible code

Model Views

A view for system major parts
interaction

A view of system details

A view from user point of view

…

Common notation

Unified Modeling Model (UML)

Example

 How does a person see a

computer?

 Child: a device for

gaming

 Electronics: an assembly

of circuits and transistors

 Programmers: an

environment for developing

tools

FUNDAMENTALS PRINCIPLES OF OOP.

ENCAPSULATION

 Hide unnecessary the properties and behavior of objects

 Reduce the necessary knowledge about a class, in order

to user it

 In many cases the programmer does not need to know

implementation details of a class, if the class offers the

desired behavior

class WithoutEncapsulationOrInformationHide

{

 public static final int STATUS_ACTIVE = 0;

 public static final int STATUS_HALTED = 1;

 public int status = STATUS_ACTIVE;

};

FUNDAMENTALS PRINCIPLES OF OOP.

ENCAPSULATION

 Hide unnecessary the properties and behavior of objects

 Reduce the necessary knowledge about a class, in order

to user it

 In many cases the programmer does not need to know

implementation details of a class, if the class offers the

desired behavior

class WithoutEncapsulationOrInformationHide

{

 public static final int STATUS_ACTIVE = 0;

 public static final int STATUS_HALTED = 1;

 public int status = STATUS_ACTIVE;

};

class EncapsulationWithoutInformationHide{

public static final int STATUS_ACTIVE = 0;

public static final int STATUS_HALTED = 1;

private int status = STATUS_ACTIVE;

public int getStatus() {

 return status;

 }

};

FUNDAMENTALS PRINCIPLES OF OOP.

ENCAPSULATION

 Hide unnecessary the properties and behavior of objects

 Reduce the necessary knowledge about a class, in order

to user it

 In many cases the programmer does not need to know

implementation details of a class, if the class offers the

desired behavior

class WithoutEncapsulationOrInformationHide

{

 public static final int STATUS_ACTIVE = 0;

 public static final int STATUS_HALTED = 1;

 public int status = STATUS_ACTIVE;

};

class EncapsulationWithoutInformationHide{

public static final int STATUS_ACTIVE = 0;

public static final int STATUS_HALTED = 1;

private int status = STATUS_ACTIVE;

public int getStatus() {

 return status;

 }

};

class EncapsulationAndInformationHide {

public static final int STATUS_ACTIVE = 0;

public static final int STATUS_HALTED = 1;

private int status = STATUS_ACTIVE;

private int getStatus() {

 return status;

 }

public boolean isActive() {

 return getStatus() == STATUS_ACTIVE;

}

};

FUNDAMENTALS PRINCIPLES OF OOP.

INHERITANCE

 Inheritance is a mechanism which allows a class A to inherit
members (data and functions) of a class B. We say “A inherits from
B”. Objects of class A thus have access to members of class B
without the need to redefine them.

Terminology

Base class
The class that is inherited

Derived class
A specialization of base class

Kind-of relation
Class level (Circle is a kind-of Shape)

Is-a relation
Object level (The object circle1 is-a shape.)

Types of inheritance

Simple
One base class

Multiple
Multiple base classes

FUNDAMENTALS PRINCIPLES OF OOP.

POLYMORPHISM

 Polymorphism the ability to use a thing in different ways

 Run-time

 Inheritance

 Virtual functions (C++)

 Generics (Java)

 Compile-time

 Templates (C++)

 Ad-hoc

 Operator overloading (in C++)

 Parametric

 Casting

FUNDAMENTALS PRINCIPLES OF

OOP. ERROR HANDELING

 An exception is an error that appears at run-time.

 Examples

 Out of memory

 File already opened

 Null pointer exception

 Variants to resolve such situations

 Custom mechanism

 Program stops -> unacceptable solution

 Return of an error code -> the state of the program has to
test the error code returned

 A function that is called each time an error occurs -> no
control over the caller

 Using language mechanism of handling exceptions

FUNDAMENTALS PRINCIPLES OF

OOP. ERROR HANDELING

FUNDAMENTAL PATTERNS

 Fundamentals patterns

 Patterns already found permanent in modern programming
languages

 Not classified in other categories

 Fundamentals patterns types

 Inheritance

 Delegation

 Interface

 Abstract superclass

 Inheritance and abstract superclass

 Immutable objects

 Marker interface

FUNDAMENTALS PATTERNS.

DELEGATE

 Intent:

 Delegation allows objects to share behavior without using
inheritance and without duplicating code

 Solution:

 Delegation is a way of reusing and extending the behavior
of a class. It works writing a new class that incorporates the
functionality of the original class by using an instance of the
original class and calling its methods.

 Consequences:

 Behavior can be changed at run-time (comparing to
inheritance that is static)

 The ‘delegate’ is hidden to delegator’s clients

More difficult to implement comparing to inheritance

FUNDAMENTAL PATTERNS.

INTERFACE

Name: Interface

Intent:

 Classes change messages between them

 The implementation must be switched at run time

 At design-time when the implementation used at compile
time is not known

Definition

 Decouples the service from its clients

Consequences

 Programming to abstraction

 Easy change the service provider

 Transparency for client

FUNDAMENTALS PATTERNS.

ABSTRACT SUPERCLASS

 Abstract superclass –ensures consistent behavior for its

subclasses

 Consequences:

 Common behavior is consistent over subclasses

 Clients are using the abstract superclass

FUNDAMENTALS PATTERNS. INTERFACE

AND ABSTRACT SUPERCLASS

 Combines Interface and Abstract

 Superclass patterns

 Consequences:

 Combines the advantages of both patterns

 May provide a default behavior for the entire, or just a

subset, of the Service interface via AbstractService class

FUNDAMENTALS PATTERNS.

IMMUTABLE OBJECT

 Immutable object – the internal state of the object doesn’t

change after its creation

 Consequences:

 Only constructors can change object’s state

 All member functions are constant functions (in C++)

 Any member function that need to change the state will

create a new instance

 Increase design’s robustness and maintainability

 Example:

 String class in JDK

FUNDAMENTALS PATTERNS.

IMMUTABLE OBJECT

class Position {

 private int x;

 private int y;

 public Position(int x, int y) {

 this.x = x;

 this.y = y;

 } // Position(int, int)

 public int getX() { return x; }

 public int getY() { return y; }

 public Position offset(int xOffset, int yOffset) {

 return new Position(x+xOffset, y+yOffset);

 } // offset(int, int)

} // class Position

FUNDAMENTALS PATTERNS.

MARKER INTERFACE

 A class implements a marker interface in order to support

a semantic attribute of the system

 Motivation

 unrelated concepts do have something in common

 however, how to use this information is context-dependent

 Consequences:

 Used by utility classes that need a specific behavior from

their elements, without requesting a common base class

 Example:

 Cloneable, Serializable, Remote in JDK

FUNDAMENTALS PATTERNS.

MARKER INTERFACE

 Empty interfaces

 Are differences between marker interface in Java are

annotations? (homework for next course)

OBJECT ORIENTED DESIGN

PRINCIPLES

 OOD key principles

 collection of best practice, object-oriented design principles
which can be applied to design, allowing you to accomplish
various desirable goals such as loose-coupling, higher
maintainability, intuitive location of interesting code, e.t.c.

 Types

 SRP – Single Responsibility Principle

 OCP - Open Close Principle

 LSP – Liskov Substitution Principle

 ISP – Interface Segmentation Principle

 DIP – Dependency Inversion Principle

 DRY – Don’t Repeat Yourself

SINGLE RESPONSABILITY

PRINCIPLE

 SRP: Every object in your system should have a single

responsibility, and all the object’s services should be focused

in carrying out that single responsibility.

 ONLY one reason to change something!

 Code will be simpler and easier to maintain.

 Example: Container and Iterator (Container manages objects;

Iterator traverses the container)

 How to spot multiple responsibilities? Forming sentences

ending in itself.

OPEN CLOSE

PRINCIPLE
OCP – Classes
should be open for
extension and closed
for modification

 Allowing change, but
without modifying
existing code. It offers
flexibility.

Use inheritance to
extend/change existing
working code and don’t
touch working code.

OCP can also be
achieved using
composition.

LISKOV SUBSTITUTION

PRINCIPLE

LSP: Subtypes must
be substitutable for
their base types.

Well-designed class
hierarchies

Subtypes must be
substitutable for their
base class without
things going wrong.

INTERFACE SEGMENTATION

PRINCIPLE

 ISP: Clients should not be forced to depend on methods

they do not use

 Keep interfaces small, cohesive, and focused

 Whenever possible, let the client define the interface

DEPENDENCY INVERSION

PRINCIPLE

 High-level modules should not depend on low-level

modules. Both should depend on abstractions

 Abstractions should not depend on details. Details should

depend upon abstractions

 Detail should be dependent on Policy. This means that you

should have the Policy define and own the abstraction that

the detail implements.

DEPENDENCY

INVERSION PRINCIPLE
// Bad example

class Worker {
 public void work() {
 //working
 }
}

class Manager {
 Worker worker;

 public void setWorker(Worker w) {
 worker = w;
 }

 public void manage() {
 worker.work();
 }
}

class SuperWorker {
 public void work() {
 //.... working much more
 }
}

// Good example

interface IWorker {
 public void work();
}

class Worker implements IWorker{
 public void work() {
 //working
 }
}

class SuperWorker implements IWorker{
 public void work() {
 //.... working much more
 }
}

class Manager {
 IWorker worker;

 public void setWorker(IWorker w) {
 worker = w;
 }

 public void manage() {
 worker.work();
 }
}

DON’T REPEAT

YOURSELF
 DRY: Avoid duplicate code

by abstracting out things
that are common and
placing those things in a
single location.

 No duplicate code => ONE
requirement n ONE place!

 This principle can and
should be applied
everywhere (e.g. in Analysis
phase –don’t duplicate
requirements or features!)

 Code is easier and safer to
maintain because we have
to change only one place.

