
DESIGN PATTERNS

COURSE 11

PREVIOUS COURSE
 J2EE Design Patterns

CURRENT COURSE

 Refactoring

 Way refactoring

 Some refactoring examples

SOFTWARE

EVOLUTION

 Problem: You need to modify existing code

 extend/adapt/correct/…

 (Bad) Solution:

 Just add new features

 Consequence:

 Design decays

 Duplicated code

 Long methods / classes , …

 (Good) Solution:

 First make code simpler => Refactor

 Add new features

 Consequence:

 Code stays simple

REFACTORING

CONSIDERED HARMFUL

 From the standpoint of a manager, refactoring can appear

to be dangerous!

 If my developers spend their time “cleaning up the code”

then that's less time implementing required functionality

 …and my schedule is slipping as it is!

 To address these concerns, refactoring needs to be

 systematic

 incremental

 safe

WHAT IS

REFACTORING?

 “The process of changing a software system in such a way that it
does not alter the external behaviour of the code, yet improves its
internal structure.”

Martin Fowler, “Refactoring: Improving the Design of Existing Code”,
Addison-Wesley,1999.

 “A behaviour-preserving source-to-source program
transformation.”

Don Roberts, “Practical analysis for Refactoring”, PhD Thesis,
University of Illinois, 1999.

 “A change to the system that leaves its behaviour unchanged,
but enhances some non-functional quality - simplicity, flexibility,
understandability, …”

Kent Beck, “eXtreme Programming Explain: Embrace Change”,
Addison-Wesley, 2000.

WAY TO REFACTOR?

 Refactoring improves the design of your system

 Refactoring makes your software easier to understand

 because structure is improved

 duplicated code is removed

 etc.

 Refactoring helps you find bugs

 because it promotes a deep understanding of the code

 Refactoring helps you program faster

 because a good design enables progress

 Prevent “design decay”

 Clean up messes in the code

 Simplify the code

 Reduce debugging time

 Redoing things is fundamental to every creative process

HOW TO MAKE A SAFE

REFACTORING

 First, make it systematic

 e.g. use refactoring patterns, like the ones discussed in

Fowler's book

 Follow a refactoring process

 Second, test constantly!

 Each time you finish a refactoring, you run your test suite

to confirm that your system's functionality has stayed the

same

 This assumes, you have test already!

PREREQUISITES FOR

REFACTORING

 Tests

 Coding standards

 Continuous integration

 Collective code ownership

 Pair programming

 Simple design

THE REFACTORING

PROCESS

 When you systematically apply refactoring, you wear two hats

 add functionality

 refactoring

 Don't try to clean the code when doing the former

 Don't try to add features whesn doing the latter

 Refactoring is not just arbitrary restructuring

 Code must still work

 Small steps only so the semantics are preserved (i.e. not a major
re-write)

 Unit tests to prove the code still works

 Code is
 More loosely coupled

 More cohesive modules

 More comprehensible

WHEN TO REFACTOR

 You should refactor:

 Any time that you see a better way to do things

 “Better” means making the code easier to understand and to

modify in the future

 You can do so without breaking the code

 Unit tests are essential for this

 You should not refactor:

 Stable code that won’t need to change

 Someone else’s code

 Unless the other person agrees to it or it belongs to you

 Not an issue in Agile Programming since code is commun

WHEN TO REFACTOR

 When should you refactor?

 Any time you find that you can improve the design of
existing code

 You detect a “bad smell” (an indication that something is
wrong) in the code

 When can you refactor?

 You should be in a supportive environment (agile
programming team, or doing your own work)

 You are familiar with common refactorings

 Refactoring tools also help

 You should have an adequate set of unit tests

WHAT TO REFACTOR?

 Make sure your tests pass

 Find some code that “smells”

 Determine how to simplify this code

 Make the simplifications

 Run tests to ensure things still work correctly

 You eventually have to adapt your tests

 Repeat the simplify/test cycle until the smell is gone

REFACTORING STEPS

 Save / backup / checkin the code before you mess with it.

 If you use a well-managed version control repo, this is done.

 Write unit tests that verify the code's external correctness.

 They should pass on the current poorly designed code.

 Having unit tests helps make sure any refactor doesn't break

existing behavior (regressions).

 Analyze the code to decide the risk and benefit of refactoring.

 If it is too risky, not enough time remains, or the refactor will

not produce enough benefit to the project, don't do it.

REFACTORING

PROCESS

 Make a small change

 a single refactoring

 Run all the tests to ensure everything still works

 If everything works, move on to the next refactoring

 If not, fix the problem, or undo the change, so you still

have a working system

PROBLEMS WITH

REFACTORING

 Taken too far, refactoring can lead to incessant tinkering
with the code, trying to make it perfect

 Refactoring code when the tests don’t work or tests when
the application doesn’t work leads to potentially
dangerous situations

 Databases can be difficult to refactor

 code is easy to change; databases are not

 Refactoring published interfaces can cause problems for
the code that uses those interfaces

WHY (SOME) DEVELOPERS

DON’T LIKE IT

Lack of understanding

Short-term focus

Not paid for overhead tasks like refactoring

Fear of breaking current program

CODE SMELLS EXAMPLES

If it stinks, change it

 Code that can make the design harder to change

Examples:

 Duplicate code

 Long methods

 Big classes

 Big switch statements

 Long navigations (e.g., a.b().c().d())

 Lots of checking for null objects

 Data clumps (e.g., a Contact class that has fields for address,
phone, email etc.) - similar to non-normalized tables in relational
design

 Data classes (classes that have mainly fields/properties and little
or no methods)

 Un-encapsulated fields (public member variables)

SOME TYPES OF

REFACTORING

 refactoring to fit design patterns

 renaming (methods, variables)

 extracting code into a method or module

 splitting one method into several to improve cohesion and
readability

 changing method signatures

 performance optimization

 moving statements that semantically belong together near each
other

 naming (extracting) "magic" constants

 exchanging idioms that are risky with safer alternatives

 clarifying a statement that has evolved over time or is unclear

 See also http://www.refactoring.org/catalog/

HOW TO REFACTOR

Manualy

Refactoring tool

 Eclipse (and some

other IDEs) provide

significant support for

refactoring

EXTRACT METHOD

 You have a code fragment that can be grouped together.

 Turn the fragment into a method whose name explains the

purpose of the method.

 Inverse of Inline Method

void printOwing() {

 printBanner();

 //print details

 System.out.println ("name: " +_name);

 System.out.println("amount " + getOutstanding());

}
void printOwing() {

 printBanner();

 printDetails(getOutstanding());

}

void printDetails (double outstanding) {

 System.out.println ("name: " + _name);

 System.out.println ("amount " + outstanding);

}

INLINE METHOD

 A method's body is just as clear as its name.

 Put the method's body into the body of its callers and

remove the method.

 Inverse of Exact Method

int getRating() {

 return (moreThanFiveLateDeliveries()) ? 2 : 1;

}

boolean moreThanFiveLateDeliveries() {

 return _numberOfLateDeliveries > 5;

}

int getRating() {

 return (_numberOfLateDeliveries > 5) ? 2 : 1;

}

RENAME METHOD

 The name of a method does not reveal its purpose.

 Change the name of the method.

class Customer {

 double getInvcdtlmt();

}

class Customer {

 double getInvoiceableCreditLimit();

}

class Customer {

 double getInvcdtlmt();

}

class Customer {

 double getInvoiceableCreditLimit();

}

REMOVE PARAMETER

 A parameter is no longer used by the method body.

 Remove it.

 inverse of Add Parameter

 Naming: In IDEs this refactoring is usually done as part of

"Change Method Signature”

Customer getContact(Date)

Customer getContact()

ADD PARAMETER

 A method needs more information from its caller.

 Add a parameter for an object that can pass on this

information.

 Inverse of Remove Parameter

 Naming: In IDEs this refactoring is usually done as part of

"Change Method Signature"

Customer getContact()

Customer getContact(Date data)

EXTRACT CLASS

 You have one class doing work that should be done by

two.

 Create a new class and move the relevant fields and

methods from the old class into the new class.

 Inverse of Inline Class

INLINE CLASS

 A class isn't doing very much.

 Move all its features into another class and delete it.

 Inverse of Extract Class, Extract Interface

EXTRACT INTERFACE

 Several clients use the same subset of a class's interface,

or two classes have part of their interfaces in common.

 Extract the subset into an interface.

 Inverse of Inline Class

REPLACE ERROR CODE

WITH AN EXCEPTION

A method returns a special code to indicate an error.

Throw an exception instead.

int withdraw(int amount) {

 if (amount > _balance)

 return -1;

 else

 _balance -= amount; return 0;

}

void withdraw(int amount) throws BalanceException {

 if (amount > _balance)

 throw new BalanceException();

 _balance -= amount;

}

int withdraw(int amount) {

 if (amount > _balance)

 return -1;

 else

 _balance -= amount; return 0;

}

void withdraw(int amount) throws BalanceException {

 if (amount > _balance)

 throw new BalanceException();

 _balance -= amount;

}

REPLACE EXCEPTION

WITH TEST

You are throwing an exception on a condition the caller could

have checked first.

Change the caller to make the test first.

double getValueForPeriod (int periodNumber) {

 try {

 return _values[periodNumber];

 } catch (ArrayIndexOutOfBoundsException e) {

 return 0;

 }

}

double getValueForPeriod (int periodNumber) {

 if (periodNumber >= _values.length)

 return 0;

 return _values[periodNumber];

}

double getValueForPeriod (int periodNumber) {

 try {

 return _values[periodNumber];

 } catch (ArrayIndexOutOfBoundsException e) {

 return 0;

 }

}

double getValueForPeriod (int periodNumber) {

 if (periodNumber >= _values.length)

 return 0;

 return _values[periodNumber];

}

CONSOLIDATE CONDITIONAL

EXPRESSION

 You have a sequence of conditional tests with the same

result.

 Combine them into a single conditional expression and

extract it.

double disabilityAmount() {

 if (_seniority < 2) return 0;

 if (_monthsDisabled > 12) return 0;

 if (_isPartTime) return 0;

 // compute the disability amount

double disabilityAmount() {

 if (isNotEligableForDisability()) return 0;

 // compute the disability amount

double disabilityAmount() {

 if (_seniority < 2) return 0;

 if (_monthsDisabled > 12) return 0;

 if (_isPartTime) return 0;

 // compute the disability amount

double disabilityAmount() {

 if (isNotEligableForDisability()) return 0;

 // compute the disability amount

CONSOLIDATE DUPLICATE

CONDITIONAL FRAGMENTS

 The same fragment of code is in all branches of a

conditional expression.

 Move it outside of the expression.

if (isSpecialDeal()) {

 total = price * 0.95;

 send();

} else {

 total = price * 0.98;

 send();

}

if (isSpecialDeal())

 total = price * 0.95;

else

 total = price * 0.98;

send();

OBSTACLES TO

REFACTORING

Complexity

 Changing design is hard

 Understanding code is hard

Possibility to introduce errors

 Run tests if possible

 Build tests

Cultural Issues

 “We pay you to add new features, not to improve the code!”

Performance issue

 Refactoring may slow down the execution

Normally only 10% of your system consumes 90% of the resources so just focus on 10 %.

 Refactorings help to localize the part that need change

 Refactorings help to concentrate the optimizations

Development is always under time pressure

 Refactoring takes time

 Refactoring better after delivery

SUMMARY

 “The process of changing a software system in such a
way that it does not alter the external behavior of the code,
yet improves its internal structure” [Fowler]

 Refactor to:

 Improve the software design

 Make the software easier to understand

 Help find bugs

 A catalog of refactoring exists: Extract Method, Move
Method, Replace Temp with Query, etc…

 Refactoring has some obstacles

NEXT COURSE

Anti-patterns

