
DESIGN PATTERNS

COURSE 12

PREVIOUS COURSE
 Refactoring

Way refactoring

 Some refactoring examples

CURRENT COURSE

 Anti – patterns

 The blob

 Poltergeist

 Golder Hamer

 Spagetty

ANTI-PATTERNS

 Pattern: good ideas

 Refactoring: better ideas

 Anti-Patterns: bad ideas

 A literary form that describes a commonly occurring solution to

a problem that generates decidedly negative consequences.

 May be the result of a manager or developer not knowing any

better, not having sufficient knowledge or experience in solving

a particular type of problem, or having applied a perfectly good

pattern in the wrong context.

ANTI-PATTERNS

 Anti-pattern is a pattern that may commonly used but is

ineffective and/or counerproductive in practice

 Provide a method of efficiently mapping a general

situation to a specific class of solutions

 Provide real world experience in recognizing recurring

problems in the software industry

 Provide a common vocabulary for identifying problems

and discussing solutions.

ANTI-PATTERNS

 Software Refactoring

 A form of code modification, used to improve the software

structure in support of subsequent extension and long-term

maintenance.

 AntiPatterns

 Define a migration (or refactoring) from negative solutions

to positive solutions.

 Not only do they point out trouble, but they also tell you

how to get out it.

ANTI-PATTERNS.

TYPES

 Software development

 Technical problems and solutions encountered by

programmers

 Architectural

 Identify and resolve common problems in how systems are

structured.

 Software project management

 Address common problems in software processes and

development organizations.

CAUSES. ANTI-

PATTRENS

 Haste

 Aggressive project deadlines and budget

 Lower acceptance levels for code quality

 Insufficient testing

 Patches

 Accumulating technical debt

CAUSES. ANTI-

PATTRENS

 Apathy

 Unwilling to find the proper solution

 General lack of concern or care about solving a problem

CAUSES. ANTI-

PATTRENS

 Narrow mindedness

 Refusal to practice solutions that are otherwise wildly

known to be effective

CAUSES. ANTI-

PATTRENS

 Sloth

 Poor decisions based upon an “easy answer”

CAUSES. ANTI-

PATTRENS

 Avarice

 Modeling of excessive/insufficient abstraction adding

accidental complexity

CAUSES. ANTI-

PATTRENS

 Ignorance

 Failure to seek a clear understanding of a problem or

solution space (both intentional ad non-intentional)

CAUSES. ANTI-

PATTRENS

 Pride

 The sin of pride is the Not-Invented-Here syndrome

SYMPTOMS. ANTI-

PATTRENS

 Quick demonstration code integrated in the running system

 Obsolete or scanty documentation

 50% time spent learning what the code does

 “Hesitant programmer syndrome”

 Perhaps easier to rewrite this code

 More likely to break it then extend it

 Cannot be reused

 Cannot change the used library/components

 Cannot optimize performance

 Duplication

 “I don’t know what that piece of code was doing, so I rewrote what
I thought should happen, but I cannot remove the redundant code
because it breaks the system.”

SYMPTOMS IN OO

PROGRAMMING

 Many OO method with no parameters

 Suspicious class or global variable

 Strange relationships between classes

 Process-oriented methods

 Objects with process-oriented names

 OO advantage lost

 Inheritance cannot be used to extend

 Polymorphism cannot be used

DESIGN PATTERNS

AND ANTI-PATTERNS

ANTI-PATTERNS.

TYPES

 Software development

 Technical problems and solutions encountered by

programmers

 Architectural

 Identify and resolve common problems in how systems are

structured.

 Software project management

 Address common problems in software processes and

development organizations.

SOFTWARE BLOAT

 Successive versions of a system demand more and more

resources

 Reason

 Increase proportion of unnecessary features

 Results

 Program use more system resources than necessary,

while offering little or no benefit to its users

 Solution

 Use plug-ins, extensions or add-ons

 Use Unix philosophy: “write programs that do one thing

and do it well

PATTERNS FETISH

 Unreasonable and excessive use of desing pattrens

 Designers looks for places to use pattrens

 Solution

 Look at the design problem

 Favor simple solutions

THE BLOB
 Symptoms

 Single class with many
attributes and operations

 Controller class with simple,
data-object classes

 Lack of OO design

 A migrated legacy design

 Consequences

 Lost of OO advantages

 Too complex to reuse or test

 Expensive to load in memory
 Way?

THE BLOB

 Solution

 Identify or categorize related things

 Attributes, Operations

 Where do these categories naturally belong?

 Apply move method, move field refactorings

 Remove redundant associations

THE BLOB

THE BLOB

THE BLOB

THE BLOB

POLTERGEISTS

 Also Known As: Gypsy, Proliferation of Classes, Big Dolt
Controller Class

 Symptoms

 Small Classes with very limited responsibilities and short life
cycles

 Redundant navigation paths.

 Classes with few responsibilities

 Classes with "control-like" operation names such as
start_process_alpha

 Consequences

 Excessive complexity

 Unstable analysis and design models

 Divergent design and implementation

 Lack of system extensibility

POLTERGEISTS

Example: Teach students stack class

- Rewrites all functions already existing in list class

public class LabStack<T> {

 private LinkedList<T> list;

 public LabStack() { list = new LinkedList<T>(); }

 public boolean empty() { return list.isEmpty(); }

public T peek() throws EmptyStackException {

 if (list.isEmpty()) { throw new EmptyStackException(); }

 return list.peek();

 }

 public T pop() throws EmptyStackException {

 if (list.isEmpty()) { throw new EmptyStackException(); }

 return list.pop();

 }

 public void push(T element) { list.push(element); }

 public int size() { return list.size(); }

 public void makeEmpty() { list.clear(); }

 public String toString() { return list.toString(); }

}

POLTERGEISTS

NEXT COURSE

 EXAM

