
DESIGN PATTERNS

COURSE 12

PREVIOUS COURSE
 Refactoring

Way refactoring

 Some refactoring examples

CURRENT COURSE

 Anti – patterns

 The blob

 Poltergeist

 Golder Hamer

 Spagetty

ANTI-PATTERNS

 Pattern: good ideas

 Refactoring: better ideas

 Anti-Patterns: bad ideas

 A literary form that describes a commonly occurring solution to

a problem that generates decidedly negative consequences.

 May be the result of a manager or developer not knowing any

better, not having sufficient knowledge or experience in solving

a particular type of problem, or having applied a perfectly good

pattern in the wrong context.

ANTI-PATTERNS

 Anti-pattern is a pattern that may commonly used but is

ineffective and/or counerproductive in practice

 Provide a method of efficiently mapping a general

situation to a specific class of solutions

 Provide real world experience in recognizing recurring

problems in the software industry

 Provide a common vocabulary for identifying problems

and discussing solutions.

ANTI-PATTERNS

 Software Refactoring

 A form of code modification, used to improve the software

structure in support of subsequent extension and long-term

maintenance.

 AntiPatterns

 Define a migration (or refactoring) from negative solutions

to positive solutions.

 Not only do they point out trouble, but they also tell you

how to get out it.

ANTI-PATTERNS.

TYPES

 Software development

 Technical problems and solutions encountered by

programmers

 Architectural

 Identify and resolve common problems in how systems are

structured.

 Software project management

 Address common problems in software processes and

development organizations.

CAUSES. ANTI-

PATTRENS

 Haste

 Aggressive project deadlines and budget

 Lower acceptance levels for code quality

 Insufficient testing

 Patches

 Accumulating technical debt

CAUSES. ANTI-

PATTRENS

 Apathy

 Unwilling to find the proper solution

 General lack of concern or care about solving a problem

CAUSES. ANTI-

PATTRENS

 Narrow mindedness

 Refusal to practice solutions that are otherwise wildly

known to be effective

CAUSES. ANTI-

PATTRENS

 Sloth

 Poor decisions based upon an “easy answer”

CAUSES. ANTI-

PATTRENS

 Avarice

 Modeling of excessive/insufficient abstraction adding

accidental complexity

CAUSES. ANTI-

PATTRENS

 Ignorance

 Failure to seek a clear understanding of a problem or

solution space (both intentional ad non-intentional)

CAUSES. ANTI-

PATTRENS

 Pride

 The sin of pride is the Not-Invented-Here syndrome

SYMPTOMS. ANTI-

PATTRENS

 Quick demonstration code integrated in the running system

 Obsolete or scanty documentation

 50% time spent learning what the code does

 “Hesitant programmer syndrome”

 Perhaps easier to rewrite this code

 More likely to break it then extend it

 Cannot be reused

 Cannot change the used library/components

 Cannot optimize performance

 Duplication

 “I don’t know what that piece of code was doing, so I rewrote what
I thought should happen, but I cannot remove the redundant code
because it breaks the system.”

SYMPTOMS IN OO

PROGRAMMING

 Many OO method with no parameters

 Suspicious class or global variable

 Strange relationships between classes

 Process-oriented methods

 Objects with process-oriented names

 OO advantage lost

 Inheritance cannot be used to extend

 Polymorphism cannot be used

DESIGN PATTERNS

AND ANTI-PATTERNS

ANTI-PATTERNS.

TYPES

 Software development

 Technical problems and solutions encountered by

programmers

 Architectural

 Identify and resolve common problems in how systems are

structured.

 Software project management

 Address common problems in software processes and

development organizations.

SOFTWARE BLOAT

 Successive versions of a system demand more and more

resources

 Reason

 Increase proportion of unnecessary features

 Results

 Program use more system resources than necessary,

while offering little or no benefit to its users

 Solution

 Use plug-ins, extensions or add-ons

 Use Unix philosophy: “write programs that do one thing

and do it well

PATTERNS FETISH

 Unreasonable and excessive use of desing pattrens

 Designers looks for places to use pattrens

 Solution

 Look at the design problem

 Favor simple solutions

THE BLOB
 Symptoms

 Single class with many
attributes and operations

 Controller class with simple,
data-object classes

 Lack of OO design

 A migrated legacy design

 Consequences

 Lost of OO advantages

 Too complex to reuse or test

 Expensive to load in memory
 Way?

THE BLOB

 Solution

 Identify or categorize related things

 Attributes, Operations

 Where do these categories naturally belong?

 Apply move method, move field refactorings

 Remove redundant associations

THE BLOB

THE BLOB

THE BLOB

THE BLOB

POLTERGEISTS

 Also Known As: Gypsy, Proliferation of Classes, Big Dolt
Controller Class

 Symptoms

 Small Classes with very limited responsibilities and short life
cycles

 Redundant navigation paths.

 Classes with few responsibilities

 Classes with "control-like" operation names such as
start_process_alpha

 Consequences

 Excessive complexity

 Unstable analysis and design models

 Divergent design and implementation

 Lack of system extensibility

POLTERGEISTS

Example: Teach students stack class

- Rewrites all functions already existing in list class

public class LabStack<T> {

 private LinkedList<T> list;

 public LabStack() { list = new LinkedList<T>(); }

 public boolean empty() { return list.isEmpty(); }

public T peek() throws EmptyStackException {

 if (list.isEmpty()) { throw new EmptyStackException(); }

 return list.peek();

 }

 public T pop() throws EmptyStackException {

 if (list.isEmpty()) { throw new EmptyStackException(); }

 return list.pop();

 }

 public void push(T element) { list.push(element); }

 public int size() { return list.size(); }

 public void makeEmpty() { list.clear(); }

 public String toString() { return list.toString(); }

}

POLTERGEISTS

NEXT COURSE

 EXAM

